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Abstract—  In the context of stochastic search, once regions of 
high performance are found, having the property that small 
changes in the candidate solution correspond to searching nearby 
neighborhoods provides the ability to perform effective local 
optimization.  To achieve this, Gray Codes are often employed 
for encoding ordinal points or discretized real numbers.    In this 
paper, we present a method to label similar and/or close points 
within arbitrary graphs with small Hamming distances.  The 
resultant point labels can be viewed as an approximate high-
dimensional variant of Gray Codes. The labeling procedure is 
useful for any task in which the solution requires the search 
algorithm to select a small subset of items out of many.  A large 
number of empirical results using these encodings with a 
combination of genetic algorithms and hill-climbing are 
presented. 

Keywords—Gray Code; Graph Labeling; Local Search; Genetic 
Algorithms; Stochastic Search 

I. INTRODUCTION 
Many optimization problems include the task of picking a 

small subset of items out of many – for example, picking a set 
of nodes from a graph that form a vertex cover or selecting a 
set of physical items that meet a set of constraints (such as 
total size) while maximizing another objective (such as value). 
Generate-test-and-revise approaches such as evolutionary 
algorithms, genetic algorithms (GA), simulated annealing and 
hill-climbing type heuristics are often used to address these 
problems.  Though a variety of encodings can be used to 
represent candidate solutions, one of the most common is a 
fixed-length binary string.    

In typical select-p-of-N points tasks, the simplest solution is 
to assign a random, and unique, binary string (of length 
log!𝑁 ) to each of the N points.  The search algorithm then 

encodes the full solution in a binary string of length 
𝑝 ∗ log!𝑁 .   Each substring is mapped to a point to be 
selected (in graph problems, each point may encode a vertex; 
in knapsack problems, each point may encode a physical item, 
etc.).  Typical search algorithms progress by repeatedly 
stochastically modifying the candidate solutions and testing 
the result.   A severe drawback of randomly assigning labels to 
vertices/items is that a small change in a single bit may 
radically change the solution.  A single bit flip may change the 
resultant substring to encode a point/item that is unrelated to 
the point prior to the flip.   Conversely, another problem is that 

making small moves (to nearby vertices or to similar objects) 
may require a large number of changes to the candidate 
solution string, thereby making it difficult to search local 
neighborhoods once a region of high performance is found. 

The two primary objectives of this paper are to (1) present 
a method for deriving neighborhood preserving binary labels 
to effectively represent “close” points and (2) to demonstrate 
how it can be effectively used within genetic algorithms [25].  
By preserving neighborhoods, making local moves in the 
search space is possible.  A wide class of problems, including 
selecting nodes in graphs (Fig. 1), are amenable to these 
labeling techniques. 

In this past, neighborhood-preserving codes have largely 
been explored in the context of optimization of an objective 
function in which the parameters are discretized encodings of 
real numbers [1]. For optimization, a standard binary 
representation of numbers can be problematic – consider 
representing 127 in binary: 01111111 and 128 in binary: 
10000000; though 127 & 128 follow each other, their 
Hamming distance is 8.  For a search algorithm to move from 
one value to the next, the number of modifications required to 
the bit-string is large. These ‘Hamming cliffs’ are commonly 
addressed through encoding the parameters with Gray Codes 
[2][3].  With Gray Codes, consecutive items have a Hamming 
distance of 1.  127 & 128 are represented as 01000000 & 
11000000 – a single bit flip moves to nearby values.  This is 

Fig 1.  16 vertex graph with 15 edges.  Left: nodes labeled randomly, 
summed Hamming distance between connected nodes is 40. Right: 
better node labeling, summed Hamming distance is 18.  
Edges with hamming distance > 1 are marked with thick red lines. 
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particularly important in the latter stages of search when 
search has landed in a basin of high performance [4][5] and 
local optimizations are required for improvement. 

Gray code has been extensively studied in the evolutionary 
algorithm literature over several decades [6][7][8][9][10].  The 
neighborhood-preserving encodings presented in this paper 
have applicability beyond ordinal number representation.   For 
example, within a graph, if the binary labels are assigned to 
nodes randomly, Hamming cliffs along the edges may be 
prevalent, Fig 1 (left).   In Section II, we present our algorithm 
to remove the Hamming cliffs in arbitrary graphs, Fig. 1 
(right).  The derived encodings share an important property 
with Gray-code: small changes in the candidate solution allow 
search to explore local neighborhoods.  Although the label 
assignment procedure does not guarantee single-bit Hamming 
distances between close items, it significantly lowers the 
Hamming distances found by random assignment.   

Numerous applications exist which could benefit from this 
label assignment, including selecting prototype samples for 
machine learning [11], point selection for object localization 
[12], and a multitude of classic NP hard problems [13][14].  In 
Section III, we demonstrate how the neighborhood preserving 
codes are used within a GA to address a number of such tasks. 

