
AUDIO FINGERPRINTING:

COMBINING COMPUTER VISION & DATA STREAM PROCESSING

Shumeet Baluja & Michele Covell

Google, Inc.

1600 Amphitheatre Parkway, Mountain View, CA. 94043

{shumeet,covell}@google.com

ABSTRACT

In this paper, we present Waveprint, a novel system for

audio identification. Waveprint uses a combination of

computer-vision techniques and large-scale-data-stream

processing algorithms to create compact fingerprints of

audio data that can be efficiently matched. The resulting

system has excellent identification capabilities for small

snippets of audio that have been degraded in a variety of

manners, including competing noise, poor recording quality,

and cell-phone playback. We measure the tradeoffs between

performance, memory usage, and computation through

extensive experimentation. The system is more efficient in

terms of memory usage and computation, while being more

accurate, when compared with previous state of the art

systems.

Index Terms— Acoustic Applications, Acoustic Signal

Processing, Pattern Recognition, Music

1. INTRODUCTION & BACKGROUND

Audio fingerprinting provides the ability to link short,

unlabeled, snippets of audio content to corresponding data

about that content. There are an immense number of

applications for audio fingerprinting, ranging from

recognizing music based on cell-phone playback [11],

duplicate detection (for example as the popularity of music

and video sharing rises [6,13]) to enhanced television [4].

Because of lossy compression of audio, as well as the

numerous playback options, aurally similar sounds may have

largely different encodings, making simple matching

insufficient for this task. Numerous approaches have been

attempted in the past for approximate matching. One of the

most widely used systems [7] uses overlapping windows of

audio from which to extract interesting features. In [7],

overlapping windows must be used to maintain time-shift

invariance for the cases in which exact time alignment is not

known. 33 BFCC bands covering the 300-2000 Hz range are

used for the spectral representation. Every 11.6

milliseconds, a sub-fingerprint is generated that covers a

frame of 370ms. The large overlap ensures that the sub-

fingerprints vary slowly over time. The sub-fingerprints are

a vector of 32-bits that indicate whether the difference in

successive bands increases or decreases in consecutive

frames. These sub-fingerprints are largely insensitive to

small changes in the audio signal since no actual difference

values are kept; instead, only the signs over consecutive

frames compose the sub-fingerprint. Comparisons with

these fingerprints are efficient; they are simply the Hamming

distance of the fingerprints.

A recent extension to the above work was presented in

[9]. Based on [7], Ke introduced a learning approach into

the feature selection process. An important insight provided

by [9] is that the 1-D audio signal can be processed as an

image when viewed in a 2-D time-frequency representation.

Their learning system finds features that integrate the energy

in selected frequencies over time via AdaBoost [12]. The

basis of feature selection is the discriminative power of the

region in differentiating between when 2 frames are the same

(within a distortion set) and when they are different. Thirty-

two “boxlet” features are selected, each yielding a binary

value. These 32 bits are then used in an analogous

procedure to the 32-bit features found by [7]. Temporal

coherence is measured by a simple transition model.

An approach based on Distortion Discriminant Analysis

(DDA) is explored in [2]. The features used are more

complex than in the studies by [7,9], but summarize longer

segments of audio. DDA is based on a variant of LDA

called Oriented Principal Components Analysis (OPCA).

OPCA selects a set of directions for modeling the subspace

that maximizes the signal variance while minimizing the

noise power. Their experiments found that the fingerprints

are resistant to problems with alignment and types of noise

not found in the training set.

2. THE WAVEPRINT SYSTEM

Our system builds on the insights from [9]: computer vision

techniques can be a powerful method for analyzing audio

data. However, instead of a learning approach, we examine

the applicability of a wavelet-based approach used for

efficiently querying by image into large databases [8]. To

make the algorithm scale, in terms of both computation and

memory, we employ the hashing work from the field of

large-scale data-stream processing [3,5]. The sub-

fingerprints that we develop are more comprehensive than

used in Haitsma’s or Ke's work since they represent a longer

time period; they are closer to those presented in [2].

