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Abstract

Selecting a good representation of a solution-space is vital to solving any search and optimization problem. In particular,
once regions of high performance are found, having the property that small changes in the candidate solution correspond to
searching nearby neighborhoods provides the ability to perform effective local optimization. To achieve this, it is common
for stochastic search algorithms, such as stochastic hillclimbing, evolutionary algorithms (including genetic algorithms),
and simulated annealing, to employ Gray Codes for encoding ordinal points or discretized real numbers. In this paper, we
present a novel method to label similar and/or close points within arbitrary graphs with small Hamming distances. The
resultant point labels can be seen as an approximate high-dimensional variant of Gray Codes with standard Gray Codes as a
subset of the labels found here. The labeling procedure is applicable to any task in which the solution requires the search
algorithm to select a small subset of items out of many. Such tasks include vertex selection in graphs, knapsack-constrained
item selection, bin packing, prototype selection for machine learning, and numerous scheduling problems, to name a few.
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1. Introduction

Many optimization problems include the task of picking a small subset of items out of many — for example,
picking a set of nodes from a graph that form a vertex cover or selecting a set of physical items that meet a set
of constraints (such as total size) while maximizing another objective (such as value). Generate-test-and-
revise approaches such as evolutionary algorithms, genetic algorithms (GA), simulated annealing and hill-
climbing type heuristics are often used to address these problems. Though a variety of encodings can be used
to represent candidate solutions, one of the most common is a fixed-length binary string.

In typical select-p-of-N points, the simplest solution is to assign a random, and unique, binary string (of
length [log, N1) to each of the N points. The search algorithm then encodes the full solution in a binary string
of length p * [log, N|. Each substring is mapped to a point to be selected (in graph problems, each point may
encode a vertex; in knapsack problems, each point may encode a physical item, etc.). Typical search
algorithms progress by repeatedly stochastically modifying the solution and testing the result. The difficulty
with random assignment of labels to vertices/items is that making a small change in a single bit may radically
change the solution. A single bit flip may change the resultant substring to encode a point/item that is unrelated
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to the point prior to the flip. Conversely, another problem is that making small moves (i.e., to nearby vertices
or to similar objects) may require a large number of changes to the candidate solution string, thereby making it
difficult to search local neighborhoods once a region of high performance is found.

Consider a typical optimization example in which an objective function’s parameters are discretized
encodings of real numbers [1]. A standard binary representation can be problematic, for example representing
127 in binary: 01111111 and 128 in binary: 10000000; though 127 & 128 follow each other, their Hamming
distance is 8. For the search algorithm to move from one value to the next, the number of modifications
required to the bit-string is large. These ‘Hamming cliffs’ are commonly addressed through encoding the
parameters with Gray Codes [2][3]. With Gray Codes, consecutive items have a Hamming distance of 1. 127
& 128 are represented as 01000000 & 11000000 — a single bit flip moves to nearby values. This is particularly
important in the latter stages of search when the search algorithm has landed in a basin of high performance
[4][5] and local optimizations are required for further improvement.

The importance of Gray code has been extensively studied in the evolutionary algorithm and GA literature
over several decades [6][7][8][9][10]. The neighborhood-preserving encodings presented in this paper share an
important property with Gray-code: small changes in the candidate solution allow search to explore local
neighborhoods. Although the label assignment procedure does not guarantee single-bit Hamming distances
between close items, it significantly lowers the Hamming distances found by random assignment. The most
obvious class of problems suited for this encoding is selecting nodes from a graph subject to some criteria, see
Fig.1 (left). If the binary labels are assigned to the nodes randomly, Hamming cliffs along the edges may be
prevalent, Fig.1 (middle). Next, we present an algorithm to remove these Hamming cliffs, Fig. 1 (right).

Fig. 1.(left) unlabeled 16 vertex
graph with 15 edges.
(middle) nodes labeled
randomly, summed Hamming
distance between connected
nodes is 40.

(right) better node labeling,
summed Hamming distance
is 18.

Edges with hamming distance
> | are marked with thick
red lines.

