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ABSTRACT 
 

In this paper, we present Waveprint, a novel system for 

audio identification.  Waveprint uses a combination of 

computer-vision techniques and large-scale-data-stream 

processing algorithms to create compact fingerprints of 

audio data that can be efficiently matched.  The resulting 

system has excellent identification capabilities for small 

snippets of audio that have been degraded in a variety of 

manners, including competing noise, poor recording quality, 

and cell-phone playback.  We measure the tradeoffs between 

performance, memory usage, and computation through 

extensive experimentation.  The system is more efficient in 

terms of memory usage and computation, while being more 

accurate, when compared with previous state of the art 

systems.   

 

Index Terms— Acoustic Applications, Acoustic Signal 

Processing, Pattern Recognition, Music 

 

1. INTRODUCTION & BACKGROUND 

 

Audio fingerprinting provides the ability to link short, 

unlabeled, snippets of audio content to corresponding data 

about that content.   There are an immense number of 

applications for audio fingerprinting, ranging from 

recognizing music based on cell-phone playback [11], 

duplicate detection (for example as the popularity of music 

and video sharing rises [6,13]) to enhanced television [4].    

Because of lossy compression of audio, as well as the 

numerous playback options, aurally similar sounds may have 

largely different encodings, making simple matching 

insufficient for this task.   Numerous approaches have been 

attempted in the past for approximate matching.   One of the 

most widely used systems [7] uses overlapping windows of 

audio from which to extract interesting features.  In [7], 

overlapping windows must be used to maintain time-shift 

invariance for the cases in which exact time alignment is not 

known. 33 BFCC bands covering the 300-2000 Hz range are 

used for the spectral representation.  Every 11.6 

milliseconds, a sub-fingerprint is generated that covers a 

frame of 370ms.  The large overlap ensures that the sub-

fingerprints vary slowly over time.  The sub-fingerprints are 

a vector of 32-bits that indicate whether the difference in 

successive bands increases or decreases in consecutive 

frames. These sub-fingerprints are largely insensitive to 

small changes in the audio signal since no actual difference 

values are kept; instead, only the signs over consecutive 

frames compose the sub-fingerprint.  Comparisons with 

these fingerprints are efficient; they are simply the Hamming 

distance of the fingerprints.   

A recent extension to the above work was presented in 

[9].  Based on [7], Ke introduced a learning approach into 

the feature selection process.  An important insight provided 

by [9] is that the 1-D audio signal can be processed as an 

image when viewed in a 2-D time-frequency representation.  

Their learning system finds features that integrate the energy 

in selected frequencies over time via AdaBoost [12].  The 

basis of feature selection is the discriminative power of the 

region in differentiating between when 2 frames are the same 

(within a distortion set) and when they are different.  Thirty-

two “boxlet” features are selected, each yielding a binary 

value.  These 32 bits are then used in an analogous 

procedure to the 32-bit features found by [7].  Temporal 

coherence is measured by a simple transition model. 

An approach based on Distortion Discriminant Analysis 

(DDA) is explored in [2].  The features used are more 

complex than in the studies by [7,9], but summarize longer 

segments of audio.  DDA is based on a variant of LDA 

called Oriented Principal Components Analysis (OPCA). 

OPCA selects a set of directions for modeling the subspace 

that maximizes the signal variance while minimizing the 

noise power.  Their experiments found that the fingerprints 

are resistant to problems with alignment and types of noise 

not found in the training set. 

 

2. THE WAVEPRINT SYSTEM 

 

Our system builds on the insights from [9]: computer vision 

techniques can be a powerful method for analyzing audio 

data. However, instead of a learning approach, we examine 

the applicability of a wavelet-based approach used for 

efficiently querying by image into large databases [8].  To 

make the algorithm scale, in terms of both computation and 



memory, we employ the hashing work from the field of 

large-scale data-stream processing [3,5].  The sub-

fingerprints that we develop are more comprehensive than 

used in Haitsma’s or Ke's work since they represent a longer 

time period; they are closer to those presented in [2].   