We start our processing by converting the audio input

into a spectrogram. We use slices that are 371 ms long,

taken every 11.6ms, reduced to 32 logarithmically spaced

frequency bins between 318 Hz and 2 kHz, as have been

used in previous studies [7]. From this, we create

overlapping 1.4s (128 slice) spectral images. From these

spectral images, we extract the top Haar-wavelets according

to their magnitude; this follows the image matching system

presented in [8]. In [8], rather than comparing images

directly in the pixel space, they first decomposed the image

through the use of multi-resolution Haar wavelets. In our

system, for each spectrogram image, a wavelet signature is

computed. By itself, the wavelet-image is not resistant to

noise or audio degradations. To reduce the effects of noise,

while maintaining the major characteristics of the image, we

select the t top wavelets (by magnitude) and discard the rest.

When we look at the wavelets for successive images for two

songs, we see easily identifiable patterns both in the wavelet

space and even more clearly when the top-t wavelets are

kept (see Figure 1).

For the task of image retrieval, Jacobs determined that

after keeping only the top wavelets, the coefficients were not

needed for effective retrieval [8]. Instead, they only kept the

sign of the wavelet. As memory usage is a primary concern

in this system, this same wavelet-sign representation is used

in this study. The sparsity of the resulting vector makes it

amenable to further reduction using a technique often used

in large-scale data processing: Min Hash [3].

The Min-Hash technique works with binary vectors as

follows: Select a random, but known, reordering of all the

vector positions. Then, for each vector permutation,

measure in which position the first '1' occurs. It is

important to note for two vectors, v1 & v2, the probability

that first_1_occurrence(v1) = first_1_occurrence(v2) is the

same as the probability of finding a row that has a 1 in both

v1 and v2, from the set of rows that have 1 in either v1 or v2.

Therefore, for a given permutation, the hash values agree if

the first position with a 1 is the same in both bit vectors, and

they disagree if the first such position is a row where one but

not both, vectors contained a 1. Note that this is exactly

what is required; it measures the similarity of the sparse bit

vectors based on matching “on” positions.

We can repeat the above procedure multiple times, each

time with a new position-permutation. If we repeat the

process p times, with p different permutations, we get p

largely independent projections of the bit vector. Together,

these p values are the signature of the bit vector and replace

the original, sparse, representation. The similarity of the bit

vectors is computed by counting the exact matches in the p-

length signatures. In our system, we store the Min-Hash

computed signatures; this is the final sub-fingerprint of the

audio-image, and is computed on each spectral image.

Each spectral image is represented by a series of p 8-bit

integers, the sub-fingerprint: We empirically measured that

8-bits were sufficient. In the majority of the cases tried

(described in the next section), the probability of the first-1-

occurrence being after position 255 was insignificant. Even

with this compression, efficiently finding near-neighbors in a

p>50 dimensional space is not a trivial task; naive

comparisons are not practical. Instead, we use a technique,

termed Locality-Sensitive Hashing (LSH) [5]. It is efficient

in the number of comparisons that are required and provides

noise-robustness properties.

In contrast to standard hashing, LSH performs a series

of hashes, each of which examines only a portion of the sub-

fingerprint. The goal is to partition the feature vectors (in

this case the Min-Hash signatures) into l subvectors and to

hash each subvector into l separate hash tables. Each hash

table uses only a single subvector as input to the hash

function. Candidate neighbors can be efficiently retrieved

by partitioning the probe feature vector and collecting the set

of entries in the corresponding hash bins. The final list of

potential neighbors can be created by vote counting, with

each hash casting votes for the entries of its indexed bin, and

retaining the candidates that receive some minimum number

of votes, v. If v = 1, this takes the union of the candidate

lists. At the other extreme, if v= l, this takes the intersection

(and is equivalent to standard hashing).