II. GRAPH PROPAGATION FOR POINT LABELING 
The basis of our approach to finding neighborhood preserving 
codes is to “propagate” vertex labels along the edges of a 
graph.  For many classes of problems, the underlying graph 
will be obvious; in others, a graph will need to be inferred.   
Examples of both types of problems will be given in the next 
section.  For simplicity, in this section, we are given an 
unlabeled graph that is either sparsely or densely connected 
and may contain either weighted or unweighted connections. 
The goal is to label vertices with unique binary labels of 
length 𝑇 = log! 𝑛  with minimal Hamming distances for 
connected vertices.   

The algorithm is initialized by randomly assigning unique 
labels of length T to each of the vertices.  Over a number of 
iterations, the algorithm will iteratively improve the labels to 
reduce the Hamming distance between connected vertices.  In 
each iteration, each vertex’s label is propagated to each of its 
neighbors.   Each vertex accumulates the labels from all of its 
neighbors, combines the accumulation with its own label, and 
propagates the accumulated tally to its neighbors in the next 
step after a normalization step.   See Fig 2. 

Over successive iterations, each vertex’s label will ‘reach’ 
all of the nodes in the graph.  To ensure that a vertex’s 
influence is more pronounced upon close neighbors, the edge 
weights are scaled to a positive weight < 1.0.   This serves as 
an exponential decay over connection hops for the influence 
of a vertex on its neighbors (in all the experiments, the max 
weight was 0.9).  This algorithm is a variant of the Adsorption 
label propagation approach [15], in which YouTube videos 
were propagated along the inferred co-view graph to find 

novel video recommendations.  In [21], we first explored its 
use in optimization.    

Once the propagation has sufficiently converged, each 
vertex will have a summary of the labels from all of its 
neighbors in the form a single vector specifying the 
distribution of 0’s and 1’s in each bit position for itself and its 
neighbors.   With these summary statistics, new labels are 
assigned to each node to replace the initially random labels.  
The new labels are chosen to minimize the summed distance 
between the summary statistics in each node and the new 
node’s label.  Once the new labels are chosen, the full 
algorithm is repeated.  This continues for a set number of 
iterations or until the labels no longer change in this 
reassignment step.   At the end of this procedure, each node 
will have a label similar to its neighbor’s label. 

Originally, Adsorption was designed for classification tasks 
that may have sparse data, but in which an underlying 
“relatedness” graph exists [15][16].  The variant described 
here, with a vector of binary, unique, labels, was a 
modification of Adsorption created to provide ‘forgiving’ hash 
labels to clustering tasks – in which the goal is to associate 
nearby clusters (i.e., vector quantization) with minimal 
distance bit-strings.  Adsorption, and this variant, lend 
themselves to simple iterative computation (similar to 
PageRank [17]) and are efficient to implement in the 
MapReduce framework [18]. 

A. Propagation Variations & Practical Heuristics 
The label reassignment step can be expensive (described 

below).  Because the propagation and accumulation steps 

Initialize:  
Randomly label each vertex with unique bit-string 
length T. 

 
Propagation Step: 
 For each node, n: 
  For each node connected to n, m: 
   At Node m – record n’s label. 
 
Accumulation Step: 
 For each node, n: 
  For each bit position 1-T, t: 

Initialize Evidence bit positions to labeln[t] 
with weight α  

  For each recorded labels at node-n, R: 
   Evidencen [t] = Evidencen [t] + R[t] . 

Scale Evidence vector to 1.0 max (by normalizing 
by weight of incoming connections and α) 

 
Label Reassignment Step: 
 Set P = all possible labels of length T (|P| = 2T) 
  For each node, n: 
   For each label in P, p: 
    Calculate Distance Evidencen, p 

Reassign all labels, (one label per vertex) minimizing 
the overall distance between Evidence and assignment 
across all nodes. 

 
Repeat from Propagation Step 
 

Fig 2.  Graph Propagation for Label Assignment, α set to 0.1.  Shown for 
a uniformly weighted graph.  A straightforward extension is 

possible for non-uniform edge weights [21]. 



work incrementally, it is not necessary to run the reassignment 
step after each iteration.  Instead, the propagation and 
accumulation can be repeated without invoking label 
reassignment until either (a) the graph converges or (b) a set 
number of iterations is reached. This dramatically reduces the 
computational expense.  

A variety of matching procedures can be used for the 
reassignment step.  A simple greedy method will not 
guarantee an optimal assignment. A procedure popularized in 
1957, termed the “Hungarian Method” or the “Munkres-
Assignment Algorithm,” provides a method for finding the 
optimal assignment [19][20].  Given an NxN matrix in which 
the element in the i-th row and the j-column represents the 
non-negative cost of assigning label i to point j, the Hungarian 
Method finds the minimal cost assignment.  It is often used to 
assign jobs to workers with minimum cost.  Although beyond 
the scope of this paper to provide details (see [19][20]), the 
Hungarian Method can be implemented in O(N3).    