2. Neighborhood-preserving Point Labeling through Graph Propagation

The basis of our approach is to “propagate” vertex labels along the edges of a graph. For many classes of
problems, the underlying graph will be obvious; in others, a graph will need to be inferred. Examples of both
types of problems will be given in the next section. For simplicity, in this section, we will assume that we are
given an unlabeled graph that is either sparsely or densely connected and may contain either weighted or
unweighted connections. The goal is to label vertices with unique binary labels of length T = [log, n] with
minimal Hamming distances for connected vertices, see Fig. 1. As a secondary consideration, if the edges are
weighted, effort should be concentrated on small Hamming distances for connections with the larger weights.

The algorithm is initialized by randomly assigning unique labels of length 7 to each of the vertices. Over a
number of iterations, the algorithm will iteratively improve the labels to reduce the Hamming distance between
connected vertices. In each iteration, each vertex’s label is propagated to each of its neighbors. Each vertex
accumulates the labels from all of its neighbors, combines the accumulation with its own label, and propagates
the accumulated tally to its neighbors in the next step after a normalization step. See Fig. 2.
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Over successive iterations, each vertex’s label will ‘reach’ all of the nodes in the graph. To ensure that a
vertex’s influence is more pronounced upon close neighbors, the edge weights are scaled to a positive weight <
1.0. This serves as an exponential decay over connection hops for the influence of a vertex on its neighbors (in
all the experiments, the max weight was set to 0.9). This algorithm is a variant of the Adsorption label
propagation approach [11], in which YouTube videos were propagated along the inferred co-view graph.

Initialize:
Randomly label each vertex with a unique bit-string of length T.
Propagation Step:
For each node, n:
For each node connected to n, m:
At Node m - record n’s label.
(if weighted connections, record W(n,m))
Accumulation Step:
For each node, n:
For each bit position 1-T, t:
Initialize Evidence bit positions to label,[t] with weight a
For each recorded labels at node-n, R:
Evidence, [t] = Evidence, [t] + R[t]
(if weighted connections, weight by W(n,m))
Scale evidence vector to 1.0 max (by normalizing by weight)
Label Reassignment Step:
Set P = all possible labels of length T (|P| = 27)
For each node, n:
For each label in P, p:
Calculate Distance Evidence,, P
Reassign all labels, (one label per vertex) minimizing the overall distance between
Evidence and assignment across all nodes.
Repeat from Propagation Step

Fig. 2. Graph Propagation for Label Assignment, a set to 0.1.

Once the propagation has sufficiently converged, each vertex will have a summary of the labels from all of
its neighbors in the form a single vector specifying the distribution of 0’s and 1’s in each bit position for itself
and its neighbors. With these summary statistics, new labels are assigned to each node to replace the initially
random labels. The new labels are chosen to minimize the summed distance between the summary statistics in
each node and the new node’s label. Once the new labels are chosen, the full algorithm is repeated. This
continues for a set number of iterations or until the labels no longer change in this reassignment step.

Adsorption was originally designed for classification tasks that may have sparse data, but in which an
underlying “relatedness” graph exists [11][14]. Adsorption, and this variant, lend themselves to simple
iterative computation (similar to PageRank [12]) and are efficient to implement in MapReduce [13].

2.1. Graph Propagation Variations and Practical Considerations

The label reassignment step can be expensive (described below). Because the propagation and accumulation
steps work incrementally, it is not necessary to run the reassignment step after every iteration. Instead, the
propagation and accumulation can be repeated without invoking label reassignment until either (a) the graph
converges or (b) a set number of iterations is reached. This dramatically reduces the computational expense.

A variety of matching procedures can be used for the reassignment step. The greedy method, which does not
guarantee an optimal assignment, is O(N*log,(N?)). Simply sort the N distances between evidence, and label,,,
and assign the next pair that has an available label and an unassigned node in the order determined by the sort.

This simple greedy method does not guarantee an optimal assignment. A procedure popularized in 1957,
termed the “Hungarian Method” or the “Munkres-Assignment Algorithm,” provides a method for finding the
optimal assignment [15][16]. Given an NxN matrix in which the element in the i-th row and the j-column
represents the non-negative cost of assigning label i to point j, the Hungarian Method finds the minimal cost
assignment. The algorithm is often used to assign jobs to workers with minimum cost. Although beyond the
scope of this paper to provide details (see [15][16]), the algorithm can be implemented in O(\?).
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We demonstrate the differences in the end assignments with the greedy vs. Hungarian method by labeling
two graphs. Fig. 3 shows the results for 100 randomly initialized runs for (A) a 256-node “line-graph” where
the nodes are arranged in a line and each node is connected to each of its two neighbors (B) a sparsely
connected random graph of 256 nodes. The results shown are the summed Hamming distance between
connected nodes. For reference, a random labeling of graph-A (510 connections) had a summed Hamming
distance of 2049 (close to expected: 510*(8/2)), a randomly labeled graph-B (768 conns.): 3076 (~768 * (8/2)).

