
page 20

5. References

Baluja, S. (1992) An Analysis of Genetic Algorithm Structure on the MasPar MP-1. Paper in Progress.

Caruana, R. and J. Schaffer (1988) Representation and Hidden Bias: Gray Vs. Binary Coding for Genetic
Algorithms.Proceedings of the 5th International Conference on Machine Learning. Morgan Kaufmann. Los
Altos. CA. June 1988 152-161

Cobb, H. (1990) An Investigation Into the Use of Hypermutation as an Adaptive Operator in Genetic Algo-
rithms Having continuous, Time Dependent Nonstationary Environments. NCARAI Library. AIC-90-001.

Cohoon, J.P, S.U. Hedge, W.N. Martin & D. Richards (1988), Distributed Genetic Algorithms for the Floor
Plan Design Problem. Technical Report TR-88-12. School of Engineering and Applied Science, Computer Sci-
ence Department, University of Virginia.

DeJong, K.A. (1975)An Analysis of the Behavior of a Class of Genetic Adaptive Systems. (Doctoral disserta-
tion, University of Michigan). Dissertation Abstracts International 36-10, 5140B.

DeJong, K.A. and W. Spears (1990) An Analysis of Multi-Point Crossover. NCARAI Library. AIC-90-014.

Eshelman, L. (1990). The CHC Adaptive Search Algorithm: How to have safe search when engaging in non-
traditional genetic recombination.Foundations of Genetic Algorithms, Bloomington, IN..

Goldberg, D.E. (1989)Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley.

Husbands, P., F. Mill & S.Warrington (1991), Genetic Algorithms, Production Plan Optimisation and Schedul-
ing. Parallel Problem Solving from Nature, H.P. Schwefel & R. Manner Eds. Springer Verlag, Berlin.

Ingber, L and B. Rosen (1992) Genetic Algorithms and Very Fast Simulated Reannealing: A comparison. To
be published inMathematical and Computer Modelling.

Liepins, G.E. and S. Baluja (1991) apGA: an Adaptive Parallel Genetic Algorithm. Proceedings ofORSA-
TIMS CSTS Conference, Williamsburg, Va. 1990.

Liepins, G. E. and M. D. Vose (1990). Representational Issues in Genetic Optimization,Journal Expt. Theor.
Artificial Intelligence., 2, 101-115

Muhlenbein, H (1989) Parallel Genetic Algorithms, Population Genetics and Combinatorial Optimization.
Proceedings of the Third International Conference on Genetic Algorithms. Morgan Kaufmann. San Mateo,
CA.

Schaffer, J.D., R.A. Caruana, L.J. Eschelman, and R. Das (1989). A Study of Control Parameters Affecting
Online Performance of Genetic Algorithms for Function Optimization, Proceedings of the Third International
Conference on Genetic Algorithms. Morgan Kaufmann, San Mateo, CA.

Schleuter, M.G. (1990) , Explicit Parallelism of Genetic Algorithms through Population Structures.Parallel
Problem Solving from Nature, H.P. Schwefel & R. Manner Eds. Springer Verlag, Berlin.

Syswerda, G. (1989) Uniform Crossover in Genetic Algorithms,Proceedings of the Third International Con-
ference on Genetic Algorithms. Morgan Kaufmann. San Mateo, CA.

Whitley, D. and T. Starkweather (1990). GENITOR II: a Distributed Genetic Algorithm,Journal Expt. Theor.
Artificial Intelligence, 2, 189-214.

page 19

4.4. Summary & Future Research

Preliminary results on seventeen test problems have shown the mdpGA to be able to solve problems more effi-
ciently than a simple parallel genetic algorithm. In order to further evaluate the worth of this structure, both
harder test problems and different population topologies should be explored.

Perhaps the most pressing topic for future research is the need to design a topology which works well in a wide
variety of problems. For the problems tested, the two dimensional array topology seemed to work the best.
However, two future structures which would be interesting to examine would be one in which each processor
is only connected to 1 of its nearest neighbors and a second in which the connections are made randomly, per-
haps with a set maximum reaching distance.