Another heuristic that has repeatedly shown to improve the 
final performance in terms of reducing the summed Hamming 
distance across edges is to modify the distance calculation 
measurement employed in the reassignment step.  Recall that 
the distance to be minimized is the summed distance across all 
nodes N between Evidencen  and all binary labels of size T.   A 
simple heuristic to promote smoothness across connecting 
vertices is to weight the Evidence at each node with the 
Evidence from all the neighboring connections (note that this 
differs from simply a propagation step in that the node’s 
assigned label does not contribute directly in this step, only 
the Evidence accumulated at the node and its neighbors).  In 
this case, Evidencen is based on Evidenceneighbors-of-n (in 
Adsorption parlance, this is equivalent to a step in which a 
node’s self-“injection” labels are not used). This yields 
dramatic improvements in the result of the labeling procedure. 

Fig 3. shows the results for 100 randomly initialized runs 
for  (A) a 256-node “line-graph” where the nodes are arranged 
in a line and each node is connected to each of its two 
neighbors (B) a sparsely connected random graph of 256 
nodes. The results shown are the summed Hamming distance 
between connected nodes.   For reference, a random labeling 
of graph-A (510 connections) had a summed Hamming 
distance of 2049 (close to expected: 510*(8/2)), a randomly 
labeled graph-B (768 connections): 3076 (~768 * (8/2)). 

From Fig. 3, it is first apparent that there is no guarantee of 
optimal assignments (i.e. where all connected nodes have a 
Hamming distance of 1), since different runs end with 
different summed Hamming distances.  Second, the line-graph 
was chosen because using a standard Gray-code to label 
sequential nodes would yield a known optimal assignment. 
Had a standard Gray-code been found, the summed Hamming 
distance would be 510. Note that the average summed 
Hamming distance found was not optimal: 771 for the 
Hungarian Matching, but it was far better than random (2049).  
Third, the multi-node distance heuristic worked with both 

graphs, the results were statistically significant (p<0.001). All 
further experiments will employ this distance calculation. 

To provide insight into the algorithm progress, we examine 
four sample runs for a graph with 8192 nodes (Fig. 4).  In each 
run, the graph connectivity was varied: 24,576 edges (3 per 
node), 32,768 (4 per node) 40,960 (5 per node) and 81,920 (10 
per node) respectively.  Each graph was constructed so that an 
optimal assignment existed.  Up to 100 label reassignment 
steps are shown in Fig. 4.   The Y-axis of the graph is the ratio 
of the summed Hamming distance across all edges in the 
graph / the Hamming distance of the optimal assignment 
(=number of edges).   With connectivity of 10 and 5, the 
algorithm reaches a ratio of 1.0 (optimal assignment).  With 
C=4 the ratio is 1.07 with Connectivity 3, the ratio is 2.7.   In 
this example, the more constraints provided in the graph, the 
more rapid the convergence and the better the solution found.   
The least connected graph neither converged as rapidly nor 
performed as well as when more edges were provided. 

 

III. NEIGHBORHOOD PRESERVING ENCODINGS FOR SEARCH 
To this point, we have presented methods to reduce the 

summed Hamming distance between connected nodes in a 
graph. The goal of this section is to demonstrate that the 
neighborhood preserving point labeling schemes are general 
and the resultant codes can be easily and effectively used 
within a standard Genetic Algorithms (GA).  

In a recent previous study [21], we demonstrated the use of 
neighborhood preserving encodings in the context of simple 
bit-flip stochastic hill-climbing (also see [26]). One of the 
most salient findings of that study was that the encodings 
performed best in the latter stages of search – during local 
optimization.   However, during the early stages of search, 
when diverse exploration was necessary, the use of the 
encodings actually hindered performance.   The reason was 

 256 Node Line Graph  
(510 Connections) 

 256 Node Random Graph 
(768 Connections) 

Hungarian 
Matching 

avg=771  avg=1788 

 
Hungarian 

Matching & 
Multi-Node 

Distance 

avg=721  avg=1587 

Fig 3. The summed hamming distance across connected nodes of two 
graphs (1) line-graph, left and (2) random graph, right. Distribution of 
results across 100 trials using just Hungarian and Hungarian with modified 
node distance.  Distributions closer to the left are better (lower summed 
Hamming distance)  (x-axis is constant for each graph type).   Average 
score over 100 trials also given. 



the nature of the hillclimber tested – it operated with single 
bit-flips.   With single bit flips, the probability of large moves 
is, by design, reduced using these encodings.  If these 
encodings were used only in the later portions of search, once 
a basin of good performance was found and small moves were 
required for local optimization, these reduced Hamming 
distance encodings far outperformed random encodings.  This 
finding led to a simple heuristic: use random encodings for the 
initial portion of search, and switch to reduced-Hamming 
distance encodings once progress slowed [21]. 

Analogously, in a number of previously published studies, 
it was found that GAs very quickly find regions of high 
performance, but incorporating hill-climbing (HC) methods 
often yields better results than simply continuing the GA for 
more iterations [13][22][23][24][27]. Though numerous 
methods for incorporating HC into GAs have been explored, 
the simplest is in two consecutive stages:  Stage-1: run a 
simple, generational, GA to find a region of high performance.  
Stage-2: starting with the best result found by the GA, use HC 
for local optimization.  This approach will be used here. 