Greedy Matching Hungarian Matching Hungarian &
Fig 3. Distribution of results using Multi-Node Distance

Greedy vs .Hungarian " ~ — ~
Matching (Top) A 256 Node 2?6 Node avg = 835 avg=T771 avg=721
Graph connected as a line. Line Graph :
(Bottom Row) a 256 node (510 conns)
sparsely connected graph. -l

i .I”]II.. w ”‘Il]' ,,,,,,, il“" TR TECYE
Distributions closer to the left 1ERRARSREARERIIENE R e
indicate better performzfmce 256 Node avg=1800 avg=1788 avg=1587
(lower summed Hamming

. Random »
distance)
Graph &

x-axis is the same across all (768 conns) 7 . |
graphs in a row. | — lhli'n M,l||“i

From Fig. 3, first it is apparent that there is no guarantee of optimal assignments (where connected nodes
have a Hamming distance of 1) even if an optimal assignment exists. Second, the line-graph was chosen for
experimentation because using a standard Gray-code to label sequential nodes would yield an optimal
assignment. Had a Gray-code been found, the summed Hamming distance would be 510. Note that the
average summed Hamming distance found was not optimal: 771 for the Hungarian Matching — but far better
than random (2049). Third, there is a significant difference (p<0.001) between the greedy and Hungarian-
Matching based approaches for the line graph. Though the average Hamming distance using Hungarian vs.
Greedy is also lower for the randomly connected graph, the difference is not significant.

A second heuristic is to modify the distance calculation measurement employed in the reassignment step.
Recall that the distance to be minimized is the summed distance across all nodes N between Evidence, and all
binary labels of size 7. A simple heuristic to promote smoothness across connecting vertices is to weight the
Evidence at each node with the Evidence from all the neighboring connections (note that this differs from
simply a propagation step in that the node’s assigned label does not contribute directly in this step, only the
Evidence accumulated at the node and its neighbors). Here, Evidence, is based only on Evidence,eignpors-ofn-
This yields dramatic improvements in the result of the labeling procedure, as shown in Fig. 3 (right). The
differences in performance when employing neighbor-distances compared to not employing them is
significantly better (p <0.001). All further experiments will use this distance calculation.

3. Experimental Results — Hillclimbing

To this point, we have presented methods to reduce the summed Hamming distance between connected
nodes in a graph. In this section, we examine their use in stochastic hillclimbing. Hillclimbing (HC) is one of
the simplest stochastic search techniques; see Fig. 4. Although simple, many problems tackled with more
complex search algorithms are equally well tackled with this approach [17]. The HC used here works on a
binary alphabet and the operator is a single, randomly chosen, bit flip. It is a greedy, next-ascent, algorithm: as
soon as an improvement is found through random perturbation, the new solution is accepted. =~ When a
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perturbation leads to a solution that has an equal evaluation to the current best, it is also accepted; this allows
the algorithm to explore plateaus (regions of equal value) in the evaluation space.

The mappings from bit-string to vertices (i.e. the labels found by the algorithms described in the previous
section) is represented by the mapping, M. The search algorithm, HC, stays the same, regardless of the
encoding used. Only the evaluation function interprets the binary solution string, to map the binary string to
vertices, which are then evaluated for how well they meet the problem specific objective function.

. ) Initialize:
Fig 4. Next-Ascent, Single Generate Binary Candidate Solution, C.
Perturbation Evaluate C, Using Point Mapping, M =2 V
Hillclimbing (HC) for MovesWithoutImprovement = 0
Maximization Problems
. . Repeat:

encoded Wlthabmary Flip a single, randomly chosen, bit in C = C’.
alphabet. Z, the Evaluate C’, using bit-string to point Mapping, M =2 V'’
maximum number of If (V! < V):
perturbations tested Undo perturbation.