One of the important applications of parallel genetic algorithms, which was not explored here, is the use of sets
of populations to optimize different objectives in multi-objective functions. Each population evolves under the
pressures of individual components of the complete problem. As stated in [Husbands, 1991] “...the solution to
a complex problem is allowed to emerge from the simultaneous solution of a number ofsimpler, related sub-
problems. Using this variation of divide and conquer, the inherent parallelism in a problem is brought out and
thoroughly exploited.” This method is directly applicable to the mdpGA; populations, on different processors,
can work towards individual sub-goals. It would be interesting to determine the role that the position of the
processor has on assigning objectives to each population.

Acknowledgments

I would like to thank Todd Jochem, Dean Pomerleau, Stephen Smith, and Chuck Thorpe for their helpful com-
ments and suggestions regarding this paper.

page 18

The choice of how the subpopulations should overlap plays a significant role in how fast the chromosomes are
spread through the population network. For certain classes of problems, it may be important to ensure that the
flow of chromosomes is very slow, in order to allow for extremely different evaluations in different portions of
the network. However, in other applications, a fast flow may yield good answers quickly as good chromo-
somes are rapidly spread through the population. The structure of the overlap is very important, as can be seen
in the significantly different success rates of the mpdGA on the Deceptive - Order 4 problem.

Figure 13. Sample run of DeJong’s F4. For clarity only the mpdGA array
structure and pGA are shown. Note that due to memory restrictions the pGA
was run with 80 subpopulations with 50 chromosomes per population. The

evaluations shown include the random gaussian factor.

Generations

M
ax

 -
 E

va
lu

at
io

n

Figure 14. The Number of Processors which contain the best chromosome using the
mdpGA to optimize the order 4 fully deceptive problem, interleaved. Also plotted is
the best value * 10, for comparison. The sudden drops in the number of processors

used, represent a new best solution found in one of the processors.

Generations

page 17

.

Test Function

DeJong Function #1

DeJong Function #2

DeJong Function #3*

DeJong Function #4

DeJong Function #5**

Subset Sum (1/4)

Subset Sum (1/20)

Subset Sum (1/40)

Partially Deceptive (Block)

Partially Deceptive (Interleaved)

Deceptive Order 4 (Block)

Deceptive Order 4 (Interleaved)

Gap Problem (Gap Size 20)

Gap Problem (Gap Size 25)

All Ones Problem

Sparse All Ones Problem

Contiguous Bits Problem

mdpGA

30.6

43.9

20.4

17.8

12.0

65.0

87.8

38.0

75.0

78.4

942.2(5)

164.3

699.1(9)

107.7

113.3

111.0

pGA

79.0

111.8

64.5

18.0

35.6

344.5

629.0

95.1

252.5

305.9

1634.7

675.9

776.0

648.2

342.0***

609.1

40
Subpopulations

4096
Linear
With Skip

mdpGA

32.0

40.0

22.0

17.9

21.0

68.0

95.4

39.0

70.0

90.0

1220(4)

161.2

816.4(5)

114.0

134.0

131.0

4096
Linear
Order

* The stopping criterion for DeJong’s F3 was an evaluation of -30.
** The stopping criterion for DeJong’s F5 was an evaluation of 0.998004.
*** Due to memory restrictions, this problem was attempted with 90 significant bits, and 30 extra bits (pGA only). The mdpGA runs
were full size (120 significant bits, 60 extra bits).

mdpGA

29.8

38.6

19.5

18.0

14.0

55.0

76.8

32.0

53.0

57.5

742.5

126.3

441.2

90.5

94.8

90.8

64 *64
2D Array

Figure 12. Results for the 17 test problems. Each entry represents the average number of
generations it took to find the optimal solution, in the cases in which it was found. When comparing

average number of generations, it should be remembered that the mdpGA evaluated 8192
chromosomes per generation, while the pGA evaluated only 4000. A number in parentheses
indicates that the optimal solution was only found the specified number of times, out of 10.

See Figure 13 for details.

page 16

ation automatically was carried to the subsequent generation. Similar to the mdpGA, the elitist selection does
not imply that the chromosome will be selected for recombination, only that it is a candidate for selection. The
best chromosome replaces the worst chromosome in the subsequent generation. Each population had 100 chro-
mosomes, for a total of (40 * 100) 4000 chromosomes evaluated simultaneously.