We start our processing by converting the audio input 

into a spectrogram.  We use slices that are 371 ms long, 

taken every 11.6ms, reduced to 32 logarithmically spaced 

frequency bins between 318 Hz and 2 kHz, as have been 

used in previous studies [7].  From this, we create 

overlapping 1.4s (128 slice) spectral images.  From these 

spectral images, we extract the top Haar-wavelets according 

to their magnitude; this follows the image matching system 

presented in [8].  In [8], rather than comparing images 

directly in the pixel space, they first decomposed the image 

through the use of multi-resolution Haar wavelets. In our 

system, for each spectrogram image, a wavelet signature is 

computed.   By itself, the wavelet-image is not resistant to 

noise or audio degradations.  To reduce the effects of noise, 

while maintaining the major characteristics of the image, we 

select the t top wavelets (by magnitude) and discard the rest. 

When we look at the wavelets for successive images for two 

songs, we see easily identifiable patterns both in the wavelet 

space and even more clearly when the top-t wavelets are 

kept (see Figure 1).  

For the task of image retrieval, Jacobs determined that 

after keeping only the top wavelets, the coefficients were not 

needed for effective retrieval [8].  Instead, they only kept the 

sign of the wavelet.  As memory usage is a primary concern 

in this system, this same wavelet-sign representation is used 

in this study.  The sparsity of the resulting vector makes it 

amenable to further reduction using a technique often used 

in large-scale data processing:  Min Hash [3]. 

The Min-Hash technique works with binary vectors as 

follows:   Select a random, but known, reordering of all the 

vector positions.  Then, for each vector permutation, 

measure in which position the first '1' occurs.   It is 

important to note for two vectors, v1 & v2,  the probability 

that first_1_occurrence(v1) = first_1_occurrence(v2) is the 

same as the probability of finding a row that has a 1 in both 

v1 and v2, from the set of rows that have 1 in either v1 or v2.   

Therefore, for a given permutation, the hash values agree if 

the first position with a 1 is the same in both bit vectors, and 

they disagree if the first such position is a row where one but 

not both, vectors contained a 1.  Note that this is exactly 

what is required; it measures the similarity of the sparse bit 

vectors based on matching “on” positions.   

We can repeat the above procedure multiple times, each 

time with a new position-permutation.  If we repeat the 

process p times, with p different permutations, we get p 

largely independent projections of the bit vector.  Together, 

these p values are the signature of the bit vector and replace 

the original, sparse, representation.  The similarity of the bit 

vectors is computed by counting the exact matches in the p-

length signatures.  In our system, we store the Min-Hash 

computed signatures; this is the final sub-fingerprint of the 

audio-image, and is computed on each spectral image. 

Each spectral image is represented by a series of p 8-bit 

integers, the sub-fingerprint:  We empirically measured that 

8-bits were sufficient.  In the majority of the cases tried 

(described in the next section), the probability of the first-1-

occurrence being after position 255 was insignificant.  Even 

with this compression, efficiently finding near-neighbors in a 

p>50 dimensional space is not a trivial task; naive 

comparisons are not practical.  Instead, we use a technique, 

termed Locality-Sensitive Hashing (LSH) [5].  It is efficient 

in the number of comparisons that are required and provides 

noise-robustness properties. 

In contrast to standard hashing, LSH performs a series 

of hashes, each of which examines only a portion of the sub-

fingerprint.  The goal is to partition the feature vectors (in 

this case the Min-Hash signatures) into l subvectors and to 

hash each subvector into l separate hash tables.   Each hash 

table uses only a single subvector as input to the hash 

function.  Candidate neighbors can be efficiently retrieved 

by partitioning the probe feature vector and collecting the set 

of entries in the corresponding hash bins.  The final list of 

potential neighbors can be created by vote counting, with 

each hash casting votes for the entries of its indexed bin, and 

retaining the candidates that receive some minimum number 

of votes, v. If v = 1, this takes the union of the candidate 

lists. At the other extreme, if v= l, this takes the intersection 

(and is equivalent to standard hashing).   