. . MovesWithoutImprovement ++
without an 1mpr0vement, Else if (V! == V):
is set to 1000. MovesWithoutImprovement ++

Else:
C=2C" ; V =V’; MovesWithoutImprovement = 0

## Test End Condition Met.
If (MovesWithoutImprovement == 7):
Break Loop - Return C, V. Quit.

An important aspect of this algorithm is tracking when progress has stopped. The variable, Z, specifies the
number of perturbations allowed without finding an improvement in the evaluation. If this number is exceeded,
it is assumed that the algorithm has reached a (local/global)-optima and the algorithm is terminated.

3.1. The Interplay of Encoding and Search

Before naively using the vertex encodings derived in the previous section, it is important to understand the
interplay between HC and the encodings used. Recall that the HC algorithm uses single bit flips to explore the
search space. With a random binary encoding for the vertices (Fig. 1-middle), a bit flip has the potential to
radically change the selected vertex. However, using the reduced-Hamming encodings, a bit flip has a higher
probability of only making a small change (in terms of moves along edges in the graph). For exploration, this
has benefits and drawbacks. In the early stages of search, when wide exploration is crucial, it is possible that
using a reduced-Hamming encoding that constrains movement in the graph may effectively limit the exploration
of HC. This leads to a revision of the HC algorithm described above. We perform HC in two stages. In the
first stage, termed HC(Random), we use a random mapping from bit-strings to vertices. When a local-optima
is reached (i.e. Z moves are made without improvement) we decode the binary solution string to the nodes it
represents, and then re-encode those nodes with the reduced-Hamming-encoding, and restart the optimization
procedure HC (Hungarian). Unlike the random initialization of HC(Random), HC(Hungarian) is initialized
with the best solution from HC (Random). This allows the rapid exploration afforded by a random encoding of
vertices, followed by the focused exploration afforded through the use of reduced Hamming labels.

We would be remiss in not pointing out an alternative to the HC algorithm presented above. In this study,
the HC algorithm operates on binary strings. However, one can easily construct variants of HC that operate
directly on graphs (i.e., make moves directly in graph space). Numerous studies (see references) have been
conducted examining the efficacy of binary encodings, particularly in the context of GAs; we will not enter that
debate here. Rather, if the problem to be addressed is of the select-p-of-N points variety, our goal is to improve
the performance of any algorithm that employs a binary encoding through which to explore the search space.

We demonstrate the efficacy of this concretely in the problem of finding the Long-Shortest-Paths. Given a
sparsely connected graph of N vertices, the goal is to select K points that have the longest shortest paths
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between the points in K.  We would like to maximize the sum of (K*K) distances. For the experiments, graphs
are randomly generated with N=1024 nodes with varying levels of connectivity, with the task of selecting
K=20 nodes with the furthest distance from each other. The solution string is represented with 200 bits
(20*10); each contiguous substring of 10 bits represents a selected vertex. We compare 5 search variants:

1. HC (R1,Greedy): Run HC with a random mapping of bit-strings to vertices (R1). The best result from this is used
to initialize stage 2, where HC is run with the mapping of bit-strings to vertices found by the Greedy approach.
HC (R1,Hung): Similar to above, except in stage 2, the mapping found by the Hungarian approach is used.

3. HC (R1,R2): Similar to above, except that in the second stage, a second random encoding is used. This tests
whether the intelligent mapping is important or whether any new mapping can be employed.

4. HC (R1,R1): Baseline. Simply run the second HC with the same random encoding as the first run. This determines
whether just the extra iterations were enough to yield improved results or whether the new encoding was needed.

5. HC (Hung,Hung): Hungarian mapping for both Stage 1 and Stage 2. Does the Hungarian mapping work well in the
early stages of search or just for local optimization (once a region of high performance is already found)?

Throughout this section, a large number of empirical results will be presented. Because the problems are
randomly generated, giving the final, raw, evaluation numbers yields little insight. Instead, we present
comparative results. For each comparison, we give the number of times algorithm A performed better than
algorithm B, vice-versa, and whether the average performance, in terms of best evaluation found, were
statistically different from each other (> 99% confidence using a paired two-tail t-test).