The Stage-1 generational GA was run with the following 
parameters: Population Size: 50, Crossover Type: Two Point 
(performed equivalently to uniform), Mutation Rate: 1%-10% 
(multiple were tried) and Elitist Selection (the best solution 
from one generation is passed to the next unperturbed).  The 
GA is run until a local optima is found (1000 consecutive 
evaluations without improvement).  The GA’s best solution 
initializes the stochastic next-ascent hill-climbing (HC) step.   

The Stage-2 HC algorithm begins with the GA’s best 
solution string.   It randomly perturbs a bit in the solution 
string, evaluates the new string, keeps the perturbation if the 
evaluation has improved or stayed the same, and discards the 
perturbation if the evaluation has worsened with the 
perturbation. Like the GA, HC is continued until 1,000 

consecutive evaluations without improvement.  The best result 
found from the HC step is returned as the final answer. 

Our primary goal is to determine, in a combined scheme of 
GA+HC, whether there is a need for using the neighborhood 
preserving mappings or whether this encoding’s benefit is 
mitigated when two search algorithms with complementary 
strengths (global and local optimization) are combined. 1 
Additionally, we examine whether the Hungarian-based 
labeling is useful with a GA itself.  We examine four variants: 

 
1. GA(R1)+HC(R1):  The bitstring to vertex mapping for 

the GA is chosen randomly.   The same mapping is then 
used with the hill-climbing algorithm.  This is the 
baseline. 

2. GA(R1)+HC(R2):  The bitstring to vertex mapping for 
the GA is chosen randomly.   A newly chosen, but still 
random, mapping is used with the hill-climbing 
algorithm.   This variant determines whether simply using 
a new encoding for the hill-climbing stage provides the 
same benefit as the neighborhood-preserving mappings. 

3. GA(R1)+HC(Hungarian): The bitstring to vertex 
mapping for the GA is chosen randomly.    However, the 
hill-climbing mapping is chosen through the Hungarian 
variant of the graph propagation algorithm.  This test is 
included to determine whether a reduced hamming 
distance encoding is more important for local 
optimization (Stage 2) than for the initial stages of search. 

4. GA(Hungarian) + HC (Hungarian):  The Hungarian 
mapping is used for both the GA and HC.  

 
In addition to the results presented here, we completed two 

sets of experiments not shown due to space restrictions.   First, 
we experimented with a GA without an HC step – using both 
random and Hungarian encodings. The results without an HC 
step faired consistently worse than those where an HC step 
was employed. Second, we experimented with greedy 
matching (a non-optimal reassignment step shown in Fig 2.) 
instead of Hungarian matching.  In most cases, there was little 
difference between Hungarian and greedy matching. In the 
majority of runs where there was a significant (p<0.001) 
difference, the Hungarian matching performed better. This is 
similar to the results found when using only HC [21].  

We begin our empirical examination with the Long-
Shortest Path problem. Given a sparsely connected graph of N 
vertices, the goal is to select K points that have the longest 

                                                             
1 In this paper, the HC and GA algorithms operate on binary strings.  

Nonetheless, it is possible to construct variants with operators that move  
directly in graph space without an intermediate encoding. Numerous 
studies (see references) have been conducted examining the efficacy of 
binary encodings, particularly in the context of GAs; we will not enter 
that debate here.  Rather, if the problem to be addressed is of the select-p-
of-N points variety, our goal is to improve the performance of any 
algorithm that employs a binary encoding for exploring the search space. 
 

C=4 

C=3 

C=10 

C=5 

Fig 4.   Sample runs with 8192 node graphs.  4 Levels of connectivity 
are explored.   Shown is the  Ratio of hamming distances to minimum 
possible Hamming distance over the first 100 label reassignments. All 
runs start with ratio of ~6.5 (this is expected as the assignments are 
random and the label length is 13 (213=8192)).   With Connectivity=10 
and Connectivity=5, the ratio is driven to 1.0 (optimal assignment).  
With C=4, ratio is 1.07, with Connectivity=3, ratio is 2.7.  
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shortest-paths between the points in K.   We would like to 
maximize the sum of (K*K) distances.  For the experiments, 
graphs are randomly generated with N=1024 nodes with 
varying levels of connectivity, with the task of selecting K=20 
nodes with the furthest distance from each other.  The solution 
string is represented with 200 bits (20*10); each contiguous 
substring of 10 bits represents a selected vertex. 

Before introducing the Stage 2-HC, we first examine the 
performance of the GA with random vs. Hungarian-
assignments of labels. With 480 trials tested with 1024-node 
graphs created with random 10-node connectivity, 215 trials 
were better with random labels, 265 with Hungarian, and there 
was no statistical difference in the quality of the best results 
found.  With graphs that were created with varying numbers 
of clumps of clustered connectivity (instead of uniformly 
random connectivity), of the 480 trials, 225 were better with 
random labels, 255 with Hungarian, again with no statistical 
difference in the best results found.  For this problem, when a 
GA is used in isolation, we did not see much difference in 
performance between using random encodings and 
neighborhood preserving encodings.   