 

2.1. Retrieval 

 

The overall retrieval process is shown in Figure 2.  Rather 

than dividing the song in uniformly overlapping segments, as 

was done in the fingerprint generation process, the song is 

divided into randomly overlapping segments. Randomizing 

the stride amount avoids problems of unlucky alignments. If 

the sampling of the probe had been kept constant, it might 

The Dave Matthews Band – Lie in Our Graves (album Crash) 

Enya – Shepherd Moons (album Shepherd Moons) 

Figure 1. The representation for two songs – 4 consecutive 

spectrogram images shown for each, skipping 200 ms.  For each 

song, top row: original spectrogram image, second row: wavelet 

magnitudes;  third row: the top-200 wavelets.   Note that the top 

wavelets have a distinctive pattern for each of the songs.   



repeatedly sample uniformly large offsets from the sample 

positions that were used to create the database. After each 

audio snippet is created, its signature is computed in the 

same manner as described in the database generation process 

(Steps 2-5).  The next steps 6-8 describe an efficient 

mechanism for finding matches in the database and 

measuring their distances from the query.   When using LSH 

(steps 6-7), we require that the sub-fingerprints have at least 

v votes to be compared with the query sub-fingerprint.  For 

the sub-fingerprints that have at least the minimum number 

of votes, we then compare them fully: because each byte of 

the sub-fingerprint is a Min-Hash signature, we simply look 

at the number of bytes (out of p) that match exactly.  The 

sub-fingerprint with the maximum score is the best match on 

that spectral image.   

The simplest method to combine evidence across all of 

the probe’s sub-fingerprints is voting without temporal 

constraints.  We also explored using dynamic-time warping 

[10] to impose “tempo” constraints in mapping the probe 

sequence onto the database songs.  We use both global-slope 

constraints (there can be on 10% change in tempo from the 

probe to the candidate match) and local-slope constraints (no 

single probe can match more than one song location within a 

single track and no local-time inversions are allowed).   

 

3. ACCURACY, MEMORY & COMPUTATION 

 

One of the intrinsic difficulties in designing a large-scale 

system is conducting a thorough exploration of the 

parameter settings.  In this section, we report the outcome of 

extensive testing of parameter sets.  Over 50,400 different 

parameter combinations were tried to ensure that we select 

the best settings and quantify the tradeoffs with each 

parameter.  The parameter combinations included varying 

all of the parameters listed, as well as using dynamic 

programming for temporal coherence measurement.  The 

full details of this exploration can be found in [1].  The 

results from those experiments varied greatly along every 

axis: accuracy, memory and computation, depending on the 

settings.  Only 122 of the 50,400 settings achieved a 

retrieval accuracy of >97.5% on a probe set of 1000 

samples.  The computation and memory requirements within 

the 122 settings varied drastically also, with a range that 

spanned 2-3 orders of magnitude in computation and 

memory.   From the full set of experiments, we selected 2 

operating points: 
 
Waveprint 1:  97.9% accuracy; settings: t=200 top wavelets retained, l=20 

hashes, 0.9-sec DB stride, d=46-ms probe stride, v= 2 

 

Waveprint 2:  97.5% accuracy; settings: t=200 top wavelets retained, l=25 

hashes, 0.9-sec DB stride, d=46-ms probe stride, v=5 

 

With these two operating points, we perform a 

comprehensive set of tests with a large number of signal 

degradations, and compare our system to that of [9]
1
. The 

results are shown in Table I.  For each task, we lookup 

randomly selected, and degraded, samples from a database 

of 10,000 songs.  We evaluate recognition accuracy with 10-

, 30-, and 60-second snippets. The accuracy is the 

percentage of times the correct song was found as the top 

match, measured over 1,000 trials for each of the 33 tasks 

(11 degradations * 3 probe lengths)  The following signal 

degradations are evaluated on the probe set: 

 
- Time Offset Only:  no signal degradation, only time-offset is unknown. 