There was a very small amount of communication between the subpopulations. Assuming a circular ordering
of subpopulations, after an epoch of e=100 generations, the best chromosome from one population migrated to
a subpopulation e subpopulations away. “e” is defined to be the number of epochs that have passed. As the
population was a set size, the migrating chromosome replaced the worst chromosome in the target subpopula-
tion.

When comparing results, it should be considered that the mdpGA evaluates 8192 chromosomes per genera-
tion, and the pGA evaluates only 4000.

4.3. Results & Discussion

The results are shown for the 17 test problems in Figure 12. They are the average of 10 runs per problem for
each algorithm. The maximum number of allowed generations for the pGA is 3000, after 3000 the attempt is
considered a failure. The maximum number of generations before failure for each of the mdpGAs is 1400.

The mdpGA has done well in these test cases. One problem which stands out, in particular, is the simple all
ones problem. The all ones problem using the three versions of the mdpGA averaged 114.0, 90.5, and 107.7
generations. However, using a simple pGA, the average generation to find the optimal was 648.2, a very large
increase. Perhaps one of the reasons for this is in the mdpGA, good chromosomes rapidly spread through the
entire population. Depending upon the implementation of the overlap between populations, a large portion of
the population has access to the best chromosome very shortly after it is found. A sample run, using the 2D
array configuration, shown in Figure 14, displays the number of processors which “have seen” the best chro-
mosome found in each generation. The term “has seen” does not imply that the processors are currently recom-
bining the best chromosome, rather that it is available, with the aid of elitist selection, in their population of 10
candidate chromosomes. The sudden drops in the number of processors represent generations in which a
“new” best chromosome is found.

The second implementation of the mdpGA, with the population overlapping with the 8 closest neighbors,
allows a good chromosome to be immediately “taken” by 8 processors as soon as it is found. However, for it to
get any further than these 9 processors is more difficult. In order for more than the original 9 processors to take
the chromosome, it must again be selected for recombination. Assuming that it is selected, valuable schemata
must not be destroyed by crossover or mutation operators. This is true because although the processors which
surround the original 9 will incorporate the resultant chromosomes into their population, they must select them
for recombination based upon their evaluation, which may not be as good as their parents. Further, if the cross-
over and mutation have destroyed valuable schemata, the children produced will not be preserved in proces-
sors by elitist selection unless the evaluations are better than any the processor has seen thus far. On the other
hand, if the important schemata is only a small part of the total chromosome, the chances of the chromosomes
being spread throughout the network with valuable schemata intact is much greater. The reason for this is that
the crossover and mutation operators have a smaller chance to destroy the valuable schemata. Therefore, the
children chromosomes, which may differ from their parents, may do so in inconsequential ways.

page 15

distribution of 0’s and 1’s. It is expected that the majority of the chromosomes will start with approximately 60
ones, therefore they must overcome the gap immediately. See Figure 11 for the evaluations per number of ones
in the chromosome.

4.1.6. Three All Ones Problems

Three versions of the all-ones problem were tried. The first version was the straight all ones problem. The
objective of this problem is to find the chromosome which contains a 1 in each bit position. The optimal
answer to this problem is just the size of the chromosome. The chromosome length tested was 120 bits.

The second version of the all-ones problem contains bits which are meaningless. This problem was encoded as
a 180 bit problem, but only the first 120 bits were counted toward the evaluation. The optimal solution to this
problem is at 120.

The third version of this class of problem is slightly different than the previous two, it is the contiguous bits
problem. The optimal solution to this problem is also a chromosome which contains all ones. However, in
evaluating the chromosome, points are only given for 1s which also have at least one other neighbor which has
a value of 1. If there exists a 1 which has zeros as its two neighbors, no points are given for the bit.

4.2. Algorithms Tested

Four algorithms were tested, the three implementations of the mdpGA described in section 3.2 and a 40 sub-
population parallel genetic algorithm. The two implementations of the mdpGA worked significantly faster than
the pGA on almost all problems, the details of the timings can be seen found in [Baluja, 1992].