Why is there so little difference in performance?   Unlike 
HC, which explores the search space through single bit flips, 
the crossover and mutation operators can be disruptive to the 
candidate solutions.  Therefore, the intelligent labeling does 
not have the same detrimental impact of reducing exploration 
in the early stages of search as it did with single-bit-flip-HC, 
as reported in [21].  However, this only explains why the 
results with Hungarian labeling were not worse. Why were the 
results not better using Hungarian labeling?  While GAs excel 
at rapidly finding regions of high performance, they are often 
less effective in the latter stages of search, which require 
smaller moves for local optimizations [7][8].  One reason for 
this is that the finite population of points from which the GA 
searches may converge too quickly (rendering crossover 
ineffective), thereby making mutation the primary search 
operator.   However, mutation in a population of points is 
inefficient as compared with other, simpler, methods.  As will 
be demonstrated in the next few sections, when a Stage 2, 
local-optimization hill-climbing step is introduced, the 
outcomes with neighborhood preserving mappings 
overwhelmingly outperform other encodings. 

 

A. Test Problem 1: Long-shortest Paths 
Throughout the experimental sections, a large number of 

empirical results will be presented.  Because the problems are 
randomly generated, giving the raw evaluation numbers yields 
little insight.  Instead, we present comparative results.   For 
each comparison, we give the number of times algorithm A 
performed better than algorithm B and vice-versa.  Ties are 
not attributed to either algorithm.  We also tell whether the 
average performance, in terms of best evaluation found, was 
statistically different from each other (> 99% confidence using 
a paired two-tail t-test).   

In Table 1 and Table 2, we compare the performances of 4 
GA+HC variants as the size of the graphs (N) and the number 
points to be selected (K) are varied.  Row 1, 
(GA(R1)+HC(R2) Vs. GA(R1)+HC(R1), tests whether the 
fact that the vertex encoding between the two stages changes 
improved performance by itself – note that the vertex 
encoding was switched to another randomly selected encoding 
(R2) with no neighborhood preservation properties. Previous 
experiments with a single search algorithm [9][21] showed 
that simply changing the representation to another, even 
random, representation helped escape local optima.   Here, 
however, we witness a less consistent improvement.  Likely, 
because changing the search algorithm (from GA to HC) 
changed the primary search operator, that served the same role 
for escaping local optima as changing the encoding. The 
encoding change had only a secondary effect.  

Next, we test whether adding neighborhood preserving 
properties to the encoding can improve the results.  The 
effects of using the Hungarian encoding with Stage 2-HC are 
shown in Row 2.  The GA still uses the random encoding for 
these tests.  The majority of the cases improved significantly 
over using a random encoding with HC.    Row 3 shows that 
this improvement remains even if the same Hungarian coding 
was used in both the Stage-1 GA and Stage-2 HC.   This 
indicates that the change in encoding was not the driver of the 
improved performance, it was the encoding itself.  

Finally, we compare the results of using the neighborhood 
preserving codes throughout the entire search, and only in 
Stage-2.  Row 4 of both tables shows no statistical difference 
between using a random or Hungarian encoding for the GA 
stage when the Hungarian encoding is used in Stage 2 for 
local optimization. This corroborates the findings in [21] – the 
effects of neighborhood preserving codes are most 
pronounced in local optimization. 

Table 1. Longest Shortest-Paths, N=256,512,1024 Vertices.  
C=Connectivity 3.   K = 20.  Random Graph   

 N=256 N=512 N=1024 
1 GA(R1)+HC(R2) Vs. 

GA(R1)+HC(R1) 51/68 No 59/61 No  73/47 No  

2 GA(R1)+HC(Hung) Vs. 
GA(R1)+HC(R2) 77/42 Yes 79/40 Yes  78/42 Yes  

3 GA(Hung)+HC(Hung) Vs. 
GA(R1)+HC(R2)    81/35 Yes 70/50 Yes  78/41 Yes  

4 GA(Hung)+HC(Hung) Vs. 
GA(R1)+HC(Hung) 66/54 No 52/66 No  65/53 No  

 

Table 2. Longest Shortest-Paths, N=1024 Vertices.  C=3.   Random Graph 

 K=5 K=10 K=20 K=100 
1 GA(R1)+HC(R2) Vs. 

GA(R1)+HC(R1) 44/52 No  69/49 No  73/47 No  90/30 
Yes  

2 GA(R1)+HC(Hung) Vs. 
GA(R1)+HC(R2) 76/30 Yes  76/40 Yes  78/42 

Yes  
79/41 
Yes  

3 GA(Hung)+HC(Hung) Vs. 
GA(R1)+HC(R2)    77/36 Yes  76/43 Yes  78/41 

Yes  
62/58 
No  

4 GA(Hung)+HC(Hung) Vs. 
GA(R1)+HC(Hung) 58/48 No  65/52 No  65/53 No  61/59 

No 



   We next experiment with increasing the graph’s connectivity 
(Table 3).  This is important to determine whether using the 
label propagation techniques can be applied to highly 
overconstrained problems.   From Table 3, we again see that 
introducing a second, random, mapping rarely improves 
performance (Row 1). Importantly, using the Hungarian-
derived-mapping usually outperforms just using random 
mappings (Rows 2 & 3).    The results shown in Row 4 are 
similar to those seen earlier; in Stage 1-GA, the encoding was 
less important than the encoding used for the HC; the results 
in Row 4 are not statistically different. 