- Echo: 90% of the original signal level and arrives 100ms after original. 

- Equalizer: passes the signal through an equalizer with the settings of [7]. 

- MPEG2 layer-3 at 32 Kbps CBR: encodes and decodes the test probes.   

- GSM-Adaptive Multi-Rate AMR at 4.75 Kbps CBR: encodes and 

decodes to 4.75-kbps-mode AMR audio (cell-phone emulation). 

- Loud structured noise: adds Enya's Watermark I or To Die For's Veil of 

Tears Epilogue to the probe at a fixed volume.  Perceptually, this 

ranged from ½–2× the volume of the probe content recording. 

- Linear Speed Modification (LSM) 2: changed the playback speed ± 2%.  

- Time-Scale Modification (TSM): tempo ± 10% w/o changing the pitch.   
 

 

The results show uniformly improved performance over the 

compared system.  Further, when we look at the computation 

and memory requirements of Waveprint, we again find a 

benefit.   We can express memory usage in terms of the 

parameters of the system.   For N songs stored in our 

database, with an average length of M sec, memory usage is 

on the order of  8*l*b + 4*l*N*M/s +  p*N*M/s.   The first 

term is the b-bin hash tables (b=100,000 for Waveprint 1 & 

Waveprint 2), using a simple array based representation.  l is 

the number of hash tables used.   In each bin, the following 

is stored: one pointer to its content array and one counter of 

the number of elements in the content array.  The second 

term represents the terms that are pointed to in the hash-

                                                 
1 We used the publicly available code base for Ke’s system from 

http://www.cs.cmu.edu/~yke/musicretrieval/. We modified their amplitude 

normalization, by using a smoothly varying normalization computed on a 

sliding window of the surrounding 5 seconds.  This uniformly improved 

their results across all experiments. 
2  Since the extension of Ke’s temporal model presented in [9] to include 

timing variations should be possible, we omit the pessimistic performance 

numbers of their system for time-modification tests (LSM & TSM). 

Figure 2: Retrieval process. 

1. Create spectral images of 11.6*w duration from the 
spectrogram, with random spacing averaging d-ms apart. 

 
     For each spectral image:  

2. Compute the wavelets on the spectral image 
3. Extract the top-t wavelets.  
4.Create a binary vector of the top-t wavelets.  
5.Use min-hash to create a sub-fingerprint of the top-t 

wavelets (note that the same permutations used in the 
database-creation portion are used here)  

6. Using LSH, with b bins, l hash tables, find the sub-
fingerprint segments that are close matches. 

7. Discard sub-fingerprints with less than v matches 
8. Compute the Hamming distance from the remaining 

candidate sub-fingerprints to the query sub-fingerprint. 
 

9.   Use Dynamic Prog. to combine the matches across time 



tables (represented in the first term).  This is the number of 

hash-table pointers to the sub-fingerprints. (M / s) is the 

average number of sub-fingerprints for each song.  Each 

hash table has a pointer to all of the sub-fingerprints.  The 

final term is the actual sub-fingerprint storage: for each of 

the (N * M / s) spectral images in the database, there are p 1-

byte elements (where p is the number of Min-Hash 

permutations, p=100 for both Waveprint 1 & Waveprint 2).   

To make this concrete, we can store 10,000 songs in 

approximately 0.42-0.46×10
9
 bytes of memory (Waveprint-1 

& 2 respectively). Approximately 45,000-50,000 songs can 

be placed on a 2 GB machine without touching disk for 

retrieval. In contrast, using the approach reported in [7]
3
, we 

estimate that the previous best approach would use 0.7×10
9
 

bytes for a 10,000 3.5-minute song database, allowing 

31,000 songs in 2 GB of memory.      