The pGA was loosely based upon the pGA described in [Whitley & Starkweather, 1990]. It was run with a 1%
mutation rate, and two point crossover (the mdpGA was tested with the same mutation rate and crossover oper-
ator). The pGA also employed modest elitist selection, in which the single best chromosome from each gener-

E
va

lu
at

io
n

o(x): Number of Ones in Chromosome

(P-1,P-1)

(P+Y, P+Y)

(P, P+Y-1)

(P+Y-1, P)

Figure 11. The Gap Problem. o(x) is the number of ones per chromosome. The
gap size is Y. The starting point of the gap is P.

page 14

interleaved. With the use of two point crossover, the first encoding is much easier for the GA to solve than the
second. The encodings are shown in Figure 9.

4.1.4. Fully Deceptive Order 4

This is the order 4 deceptive problem defined by Whitley and Starkweather, in their paper GENITOR II [Whit-
ley and Starkweather, 1990]. The problem is a 40 bit long maximization problem, and is comprised of 10 sub
problems, each 4 bits long. The subproblems evaluate 4 bits using the following lookup table, Figure 10.

The same two encodings which were used in the partially deceptive problems are used in this problem. See
Figure 9 for details. It should be noted that this problem is significantly more difficult for a GA to solve than
the previously described partially deceptive problem as the penultimate optimal and optimal solutions have a
hamming distance the size of the problem. In the partially deceptive problem, the penultimate optimal and
optimal solutions had a hamming distance 1/2 the size of the problem.

4.1.5. The Gap Problem

The Gap Problem is a maximization problem. The gap function f(x), with gap of size Y, starting at point P, with
o(x) being the number of ones in the bit string, is an order function defined by (see Figure 11):

This problem was tested on a 120 bit chromosome string. Gap sizes of 20 & 25 were tried with a starting point,
P=60, 1/2 of the size of the chromosome. Populations were initialized, as in all the other cases, with a random

Block Encoding: aaaabbbbccccddddeeeeffffgggghhhhiiiijjjj

Interleaved: abcdefghijabcdefghijabcdefghijabcdefghij

Figure 9. Two encodings of the order 4 deceptive problem & partially
deceptive problems.

EVALUATION

30
28
26
24
22
20
18
16

CHROMOSOME

0110
1001
1010
1100
1110
1101
1011
0111

CHROMOSOME

1111
0000
0001
0010
0100
1000
0011
0101

EVALUATION

14
12
10
08
06
04
02
00

Figure 10. 4 Bit evaluations of a fully deceptive function.

f x()
2P Y o x()− 1−+ if P o x() P Y 1−+≤ ≤(),
o x() if o x() P<() o x() P Y 1−+>()∨(),

{=

page 13

Function #5:

4.1.2. Subset-Sum

The subset sum problems are NP-Complete. The problems can be stated as follows: given S elements, each of
a possibly unique weight, is there a subset of S that adds up exactly to an arbitrary number, T? This problem
was implemented as a 120 bit chromosome. Each bit represented a unique object. The object was assigned a
random weight between 1 & 200. The weight T was selected to be either 1/4, 1/20, or 1/40 of the sum of the
weights of the objects. The only addition to the problem was that it was insured that the sum of the weights
was divisible by 4, 20 & 40, respectively. Note that this does not imply that a subset was guaranteed to sum to
the amount desired. Because the initial chromosomes were started with approximately 50% distribution of 0s
and 1s, and the weights selected were selected by a uniform distribution between 1 & 200, finding a set to sum
to 1/2 of the total sum usually takes less time than finding set to sum to 1/3 the total sum. The reason is that
given a random distribution of 0 & 1s, and a random distribution of weights, the total weight associated with
the 0 bits and the total weight associated with the 1 bits are very similar.

4.1.3. Partially Deceptive Order 4

The partially deceptive problem is a 40 bit long maximization problem. It is comprised of 10 sub problems,
each 4 bits long. The subproblems are evaluated using the following lookup table.