In Table 1, we begin with examining the question: is using a reduced-Hamming distance encoding
beneficial in the early stages of search? In the first result row, we see that when compared to only using a
single random assignment, HC (R1,R1), using the Hungarian assignment for both stages, HC(Hung,Hung),
performs competitively. However, the results are quite different when Stage 1 used a random encoding and
the neighborhood-preserving encodings were used only in Stage 2: HC(R1,Hung) & HC (R1,Greedy). Though
both use random encodings for the initial phases of search, they both outperformed HC(Hung,Hung). As
posited earlier, in the beginning of search, more exploration occurs with a random encoding. When
neighborhood-preserving labels are used in Stage 2, when local optimizations are necessary, the benefits of
neighborhood-preserving encodings are fully realized. Note, however, that these results are a function of the
search algorithm, HC, and the single-bit flip operator that is employed. Other search algorithms, such as
genetic algorithms, may not have this performance characteristic (Section 4).

Table 1. Long-shortest-Paths N=1024 Vertices. Testing the effects of reduced Hamming distance mappings in Stage 1 of HC search.
Left: Random Graphs. Right: Cluster Graphs.

Baseline RANDOM GRAPHS (480 total runs) CLUSTER GRAPHS (480 total runs)

Baseline wins |HC (Hung,Hung) wins Signif (p <0.01) Baseline wins  |HC (Hung,Hung) wins  |Signif(p <0.01)
HC(R1,R1) 155 325 NO 227 257 NO
HC(R1,R2) 208 272 YES 369 110 YES
HC(R1,Greedy) |283 197 YES 398 81 YES
HC(R1,Hung) 287 193 YES 394 85 YES

We also verify these results in a second setting. In the right table (labeled Cluster Graphs), we generate
graphs with “clusters” of connections — randomly chosen nodes are grouped into clusters that are densely
connected. Only sparse connections exist between clusters. All of the experiments are repeated with these
graphs. The results further magnify the trend seen earlier — using the neighborhood-preserving labeling only in
Stage 2 performs better than using it in both stages with HC. This trend was also noted in all of the other
problems tested. To preserve space, we will no longer present this variant in the results. Instead, the
neighborhood-preserving encodings will be used only in Stage 2, where local optimization is the objective.
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3.2. Test Problem 1: Long-shortest Paths

Here we extend the experiments with the problem described in the previous section. The problem instances
are parameterized with 3 variables, N: the number of vertices in the graph, C: the number of directed
connections emanating from each node, and K: the number of points that need to be selected. For each problem
instance created, 20 independent HC runs are performed with a random initialization (a uniformly random
chosen bit-string). The HC algorithm is run until 1000 evaluations are evaluated without improvement (Z
parameter). The best solution found in Stage 1 is used to initialize the Stage 2 of HC.

In the next two tables, we compare the performances of 4 HC variants as the size of the graphs (N) and also
the number points to be selected (K) are varied. Each cell in the table contains a triplet (#Wins-Algorithm-A /
#Wins-Algorithm B, and whether the average end result found was statistically different to 99% confidence).
Note that ties are not reported as a win for either algorithm. Column 1 shows that between the two stages of
HC, replacing one random mapping with another outperforms keeping the same mapping. A new, randomly
chosen vertex encoding helps escape local maxima. This is noteworthy, as this requires no external processing
or intelligent mapping, and yet consistently improved results. Similar findings have been noted previously [9].

In Column 2, we compare HC (R1,Greedy) vs. HC (R1,R2); the mapping found with the Greedy matching
tends to outperform in large graphs — in both Table 2 and Table 3. As seen in Column 5, the same is true when
HC (R1,Hung) is compared with SP(R1,R2). When comparing Greedy vs. Hungarian, in Column 6, no clear
trends are discernible. It is interesting to note that in a few trials, the Greedy encoding significantly
outperformed the Hungarian encoding (marked with *). The Long Shortest Paths is the only problem, out of
the 4 tested, for which we witnessed this. For completeness, we also present HC (R1,Hung) vs. HC (R1,R1); in
almost every trial examined, in both this problem and in others, HC(R1, Hung) outperformed HC(R1,R1).