     A similar analysis for the computational load shows that 

Waveprint-1 and Waveprint-2 both have average case 

performances that are either lower than or within the bottom 

1% of the range of performances expected in [9], in terms of 

the expected number of byte-comparisons.  In terms of real-

time performance, on a 3.4 Ghz Pentium, Waveprint is 

approximately 13.6× faster than the probe duration (e.g. a 10 

                                                 
3
 Since [7] gave better bounds for memory/computation than [9], we used 

[7] for this comparison. 

second probe takes approximately 0.73 seconds to find in 

our database).  Effectively, if the goal is to retrieve a 3.5 

minute song, when we use a 10-sec probe, our system is 

286× faster than real time (since the full song is not 

examined); for a 30-sec probe, 94× faster; for a 60-sec 

probe, 47× faster.   These numbers reflect unoptimized 

performance; it is possible to speed up the most 

computationally expensive portion of the process 

(computing and sorting the wavelets, which account for 90% 

of the computation) by a factor of ~16-32x.  This can be 

done by reusing partial results across successive sub-

fingerprints, since much of the computation is repeated 

across the time-window being examined. 

 

4. CONCLUSIONS 

 

In this work, we have presented the Waveprint audio 

identification system.  The system builds on the insight of 

[9]: the task of audio recognition can be effectively 

addressed through computer-vision techniques.  In this work, 

we extended the computer-vision work presented in [8] for 

retrieving near-duplicate images from a large corpus of 

image data to the task of audio retrieval.  Efficiencies were 

obtained through using data-stream processing techniques 

such as Min Hash. For the size databases explored, the 

resulting system is more efficient in terms of memory usage 

than the state-of-the-art competing system while providing 

better recognition accuracy.   Immediate next steps include 

scaling the database.  We have seen preliminary promising 

results, both in terms of accuracy and speed, especially in 

the Waveprint-2 setting. Other future work includes 

exploring applications beyond music matching, such as 

using the system for matching television broadcasts.     
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Table I: Results 

Degradation  

Source 

Recognition 

System 

10 Sec  

Query  

30 Sec  

Query  

60 Sec 

Query  

Time-Offset 

Only 

Waveprint 1 

Waveprint 2 

Ke  

100.00 

100.00 

99.60 

100.00 

100.00 

99.61 

100.00 

100.00 

99.60 

Echo-90% 

Waveprint 1 

Waveprint 2 

Ke  

99.90 

97.98 

99.00 

99.59 

99.59 

99.11 

99.68 

99.68 

99.25 

Equalizer 

Waveprint 1 

Waveprint 2 

Ke  

99.80 

98.18 

99.13 

99.69 

100.00 

99.14 

99.79 

99.79 

99.30 

MP3-32K 

Waveprint 1 

Waveprint 2 

Ke  

97.47 

97.37 

94.34 

98.76 

98.44 

93.55 

99.15 

98.50 

93.17 

Noise- 

Enya 

Waveprint 1 

Waveprint 2 

Ke  

86.97 

85.45 

60.49 

95.96 

96.17 

71.72 

98.40 

98.51 

75.86 

Noise- 

Veil of Tears 

Waveprint 1 

Waveprint 2 

Ke  

82.29 

81.01 

73.09 

84.37 

84.16 

75.61 

85.18 

85.25 

77.99 

AMR: 

GSM Codec 

Waveprint 1 

Waveprint 2 

Ke 

95.86 

86.16 

94.87 

99.28 

96.69 

96.97 

99.79 

99.04 

97.65 

LSM-102 
Waveprint 1 

Waveprint 2 

80.30 

60.30 

92.32 

80.81 

96.15 

90.17 

LSM-98 
Waveprint 1 

Waveprint 2 

93.74 

90.81 

95.56 

94.21 

96.95 

94.78 

TSM-90 
Waveprint 1 

Waveprint 2 

99.40 

90.81 

99.69 

94.21 

99.79 

94.78 

TSM-110 
Waveprint 1 

Waveprint 2 

99.09 

98.89 

99.69 

100.00 

99.78 

99.68 

 