The problem was attempted using two different ordering of bits. The first encoding is block encoding, the
placement of the 4 bits which comprise a subproblem are located next to each other. The second encoding is

f5 x1 x2,() 1

1
500

1

j xi ai j−() 6

i 1=

2

∑+j 1=

25

∑+

=

ai j 32− 16− 0 16 32 32− 16− 0 16 32 32− 16− 0 16 32 32− 16− 0 16 32 32−, 16− 0 16 32, , ,{ , }=

ai j 32− 32− 32− 32− 32− 16− 16− 16− 16− 16− 0 0 0 0 0 16 16 16 16 16 32 32 32 32 32, ,{ }=

65.536− x≤ i 65.536≤ i, 1 2,=

EVALUATION

16
28
26
24
22
20
18
30

CHROMOSOME

0110
1001
1010
1100
1110
1101
1011
0111

CHROMOSOME

1111
0000
0001
0010
0100
1000
0011
0101

EVALUATION

14
12
10
08
06
04
02
00

Figure 8. 4 Bit Evaluations of a partially deceptive function.

page 12

4. Test Problems

4.1. Problem Descriptions

Six classes of problems were empirically tested, DeJong’s five function test suite, three subset-sum problems,
two orderings of a partially deceptive order 4 problem, two orderings of fully deceptive order 4 problems, 2
sizes of gap problem and three versions of all ones problems.

4.1.1. DeJong’s Test Suite

DeJong’s test suite is comprised of five minimization problems used to test the effectiveness of GAs [DeJong,
1975]. The test suite was designed to incorporate functions with the following characteristics: continuous/dis-
continuous, convex/nonconvex, unimodal/multimodal, quadratic/nonquadratic, low dimensionality/high
dimensionality, and deterministic/stochastic. [Goldberg, 1989]. The functions in the test suite were coded
using the standard binary counting system. Other implementations, such as gray code, were also considered.
Although gray code has shown to work significantly better than standard binary coding, [Caruana & Schaffer,
1988], it was not used in order to allow evaluation of the effectiveness of the mdpGA without the bias of out-
side factors.

The functions are:

Function #1:

Function #2:

Function #3:

Function #4:

f1 x1 x2 x3, ,() xj
2

j 1=

3

∑=

5.12− xi 5.12≤ ≤ i, 1 3,=

f2 x1 x2,() 100 x1
2 x2−() 2

1 x1−() 2+=

2.048− xi 2.048≤ ≤ i, 1 2,=

f3 x1 … x5, ,() 30.0 xj
j 1=

5

∑+=

5.12− x≤ i 5.12≤ i, 1 5,=

f4 x1 … x30, ,() xj
4

j 1=

30

∑ Gaussian 0 1,()+=

1.28− x≤ i 1.28≤ i, 1 30,=

page 11

3.3.3. Elitist Selection

This is a commonly employed tool to ensure that the progress made by a GA is not lost due to random chance.
Because a GA’s selection of parent chromosomes is probabilistic, it is not guaranteed that the best chromosome
in a particular generation will survive to the subsequent generation. It is also possible that if the chromosome is
selected for recombination, some of the good genetic material may not survive through the crossover and
mutation operators. A modest form of elitist selection is used to address this problem. Elitist selection carries
the best chromosome from the population of 10 candidates for recombination, from generation g to generation
g+1. This does not imply that the best chromosome will be selected for recombination. Rather, it means that
the chromosome will be in the population of 10 which are candidates for recombination. Because the number
of population spaces is limited to 10, the best chromosome from the previous generation replaces the worst
chromosome in the current generation. The worst chromosome is equated with the chromosome with the worst
relative fitness. The drawbacks of this strategy is that it can be detrimental when the GA is caught in a local
optima, as the elitist selection may preserve the local optima in the population’s candidates for recombination.

3.3.4. Initial Selection of Chromosomes

The initial selection of chromosomes is random. Each processor is given two chromosomes to recombine,
mutate and then evaluate. From here, the process of selecting the neighbor’s chromosomes etc. is started. The
majority of representations for chromosomes that have appeared in GA literature have been as binary bit
strings. The same representation is used in these tests. The number of 0’s and 1’s should be approximately
equal, with random placement within the chromosome.