Table 2. Long Shortest-Paths, C=Connectivity 3. K =20. Random Graph
HC(R1,R2) vs. HC (R1, Greedy) vs. HC (R1, Hung) Vs. HC (R1,Hung) Vs. HC(R1,Hung)Vs.
HC(R1,R1) HC (R1,R2) HC (R1,R1) HC (R1,R2) HC(R1, Greedy)
N=256 120/0 Yes 73/43 Yes 120/0 Yes 90/30 Yes 81/37 Yes
N=512 118/1 Yes 64/56 No 120/0 Yes 71/49 No 61/56 No
N=1024 118/1 Yes 81/38 Yes 119/1 Yes 82/36 Yes 51/69 Yes
Table 3. Long Shortest-Paths, N=1024 Vertices. C=Connectivity 3. Random Graph
HC(R1,R2) vs. HC (R1, Greedy) vs. HC (R1, Hung) Vs. HC (R1,Hung) Vs. HC(R1,Hung)Vs.
HC(R1,R1) HC (R1,R2) HC (R1,R1) HC (R1,R2) HC(R1, Greedy)
K=5 79/2 Yes 64/33 Yes 100/0 Yes 68/30 Yes 55/48 No
K=10 104/0 Yes 78/37 Yes 116/1 Yes 70/46 Yes 54/57 No
K=20 118/1 Yes 81/38 Yes 119/1 Yes 82/36 Yes 51/69 Yes *
K=100 120/0 Yes 75/45 Yes 120/0 Yes 87/33 Yes 64/56 No

Numerous additional experiments increasing the graph’s connectivity were conducted. These revealed
whether the labeling techniques were effective in highly constrained graphs in which the number of
connections limited the number of good assignments. With both randomly graphs and graphs with clusters
(see Section 3.1), we found (1) introducing a second random mapping usually improves performance, and (2)
similar to the results presented here, using the Hungarian-mapping outperformed using random mappings.

3.3. Test Problem #2: Shortest Distance to Selected Vertices

In this problem, the goal is to select K vertices from an N node graph such that the summed distance of all
the vertices in N to a member of K is minimized. If the graph is planar, this is a grossly-simplified problem of
cell-phone tower layout. Like the previous problem, this problem is parameterized with K,N, and C.
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For clarity, for the remainder of this section, we eliminate two columns from the result table. The first is
HC(R1,R2) vs. HC (R1,R1); changing representations consistently provided better results in the vast majority
of the problems explored. From this point on, we only compare our algorithms with the better of the two
baselines, HC(R1,R2). Second, we eliminate the comparison HC (R1, Hung) vs. HC (R1,R1); HC (R1, Hung)
always outperformed the standard technique and was always significantly (p < 0.01) better. It is should be
noted that this is in itself a significant result and the basis of this paper — using the Hungarian-based mappings
for local optimization always outperformed search using the standard, random, encodings.

The result trends are even cleaner than those in Long-Shortest-Distance problems. The reduced Hamming
distance encodings far outperform random encodings. Similar to the experiments in the previous section, when
comparing Hungarian vs. Greedy encodings, however, there was no clear winner.

Table 4. (LEFT) Effects of Graph Size. C=Connectivity 3. K =20, Random Graph

(RIGHT) Effects of K, N=1024 Vertices. Cluster Graph & Random Graph. All connectivities.

HC (R1, Gr) | HC (RI1,Hung) | HC(RI,Hung) HC(R1, Gr) vs. | HC (RI,Hung) | HC(R1,Hung)
vs.HC (R1,R2) | Vs.HC (R1,R2) | Vs. HC(RI, Gr) HC(R1,R2) Vs. HC(R1,R2) | Vs. HC(RI, Gr)
N=256 94/15 Yes 98/13 Yes 62/45 No K=5 47/95 Yes 450/94 Yes 234/225 No
N=512 87/29 Yes 100/18 Yes 81/37 Yes K=10 | 463/126 Yes | 492/98 Yes 318/261 Yes
N=1024 | 82/38 Yes 84/36 Yes 55/63 No K=20 | 479/119 Yes | 478/117 Yes | 296/295 No
K=100 | 406/154 Yes | 429/153 Yes | 324/244 Yes

Numerous additional experiments were conducted to examine the effects of changing the connectivity of the
Randomly Generated graphs and the number of clusters in the Cluster-Graphs. The results were consistent
with those shown in the above two tables.