Table 3. Longest Shortest-Paths, N=1024.  C= 10.   Random Graphs. 

 K=5 K=10 K=20 K=100 
1 GA(R1)+HC(R2) Vs. 

GA(R1)+HC(R1) 16/8 No  26/38 No  54/50 
No  

58/62 
No  

2 GA(R1)+HC(Hung) Vs. 
GA(R1)+HC(R2) 36/16 Yes  98/2 Yes  68/34 

Yes  
66/54 
No  

3 GA(Hung)+HC(Hung) Vs. 
GA(R1)+HC(R2)    50/28 Yes  86/20 Yes  78/34 

Yes  
58/62 
No  

4 GA(Hung)+HC(Hung) Vs. 
GA(R1)+HC(Hung) 38/34 No  26/32 No  56/44 

No  
54/62 
No  

 
For the remainder of the experiments, we omit presenting 

the results for changing between two random encodings: 
GA(R1)+HC(R2) vs. GA(R1)+HC(R1); most cases were not 
significantly different, and those that were, favored using a 
different random encoding for the GA and HC steps.  
Therefore, all future comparisons will be made to the better of 
the two, GA(R1)+HC(R2).   We retain the harder of the two 
baselines to compare with the neighborhood preserving codes. 

The comparisons that remain are those that focus on the 
effects of using the Hungarian encoding for HC (Row 2), and 
using the Hungarian encoding for both (Row 3).   These two 
columns provide the evidence to determine whether the 
neighborhood preserving codes for local optimization 
outperform random encodings.  For completeness, Row 4 is 
kept, though there is rarely any significant difference in 
performance in the random vs. Hungarian encodings used for 
Stage 1-GA as long Stage 2-HC uses the Hungarian encoding. 

 

B. Test Problem #2: Shortest Distance to Selected Vertices 
In this problem, the goal is to select K vertices from an N 

node graph such that the summed distance of all the vertices in 
N to a member of K is minimized.   If the graph is planar, this 
is a grossly-simplified problem of cell-phone tower layout.  
Like the previous problem, this problem is parameterized with 
K,N, and C (the connectivity of the graph).  

In Table 4, experiments are conducted varying the number 
of nodes in the graph; we always see a large improvement in 
using the Hungarian-derived mappings over random labels. 

The results in Table 5 indicate that even as the number of 
points to be selected increases, the same performance trends 
hold across random and cluster graphs. Local optimization 
consistently benefits from neighborhood preserving mappings 

– regardless of whether the Hungarian mappings are used for 
the GA portion.  As before, when the neighborhood preserving 
codes are used for Stage-2 HC, there is little performance 
difference in the encoding used for the GA (Row 3, both 
tables). 

Table 4. Effects of Graph Size.  N=256,512,1024 Vertices.  C=Connectivity 
3.   K = 20. Random Graphs.  

 N=256 N=512 N=1024 
1 GA(R1)+HC(Hung) Vs. 

GA(R1)+HC(R2) 
105/10 Yes  110/8 Yes  92/23 Yes  

2 GA(Hung)+HC(Hung) Vs. 
GA(R1)+HC (R2) 

105/11 Yes  111/8 Yes  85/34 Yes  

3 GA(Hung)+HC(Hung) Vs. 
GA(R1)+HC(Hung) 

56/59 No  58/60 No  62/56 No  

 

Table 5. Effects of varying K. N=1024 Vertices. Cluster Graph, Random 
Graph.  All connectivities.   

 K =  5 K = 10 K = 20 K = 100 
1 GA(R1)+HC(Hung) Vs. 

GA(R1)+HC(R2) 
429/85 
Yes  

492/102 
Yes  

497/97 
Yes  

424/161 
No  

2 GA(Hung)+HC(Hung) Vs 
GA(R1)+HC (R2) 

404/124 
Yes  

463/134 
Yes  

477/118 
Yes  

421/166 
Yes  

3 GA(Hung)+HC(Hung) Vs. 
GA(R1)+HC(Hung) 

238/240 
No  

293/300 
No  

307/287 
No  

309/265 
No 

 

C. Test Problem #3 – Multi-Dimensional Knapsack 
In this problem, there are N objects with D traits (weight, 

volume, etc.) and an associated Value (such as $).  The object 
is to find the set of objects that can fit into a knapsack with 
maximal value, subject to the constraint that the summed 
value of any of the traits not exceed the knapsack’s capacity 
for that trait.   The problems are generated randomly; each of 
the D-traits and the value are drawn uniformly from 1-1000.  