2.1. Retrieval

The overall retrieval process is shown in Figure 2. Rather

than dividing the song in uniformly overlapping segments, as

was done in the fingerprint generation process, the song is

divided into randomly overlapping segments. Randomizing

the stride amount avoids problems of unlucky alignments. If

the sampling of the probe had been kept constant, it might

The Dave Matthews Band – Lie in Our Graves (album Crash)

Enya – Shepherd Moons (album Shepherd Moons)

Figure 1. The representation for two songs – 4 consecutive

spectrogram images shown for each, skipping 200 ms. For each

song, top row: original spectrogram image, second row: wavelet

magnitudes; third row: the top-200 wavelets. Note that the top

wavelets have a distinctive pattern for each of the songs.

repeatedly sample uniformly large offsets from the sample

positions that were used to create the database. After each

audio snippet is created, its signature is computed in the

same manner as described in the database generation process

(Steps 2-5). The next steps 6-8 describe an efficient

mechanism for finding matches in the database and

measuring their distances from the query. When using LSH

(steps 6-7), we require that the sub-fingerprints have at least

v votes to be compared with the query sub-fingerprint. For

the sub-fingerprints that have at least the minimum number

of votes, we then compare them fully: because each byte of

the sub-fingerprint is a Min-Hash signature, we simply look

at the number of bytes (out of p) that match exactly. The

sub-fingerprint with the maximum score is the best match on

that spectral image.

The simplest method to combine evidence across all of

the probe’s sub-fingerprints is voting without temporal

constraints. We also explored using dynamic-time warping

[10] to impose “tempo” constraints in mapping the probe

sequence onto the database songs. We use both global-slope

constraints (there can be on 10% change in tempo from the

probe to the candidate match) and local-slope constraints (no

single probe can match more than one song location within a

single track and no local-time inversions are allowed).

3. ACCURACY, MEMORY & COMPUTATION

One of the intrinsic difficulties in designing a large-scale

system is conducting a thorough exploration of the

parameter settings. In this section, we report the outcome of

extensive testing of parameter sets. Over 50,400 different

parameter combinations were tried to ensure that we select

the best settings and quantify the tradeoffs with each

parameter. The parameter combinations included varying

all of the parameters listed, as well as using dynamic

programming for temporal coherence measurement. The

full details of this exploration can be found in [1]. The

results from those experiments varied greatly along every

axis: accuracy, memory and computation, depending on the

settings. Only 122 of the 50,400 settings achieved a

retrieval accuracy of >97.5% on a probe set of 1000

samples. The computation and memory requirements within

the 122 settings varied drastically also, with a range that

spanned 2-3 orders of magnitude in computation and

memory. From the full set of experiments, we selected 2

operating points:

Waveprint 1: 97.9% accuracy; settings: t=200 top wavelets retained, l=20

hashes, 0.9-sec DB stride, d=46-ms probe stride, v= 2

Waveprint 2: 97.5% accuracy; settings: t=200 top wavelets retained, l=25

hashes, 0.9-sec DB stride, d=46-ms probe stride, v=5

With these two operating points, we perform a

comprehensive set of tests with a large number of signal

degradations, and compare our system to that of [9]
1
. The

results are shown in Table I. For each task, we lookup

randomly selected, and degraded, samples from a database

of 10,000 songs. We evaluate recognition accuracy with 10-

, 30-, and 60-second snippets. The accuracy is the

percentage of times the correct song was found as the top

match, measured over 1,000 trials for each of the 33 tasks

(11 degradations * 3 probe lengths) The following signal

degradations are evaluated on the probe set:

- Time Offset Only: no signal degradation, only time-offset is unknown.

- Echo: 90% of the original signal level and arrives 100ms after original.

- Equalizer: passes the signal through an equalizer with the settings of [7].

- MPEG2 layer-3 at 32 Kbps CBR: encodes and decodes the test probes.

- GSM-Adaptive Multi-Rate AMR at 4.75 Kbps CBR: encodes and

decodes to 4.75-kbps-mode AMR audio (cell-phone emulation).

- Loud structured noise: adds Enya's Watermark I or To Die For's Veil of

Tears Epilogue to the probe at a fixed volume. Perceptually, this

ranged from ½–2× the volume of the probe content recording.