page 10

processors, the minimum number of generations to get from one processor to any other is 1/2 the diagonal of
the square. Assuming a 64 * 64 processor arrangement, within approximately (32 -1) 31 generations, the chro-
mosome could be seen by all of the processors. Using arrangement #3, a compromise between the first two,
with regard to speed, the number of generations is 455. All of the -1 factors arise because in the first generation
that a good chromosome is found, it is immediately included in its neighbors selection of 10 chromosomes.
These estimates are only on the lower bound of the spread of the best chromosome. The chromosome will not
generally spread this fast as in order for this speed to be achieved, the chromosome must be reselected for
recombination at each generation, and none of the valuable schemata can be destroyed by crossover and muta-
tion. Further, this also assumes that no better chromosomes are found, and that a chromosome of the same
evaluation is not found without first “seeing” the original chromosome with the evaluation. These issues are
discussed again in section 4.3. Another topology, termed the “ladder” population structure, has been explored
by Muhlenbein and Schleuter,[Muhlenbein,1989], [Scheduler, 1990].

3.3. Implementation Specifics

For the test runs described here, the mdpGA used only standard GA mechanisms in order to allow a fair com-
parison of the capabilities of the mdpGA with other GAs.

3.3.1. The Recombination Operator

The recombination operator used for testing this algorithm is the two point crossover. This is a very general
crossover operator that has been shown to be effective in GA literature. See Figure 7 for details. For a discus-
sion of the effectiveness of two point crossover, as compared to other multi point crossover operators, the
reader is referred to [De Jong, 1990], as compared to the uniform crossover operator, the reader is referred to
[Syswerda, 1990].

3.3.2. The Mutation Rate

Mutation is implemented as a bit flip which occurs in the “children” chromosomes after the two point cross-
over has taken place with the parents, and before the chromosome is evaluated. The mutation rate is kept at a
constant 1%. Although adaptive mutation rates have empirically shown to greatly aid in maintaining diversity
[Whitley & Starkweather, 90], [Liepins & Baluja, 91], [Cobb, 90], the effectiveness of the massively distrib-
uted approach should first be measured without the introduction of other non-standard factors.

TWO POINT CROSSOVER

SELECT TWO CHROMOSOMES FOR RECOMBINATION
chromosome A: 01001001
chromosome B: 10011011

CHOOSE TWO POINTS AT RANDOM (>= 0 and <= length of chromosome)
point a: 4 point b: 7

SWITCH CONTENTS OF CHROMOSOMES BETWEEN TWO POINTS

010 0100 1 AFTER CROSSOVER: 01011011
100 1101 1 10001001

Figure 7. A brief description of two point crossover.

page 9

In the third implementation, a linear ordering is once again assumed. One chromosome from each of the 3
immediate left processors and one chromosomes from the 4,5,6 processors from the right are used in the candi-
date population. See Figure 5. Unlike the first implementation, the immediate right processors are not used.
The 4 remaining positions, out of the population of 10, are filled with 2 copies of each of the chromosomes
evolved in the previous generation. Unlike the other subpopulation architectures, which include 8 neighbors,
this only includes 6. This is done to examine the effect of reducing the spread rate of chromosomes upon per-
formance. Once the population of 10 chromosomes is selected, the mpdGA progresses in the same manner as
described earlier. Once again, each processor only evolves 2 chromosomes per generation. This model was
chosen because it allows a faster spread of good chromosomes than the first implementation and a slower
spread than the second implementation. See Figure 6.

Making the large assumption that the best schemata is not lost during crossover and mutation, the maximum
spread rate of a very good chromosome is different for each of the implementations. In arrangement #1, the
linear ordering, in which the 4 processors to the left and 4 to the right see the best chromosome immediately,
assuming 4096 processors arranged in a linear ordering, the lower bound on the number of generations for all
of the processors to see the best chromosome is 512-1, 511 generations. In arrangement #2, the square array of

Subpop.1 Subpop.3 Subpop.4 Subpop.5 Subpop.6 Subpop.7 Subpop.8 Subpop.9Subpop.2 Subpop.10 Subpop.11 . . .

chrom.subpop.2
chrom.subpop.3
chrom.subpop.4
chrom.subpop.5a
chrom.subpop.5b
chrom.subpop.5a
chrom.subpop.5b
chrom.subpop.9
chrom.subpop.10
chrom.subpop.11

Figure 5. The architecture of subpopulations, arrangement #3. Subpopulation 5 is shown
enlarged.

SUBPOPULATION 5

Figure 6. Making the large assumption that the best schemata is not lost during crossover
or mutation, the above diagram depicts how the schemata could spread through the

processors, using mdpGA configuration #3.