Unlike the two graph problems explored in the previous 
sections, there is no explicit graph to propagate the labels from 
which to create the neighborhood-preserving mappings.   
Instead, we must first synthesize an appropriate graph. We 
represent each object as a node in the graph.   To determine 
which objects are connected to each other (the edges in the 
graph), we concatenate each object’s traits and value into a 
single vector and connect the object to the S other most similar 
objects, as measured by the l2-norm difference between the 
object’s vectors.   In these experiments, it should be noted that 
the edges are not necessarily symmetric.   In the completed 
graph, each node is connected to at least S other nodes.   With 
this, we can proceed with the same propagation mechanisms 
used in previous experiments – with the labels derived from 
propagation in this graph.  The solution string was encoded as 
a bit-string of selected items.  If items were represented more 
than once in the bit-string, they were still added only once.  
Items were added until the knapsack exceeded its volume in 



any dimension; then the total value of the items in the 
knapsack was returned as the value of the bit-string. 

In Table 6 and Table 7, we examine the effects of 
increasing the problem difficulty.   Three sizes of the 
knapsack are explored: ranging from 1/5th of the expected total 
in any dimension to 1/20th of the expected total in any 
dimension – i.e. if there are 256 nodes, the total in any 
dimension is expected to be 256*(1000/2)=128,000, therefore 
for the hardest case of 1/20th the expected total, the knapsack 
is limited to a total 6,400 in any dimension.  In Table 6, each 
item is has D=9 traits, in Table 7, D=1 trait.   The larger the 
number of traits, the more unlikely it is to find high value 
items that are small across all traits.  We expect a more 
uniform performance across algorithms as D increases.   

Table 6. Multi-Dimensional Knapsack.  N=1024, 512, & 256 Vertices.   
Graph modeled 10 Nearest Neighbors, D = 9 Traits 

 Loose 
Constraint  
1/5th total 

Medium 
Constraint  
1/10th 

Tight 
Constraint 
1/20th 

1 GA(R1)+HC(Hung) Vs. 
GA(R1)+HC(R2) 

234/126  
Yes  

267/93  
Yes  

266/94  
Yes  

2 GA(Hung)+HC(Hung) Vs 
GA(R1)+HC (R2) 

238/122  
Yes  

268/92  
Yes  

267/93  
Yes  

3 GA(Hung)+HC(Hung) Vs. 
GA(R1)+HC(Hung) 

178/182  
No  

177/182  
No  

183/177  
No  

 

Table 7. Multi-Dimensional Knapsack.  1024, 512, & 256 Vertices.   Graph 
modeled 10 Nearest Neighbors, D = 1 Trait  

 Loose 
Constraint  
1/5th total 

Medium 
Constraint  
1/10th 

Tight 
Constraint 
1/20th 

1 GA(R1)+HC(Hung) Vs. 
GA(R1)+HC(R2) 

331/29  
Yes  

196/164  
No  

239/121 
Yes  

2 GA(Hung)+HC(Hung) Vs 
GA(R1)+HC (R2) 

340/20  
Yes  

210/150 
Yes  

236/124 
Yes  

3 GA(Hung)+HC(Hung) Vs. 
GA(R1)+HC(Hung) 

199/161  
No  

210/150 
Yes  

187/173  
No  

 
As in the previous problems, the introduction of the 

Hungarian encoding in the HC portion of the optimization 
provided significant benefits in every case in terms of wins. 
The Hungarian encoding was beneficial in almost every case 
in terms of average results found, too – in all cases for (D=9) 
–  Table 6, and in all but one case in the problem sets shown in 
Table 7.  As before, as seen in Row 3, for the GA, using the 
Hungarian assignments vs. Random did not have a significant 
impact on performance in the majority of the cases as long as 
the Hungarian Encoding was used for Stage 2-HC. 

 

D. Test Problem #4: Multi-Dimensional Partitioning   
In this problem, the goal is to divide a set of numbers G 

into two subsets G1 and G2 such that the sum of G1 is as close 
to the sum of G2 as possible.  We add a twist to the problem 
by having a set of vectors (of length D) in G instead of 

numbers. The goal is to divide G into G1 and G2 where the l1-
norm difference between the sums of vectors G1 and G2 is 
minimized. Similar to the knapsack problem explored in 
Section 3.4, there is no explicit graph given.  Instead, we 
construct the graph like the knapsack synthetic graphs – by 
finding the most similar, S=10, vectors.  The results for the 
GA+HC combinations are shown in Table 8 and Table 9. 

For both cases, with 10 Dimensions (Table 8) and 2 
Dimensions (Table 9), the results always favor using the 
Hungarian-labeling for HC.   As we have seen in many 
problems, the difference between using the Hungarian labeling 
for the GA and not was not significantly better as long as the 
the Stage-2 HC also used the Hungarian labeling.   

Table 8. Results – Partitioning with GA+HC.  D= 10 Dimensions.  S = 10 
(10 similar vertices are connected to each vertex) 

 N=256 N=512 N=1024 
1 GA(R1)+HC(Hung) Vs. 