- Linear Speed Modification (LSM) 2: changed the playback speed ± 2%.

- Time-Scale Modification (TSM): tempo ± 10% w/o changing the pitch.

The results show uniformly improved performance over the

compared system. Further, when we look at the computation

and memory requirements of Waveprint, we again find a

benefit. We can express memory usage in terms of the

parameters of the system. For N songs stored in our

database, with an average length of M sec, memory usage is

on the order of 8*l*b + 4*l*N*M/s + p*N*M/s. The first

term is the b-bin hash tables (b=100,000 for Waveprint 1 &

Waveprint 2), using a simple array based representation. l is

the number of hash tables used. In each bin, the following

is stored: one pointer to its content array and one counter of

the number of elements in the content array. The second

term represents the terms that are pointed to in the hash-

1 We used the publicly available code base for Ke’s system from

http://www.cs.cmu.edu/~yke/musicretrieval/. We modified their amplitude

normalization, by using a smoothly varying normalization computed on a

sliding window of the surrounding 5 seconds. This uniformly improved

their results across all experiments.
2 Since the extension of Ke’s temporal model presented in [9] to include

timing variations should be possible, we omit the pessimistic performance

numbers of their system for time-modification tests (LSM & TSM).

Figure 2: Retrieval process.

1. Create spectral images of 11.6*w duration from the
spectrogram, with random spacing averaging d-ms apart.

 For each spectral image:

2. Compute the wavelets on the spectral image
3. Extract the top-t wavelets.
4.Create a binary vector of the top-t wavelets.
5.Use min-hash to create a sub-fingerprint of the top-t

wavelets (note that the same permutations used in the
database-creation portion are used here)

6. Using LSH, with b bins, l hash tables, find the sub-
fingerprint segments that are close matches.

7. Discard sub-fingerprints with less than v matches
8. Compute the Hamming distance from the remaining

candidate sub-fingerprints to the query sub-fingerprint.

9. Use Dynamic Prog. to combine the matches across time

tables (represented in the first term). This is the number of

hash-table pointers to the sub-fingerprints. (M / s) is the

average number of sub-fingerprints for each song. Each

hash table has a pointer to all of the sub-fingerprints. The

final term is the actual sub-fingerprint storage: for each of

the (N * M / s) spectral images in the database, there are p 1-

byte elements (where p is the number of Min-Hash

permutations, p=100 for both Waveprint 1 & Waveprint 2).

To make this concrete, we can store 10,000 songs in

approximately 0.42-0.46×10
9
 bytes of memory (Waveprint-1

& 2 respectively). Approximately 45,000-50,000 songs can

be placed on a 2 GB machine without touching disk for

retrieval. In contrast, using the approach reported in [7]
3
, we

estimate that the previous best approach would use 0.7×10
9

bytes for a 10,000 3.5-minute song database, allowing

31,000 songs in 2 GB of memory.

 A similar analysis for the computational load shows that

Waveprint-1 and Waveprint-2 both have average case

performances that are either lower than or within the bottom

1% of the range of performances expected in [9], in terms of

the expected number of byte-comparisons. In terms of real-

time performance, on a 3.4 Ghz Pentium, Waveprint is

approximately 13.6× faster than the probe duration (e.g. a 10

3
 Since [7] gave better bounds for memory/computation than [9], we used

[7] for this comparison.

second probe takes approximately 0.73 seconds to find in

our database). Effectively, if the goal is to retrieve a 3.5

minute song, when we use a 10-sec probe, our system is

286× faster than real time (since the full song is not

examined); for a 30-sec probe, 94× faster; for a 60-sec

probe, 47× faster. These numbers reflect unoptimized

performance; it is possible to speed up the most

computationally expensive portion of the process

(computing and sorting the wavelets, which account for 90%

of the computation) by a factor of ~16-32x. This can be

done by reusing partial results across successive sub-

fingerprints, since much of the computation is repeated

across the time-window being examined.