3.4. Test Problem #3 — Multi-Dimensional Knapsack

In this problem, there are N objects with D traits (weight, volume, etc.) and an associated Value (such as $).
The objective is to find the set of objects that can fit into a knapsack with maximal value, subject to the
constraint that the summed value of any of the traits not exceed the knapsack’s capacity for that trait. The
problems are generated randomly; each of the D-traits and the value are drawn uniformly from 1-1000.

Unlike the two graph problems explored in Sections 3.2 and 3.3, there is no explicit graph to propagate the
labels from which to create the neighborhood-preserving mappings. Instead, we must first synthesize an
appropriate graph. We represent each object as a node in the graph. To determine which objects are connected
to each other (the edges in the graph), we concatenate each object’s traits and value into a single vector and
connect the object to the S other most similar objects, as measured by the /,-norm difference between the
object’s vectors. In these experiments, it should be noted that the edges are not necessarily symmetric, nor are
they weighted by similarity; these variations are open for future exploration. Once this graph is constructed,
each node is connected to at least S other nodes. ~With this, we can proceed with the same propagation
mechanisms used in previous experiments — with the labels derived from propagation in this graph. The
solution string was encoded as a bit-string of selected items. If items were represented more than once in the
bit-string, they were still added only once. Items were added until the knapsack exceeded its volume in any
dimension; then the total value of the items in the knapsack was returned as the value of the bit-string.

In Table 5, varying levels of problem difficulty are examined. The total the knapsack can hold in any
dimension determines how difficult the problem is. Three sizes of the knapsack are explored: ranging from
1/5™ of the expected total in any dimension to 1/20" of the expected total— i.e. if there are 256 nodes, the total
in any dimension is expected to be 256*(1000/2)=128,000, therefore for the hardest case of 1/20" the expected
total, the knapsack is limited to a total 6400 in any dimension. In Table 5, (LEFT) each item has D=9 traits,
(RIGHT) D=1 trait. The larger the number of traits, the more unlikely it is to find high value items that are
small across all traits. We expect a more uniform performance across algorithms as D increases.
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Table 5. Multi-Dimensional Knapsack N=1024, 512, & 256 Vertices. Three level of problem difficulty explored.

Synthesized Graph modeled 10 Nearest Neighbors. (LEFT) D=9 Traits (RIGHT) D =1 Trait.

HC (R1, Gr) HC(R1,Hung) | HC(R1,Hung) HC (R1, Gr) HC(R1,Hung) HC(R1,Hung)

Vs. HC(R1,R2) | Vs. HC (R1,R2) | Vs. HC(R1, Gr) Vs. HC(R1,R2) | Vs.HC (R1,R2) | Vs. HC(R1, Gr)
Loose 1/5™ 268/84 Yes 283/72 Yes 212/145 No 349/11 Yes 356/4 Yes 260/100 Yes
Medium 1/10™ | 289/65 Yes 294/62 Yes 208/150 Yes 294/66 Yes 300/60 Yes 198/162 Yes
Tight 1/20™ 249/101 Yes | 292/66 Yes 207/152 Yes 285/75 Yes 303/57 Yes 207/153 No

Using the neighborhood-preserving mappings, both Greedy and Hungarian, consistently improved the
results. As can be seen by the number of wins, the effect was magnified when items only had a single (D=1)
trait. With D=1, it was possible to select items with a better ratio of value/trait. In comparing the Hungarian
vs. greedy labeling, there was a statistical difference in many trials, favoring the Hungarian labeling.

3.5. Test Problem #4: Multi-Dimensional Partitioning

In this problem, the goal is to divide a set of numbers G into two subsets G; and G, such that the sum of G;
is as close to the sum of G, as possible. We add a twist to the problem by having a set of vectors (of length D)
in G instead of numbers. The goal is to divide G into G; and G, where the /;-norm difference between the sums
of vectors G; and G, is minimized. Similar to the multidimensional knapsack problem explored in Section 3.4,
there is no explicit graph given in the problem. Instead, we construct the graph like the knapsack synthetic
graphs — by finding the most similar, S=10, vectors. The results are shown in Table 6.