GA(R1)+HC(R2) 
95/25 Yes  87/33 Yes  101/19 Yes  

2 GA(Hung)+HC(Hung) Vs 
GA(R1)+HC (R2) 

90/30 Yes  90/30 Yes  99/21 Yes  

3 GA(Hung)+HC(Hung) Vs. 
GA(R1)+HC(Hung) 

56/62 No  63/56 No  65/55 No  

 

Table 9. Results – Partitioning with GA+HC. D=2 Dimensions. S=10 (10 
similar vertices are connected to each vertex) 

 N=256 N=512 N=1024 
1 GA(R1)+HC(Hung) Vs. 

GA(R1)+HC(R2) 
110/9 Yes  114/6 Yes  118/2 Yes  

2 GA(Hung)+HC(Hung) Vs 
GA(R1)+HC (R2) 

117/3 Yes  116/3 Yes  119/1 Yes  

3 GA(Hung)+HC(Hung) Vs. 
GA(R1)+HC(Hung) 

54/38 No  60/51 No  52/57 No  

 
Recall that for this problem (and the knapsack problem 

explored in the previous section), we had to synthesize a graph 
on which to propagate the labels.  We modeled the S=10 most 
similar vectors for the connections between the vertices.  For a 
final experiment, we see how sensitive the results are to this 
parameter.  If there are too few connections in the graph, we 
expect there to be less information to exploit in labeling and 
therefore a reduction in improvement seen. (Conversely, too 
many constrains and the propagation may degrade due to a 
muddied signal, fewer relevant vs. irrelevant connections, etc.)  
We reduce the number of similar vectors that are modeled in 
the graph by 80%, to S=2.  We repeat the experiments from 
Table 8, setting D=10.  The results are shown in Table 10. 

Like the results shown with representing S=10 similar 
vectors in the graph, the same trends hold with the Hungarian 
labeling as before, it provides a benefit in almost every case, 
though not as strongly in these tests.  The percentage of wins 
of the Hungarian over random labeling reduces in many cases.   
This is what we expected; by severely reducing the number of 
modeled connections, we have removed a significant amount 



of information implicitly provided to the algorithm through 
the labeling.  This also reaffirms an underlying assumption of 
this study – the graph from which the point labels are derived 
contains problem specific information that can be effectively 
used in the search algorithms through the neighborhood 
preserving encodings.   The more/cleaner the information in 
the graph, the more beneficial it will be. 

Table 10. Results – Partitioning with GA+HC.  D= 10 Dimensions.  S=2. (2 
similar vertices are connected to each vertex) 

 N=256 N=512 N=1024 
1 GA(R1)+HC(Hung) Vs. 

GA(R1)+HC(R2) 
54/26 Yes  41/39 No  51/29 Yes  

2 GA(Hung)+HC(Hung) Vs 
GA(R1)+HC (R2) 

62/18 Yes  52/28 Yes  52/28 Yes  

3 GA(Hung)+HC(Hung) Vs. 
GA(R1)+HC(Hung) 

48/32 No  42/38 No  38/42 No  

 

IV. CONCLUSIONS & FUTURE WORK 
There are two major contributions of this paper.  The first 

is a technique to encode binary-string labels on nodes in 
arbitrarily dense graphs that reduces the labels’ Hamming 
distance between connected nodes.   This technique is based 
on graph propagation of labels commonly found in machine 
learning literature [15][16]. 

The second contribution is a large empirical demonstration 
of the effectiveness of these labels within stochastic search 
algorithms for exploring local neighborhoods once regions of 
high performance are found.  Additionally, when employing a 
GA for the early stages of search, there was no significant 
difference in using these vs. random encodings, as long as the 
neighborhood encodings were used for Stage-2 local 
optimization.  This contrasts earlier studies [21], which 
showed that when HC with single-bit-flips was used for Stage-
1 exploration, the neighborhood encodings were too 
restrictive.  GAs did not suffer from this drawback.  In 
summary, through an extensive empirical comparison 
encompassing both problems that had explicit graphs and 
those for which the graph had to be constructed, the results 
pointed to the efficacy of using the reduced-Hamming 
distance labels for local optimization. 

Looking forward, there are three directions for research.  
First, the solutions to the problems presented in this paper 
were encoded as binary-strings.  However, there is no inherent 
limitation of the propagation algorithm to a binary alphabet.  
Higher cardinality alphabets can be accommodated and have 
already been explored outside the optimization domain [15]. 

Second, we have noted that in graphs where label 
assignments exist such that connected nodes can have a 
Hamming distance of 1, the more connections that are present 
in the graph, the more likely it is that the labeling algorithm 
approaches the optimal solution (Fig 4), especially when the 
heuristic of modifying the distance calculation, as described in 
Section II.A, is employed.   This warrants further study to 
understand the ideal conditions for this labeling procedure. 

Third, the propagation algorithm works equally well with 
directed and undirected graphs and with non-uniformly 
weighted edges. These extensions were not comprehensively 
explored in this paper.  Nonetheless, many problems in which 
a graph is inferred based on similarity of points (such as the 
Knapsack and Partitioning problems) are particularly well 
suited to these variants.   This is left for future study.   
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