4. CONCLUSIONS

In this work, we have presented the Waveprint audio

identification system. The system builds on the insight of

[9]: the task of audio recognition can be effectively

addressed through computer-vision techniques. In this work,

we extended the computer-vision work presented in [8] for

retrieving near-duplicate images from a large corpus of

image data to the task of audio retrieval. Efficiencies were

obtained through using data-stream processing techniques

such as Min Hash. For the size databases explored, the

resulting system is more efficient in terms of memory usage

than the state-of-the-art competing system while providing

better recognition accuracy. Immediate next steps include

scaling the database. We have seen preliminary promising

results, both in terms of accuracy and speed, especially in

the Waveprint-2 setting. Other future work includes

exploring applications beyond music matching, such as

using the system for matching television broadcasts.

5. REFERENCES

[1] Baluja, Covell. Content fingerprinting using wavelets, Proc. CVMP

(2006).

[2] Burges, Platt, Jana. Distortion Discriminant Analysis for Audio

Fingerprinting, IEEE-PAMI 11(3):165–174, 2003.

[3] Cohen, et al. Finding interesting associations without support pruning.

Knowledge and Data Engineering, 13(1):64–78, 2001.

[4] Fink, Covell, Baluja. Social- and Interactive-TV Application Based on

Ambient-Audio Id, Proc. Euro-ITV, 2006.

[5] Gionis, Indyk, Motwani. Similarity search in high dimensions via

hashing. Proc. VLDB, pp. 518–529, 1999.

[6]Google Video http://video.google.com/video_about.html, 2005.

[7] Haitsma, Kalker. A Highly Robust Audio Fingerprinting System. Proc.

ISMIR, 2002.

[8] Jacobs, Finkelstein, Salesin. Fast Multiresolution Image Querying. Proc

SIGGRAPH, 1995.

[9] Ke, Hoiem, Sukthankar. Computer Vision for Music Identification.

Proc. CVPR, 2005.

[10] Myers, Rabiner. A comparative study of several dynamic time-

warping algorithms for connected word recognition. The Bell System

Technical Journal, 60(7):1389-1409, 1981.

[11]Shazam Ltd. http://www.shazam.com/, 2006.

[12] Viola, Jones.Robust Real-time Object Detection. ICCV, 2001.

[13] YouTube, http://www.youtube.com/t/fact_sheet, 2005.

Table I: Results

Degradation

Source

Recognition

System

10 Sec

Query

30 Sec

Query

60 Sec

Query

Time-Offset

Only

Waveprint 1

Waveprint 2

Ke

100.00

100.00

99.60

100.00

100.00

99.61

100.00

100.00

99.60

Echo-90%

Waveprint 1

Waveprint 2

Ke

99.90

97.98

99.00

99.59

99.59

99.11

99.68

99.68

99.25

Equalizer

Waveprint 1

Waveprint 2

Ke

99.80

98.18

99.13

99.69

100.00

99.14

99.79

99.79

99.30

MP3-32K

Waveprint 1

Waveprint 2

Ke

97.47

97.37

94.34

98.76

98.44

93.55

99.15

98.50

93.17

Noise-

Enya

Waveprint 1

Waveprint 2

Ke

86.97

85.45

60.49

95.96

96.17

71.72

98.40

98.51

75.86

Noise-

Veil of Tears

Waveprint 1

Waveprint 2

Ke

82.29

81.01

73.09

84.37

84.16

75.61

85.18

85.25

77.99

AMR:

GSM Codec

Waveprint 1

Waveprint 2

Ke

95.86

86.16

94.87

99.28

96.69

96.97

99.79

99.04

97.65

LSM-102
Waveprint 1

Waveprint 2

80.30

60.30

92.32

80.81

96.15

90.17

LSM-98
Waveprint 1

Waveprint 2

93.74

90.81

95.56

94.21

96.95

94.78

TSM-90
Waveprint 1

Waveprint 2

99.40

90.81

99.69

94.21

99.79

94.78

TSM-110
Waveprint 1

Waveprint 2

99.09

98.89

99.69

100.00

99.78

99.68