Table 6. Multi Dimensional Partitioning (LEFT) D=10 Dimensions, (RIGHT) D = 2 Dimensions.
HC (R1, Gr) [ HC (R1,Hung) [ HC(R1,Hung) HC (R1, Gr) vs. | HC (R1,Hung) | HC(R1,Hung)
vs. HC (R1,R2) | Vs.HC (R1,R2) | Vs. HC(R1, Gr) HC (R1,R2) Vs.HC (R1,R2) | Vs. HC(R1, Gr)
256 Vert 85/15 Yes 95/12 Yes 67/40 Yes 99/7 Yes 101/7 Yes 55/47 No
512 Vert 104/11 Yes 108/9 Yes 64/55 No 100/8 Yes 101/9 Yes 55/45 No
1024 Vert | 107/4 Yes 111/4 Yes 65/50 No 103/3 Yes 105/3 Yes 57/43 Yes

Similar to the results shown with the Knapsack problems, incorporating either Hungarian or Greedy labeling
greatly improves performance over random labeling. For this problem, across both settings of D, the
performance between the Greedy and Hungarian labeling was not statistically different in most cases.
Additionally, experiments with D=5 were conducted (not shown); the results were consistent with Table 6 — a
large performance gain for the neighborhood-preserving labelings.

4. Genetic Algorithms — Empirical Result Summary

The entire set of experiments was replicated using a standard genetic algorithm [1]. In the pervious section,
we used HC both for finding regions of good performance (Stage 1) and local optimization (Stage 2) once the
regions were found. In a number of previous studies, it has been determined that GAs very quickly find regions
of high performance, but incorporating hillclimbing methods often yields better results than simply continuing
the GA for more iterations [7][8][18][19][20]. To make our experiments parallel to those presented here, we
ran the GA until a local optima was found. Then, the best result found by the GA was used to initialize a HC
run in a manner similar to the Stage 2 HC described in Section 3.

Due to space restrictions, we only summarize the experiments here [21]. We first explored whether, like
with HC, the neighborhood-preserving encodings limit exploration in the early stages of search. We determined
that, unlike HC, which explored the search space through single bit flips, the crossover and mutation operators
of a GA were disruptive enough to the candidate solutions that the encoding did not restrict search; the GA was
not constrained to move with only bit flips. Second, we explored whether these new encodings improved the
performance of the GA when no supplementary second stage HC was used. GAs, though efficient at finding
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regions of high performance, are often less effective at “last-step” local optimizations due to population
convergence among other reasons. However, it is precisely in these local optimization stages that these
encodings are designed to do well. Using these encodings vs. not resulted in mixed performance.

The third and most important set of experiments was whether when a stage-2 local optimization step was
employed, would the neighborhood-preserving encodings help, or would the addition of the stage-2 step, by
itself, achieve equivalent results? Numerous variations were explored, including using the same encoding for
the GA and Stage-2 HC, different random encodings, the Hungarian encoding for both, or the Hungarian
encoding only for the Stage-2 HC. The results overwhelmingly pointed to the following: the best performing
procedure used a stage 2 HC step with the neighborhood-preserving mappings — regardless of the encoding the
GA used for the initial search. This solidifies the results in the previous sections: the neighborhood-preserving
mappings improve the performance of local optimization across a variety of search techniques.

5. Conclusions and Future Work

There are two major contributions of this paper. The first is a technique to encode binary-string labels on
nodes in arbitrarily dense graphs that reduces the labels” Hamming distance between connected nodes. This
technique is based on graph propagation of labels commonly found in machine learning literature [11][14].
The second is a large empirical demonstration of how these labels can be effectively used in stochastic search
to explore local neighborhoods once regions of high performance are found. Through an extensive empirical
comparison encompassing both problems that had explicit graphs and those for which the graph had to be
constructed, the results pointed to the efficacy of using the reduced-Hamming distance labels.

There are three immediate directions for research. (1) Further understanding the benefits of Hungarian vs.
Greedy approaches: Was the performance difference limited because of the encodings or the search algorithms?
(2) There is no limitation of the propagation algorithm to a binary alphabet. Higher cardinality alphabets
should be tested. (3) The labeling algorithm can handle undirected and directed graphs and non-uniformly
weighted edges. Using these features opens the possibility of addressing an even wider range of problems.
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