Best Schemata not
in Processor.

Best Schemata just found
in Processor.

Best Schemata already
in Processor.

Generation

a

a+2

a+1

a+3

a+4

page 8

.

Subpop.1 Subpop.3 Subpop.4 Subpop.5 Subpop.6 Subpop.7 Subpop.8 Subpop.9Subpop.2 Subpop.10 Subpop.11 . . .

chrom.subpop.1
chrom.subpop.2
chrom.subpop.3
chrom.subpop.4
chrom.subpop.5
chrom.subpop.5
chrom.subpop.6
chrom.subpop.7
chrom.subpop.8
chrom.subpop.9

chrom.subpop.6
chrom.subpop.7
chrom.subpop.8
chrom.subpop.9
chrom.subpop.10
chrom.subpop.10
chrom.subpop.11
chrom.subpop.12
chrom.subpop.13
chrom.subpop.14

Figure 3. The architecture of subpopulations, arrangement #1. Subpopulation 5 and 10 are shown
enlarged. They randomly select 1 chromosome from the 2 chromosomes in each of their 8 closest
neighbors, 4 from the left neighbors 4 neighbors, 4 from the right. They also incorporate their

own two chromosomes into the population. From this population two chromosomes are
probabilistically chosen for breeding. The 8 chromosomes not selected are discarded.

SUBPOPULATION 5 SUBPOPULATION 10

Figure 4. The architecture of subpopulations, arrangement #2. A two dimensional
array of processors is assumed. Each processor contributes one of its two chromosomes

to each of its 8 nearest neighbors. A sample population for processor (x,y) is shown.
The processors are connected in a toroid.

.

.

.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

.

chrom.subpop. (x+1,y)
chrom.subpop. (x+1,y-1)
chrom.subpop. (x-1,y-1)
chrom.subpop. (x-1,y)
chrom.subpop. (x-1,y+1)
chrom.subpop. (x,y+1)
chrom.subpop. (x+1, y+1)
chrom.subpop. (x+1,y+1)
chrom.subpop. (x,y)
chrom.subpop. (x,y)

SUBPOPULATION (X,Y)

(0,0) (0,yMax)

(xMax,yMax)(xMax,0)

page 7

3. The mdpGA: Implementations & Details

As stated before with reference to traditional parallel genetic algorithms, it is not necessary to implement the
mdpGA on a parallel machine. Simulations of parallel architectures for this GA can be done successfully on a
serial machine. However, the discussion which follows assumes the use of the MasPar MP-1, described in the
next section. The implementation specifics of the mdpGA, described in section 3.2, map very easily to the
capabilities of this machine.

3.1. Machine Specifics

The hardware used to perform the test runs was the MasPar MP-1. This is a massively parallel computer, con-
sisting of an Array Control Unit (ACU) and a two dimensional array of processing elements (PE). The array
size is 64 x 64, for a total of 4096 processing elements. The ACU has 1 Mbyte of RAM with up to 4 Gbyte of
virtual instruction memory. The ACU is used to control the PE array and to perform instruction on data which
is not located on the PE’s dedicated memory. Each PE has 16 Kbytes of dedicated RAM. The MasPar is a Sin-
gle Instruction Multiple Data (SIMD) machine. Put simply, this means that each PE receives the same instruc-
tion simultaneously from the ACU. Through control statements, processors can be either active or non-active.
The PEs which are members of the active set will execute the instruction they receive from the ACU, on local
data. Those which are not members of the active set will do nothing.

The processors can be accessed either through relative addressing mode (from other processors) or absolute
addressing. Further, they have two modes of numbering for identification. They can either be accessed by x,y
coordinates or by row-major ordering. This allows an efficient programming model for the three implementa-
tions described in the next section.

The programming language used was the MasPar Parallel Application Language (MPL). This is an extended
set of Kernighan and Ritchie C with extra directives for controlling the PE array and parallel data structures.

3.2. Population Architecture

The mdpGA was tested with three different implementations. The first implementation assumes a circularly
linked linear ordering of processors as shown in Figure 2. Each processor evolves only two chromosomes per
generation. These two chromosomes are chosen from a population of 10 chromosomes. The population of 10
is comprised of 1 chromosome from each of the four immediate left processors, 1 chromosome from each of
the four immediate right processors and the two chromosomes which were evolved in the processor during the
previous generation. Each of the chromosomes selected from neighboring processors is chosen randomly from
the 2 evolved at the remote processor. The fitness of every chromosome in each population is calculated. The
fitness is relative only to the other chromosomes in the population of 10. Two chromosomes from this set of 10
are probabilistically, based upon the relative fitness, chosen for recombination. The other 8 chromosomes
which are not chosen for recombination are discarded. See Figure 3 for a pictorial explanation. In the next gen-
eration, the two “children” chromosomes produced (through crossover and mutation) are available for the
recombination, either by the processor on which they are located, or by its neighbors.

The second implementation tested assumes a two dimensional array of processors. Similar to the previous
implementation described, each of the processors evolves two chromosomes, which are chosen from a popula-
tion of 10. The two dimensional array is toroidal. Instead of selecting the population members from only the 4
left and 4 right neighbors, the eight immediately neighboring processors donate to the population of 10. See
Figure 4. The neighbors are located to the immediate E, NE, N, NW, W, SW, S, SE of the processor. The
remainder of the procedure is completed in exactly the same manner as the previous implementation.

page 6

2. Massively Distributed Parallel Genetic Algorithms: an
Overview

In order to address the problems associated with the sudden introduction of genetic information, the basic
architecture of the parallel genetic algorithm has been modified. The massively distributed parallel genetic
algorithm works upon the premise that although separate populations do yield a benefit, by reducing the sever-
ity of the boundaries between subpopulations, it might be possible to overcome the problems associated with
sudden introduction of new material. One way in which to view this modified form of parallelism is to concep-
tualize the populations as overlapping, see Figure 2. This structure allows for the gradual transfer of genetic
information without the sudden introduction of chromosomes at set intervals. The swapping portion of the par-
allel genetic algorithms is inherent to the structure, as genetic information “flows” through the network of
GAs.

The motivation behind this subpopulation organization is that subpopulations which are a large distance apart
(relative to N), will evolve comparatively unique chromosomes in a manner similar to simple, disjoint, parallel
subpopulations. However, depending upon the degree and structure of the overlap of the populations, all of the
subpopulations potentially have a bearing upon each subpopulation’s evolution. Of course, the subpopulations
within a close locality to each other will have a much greater influence on each other than those a large dis-
tance apart. As with standard parallel GAs, the larger the number of subpopulations, the greater the potential
diversity in evolutions.

The danger of a suboptimal state being reached in the mdpGA is greater than in the structure employed by tra-
ditional pGAs for two reasons. The first is that the mdpGA employes a greater degree of swapping between
subpopulations than pGAs. Secondly, in the implementations tested, there are significantly fewer chromo-
somes per population in the mdpGA than in traditional pGAs. In order to address this problem, the mdpGA
relies upon the size of the network of genetic algorithms and the controlled degree of overlap to allow unique
evolutions in different portions of the network.

One of the issues raised in creating this type of genetic algorithm is determining the extent of overlap between
subpopulations, and with which other subpopulations the overlap should be constructed. For example, if each
subpopulation overlaps only 2 others, the good chromosomes would “flow” from processor to processor very
slowly. If the chromosomes overlapped quite a few other subpopulations, the good chromosomes would rap-
idly flow throughout the GA structure. However, this may lose the advantages of punctuated equilibria. Many
different issues regarding topology need to be addressed, such as should the populations be connected as
described above, in a linear manner, or should the overlapping populations be virtual, almost simulating neural
network connections. Furthermore, should the connections between subpopulations be fixed, or time varying?
These issues are examined in the section 3.2 and again addressed in the conclusions.

S
ub

P
op

ul
at

io
n

#2

S
ub

P
op

ul
at

io
n

#1

S
ub

P
op

ul
at

io
n

#3

S
ub

P
op

ul
at

io
n

#4

S
ub

P
op

ul
at

io
n

#5

S
ub

P
op

ul
at

io
n

#6

S
ub

P
op

ul
at

io
n

#N
-1

S
ub

P
op

ul
at

io
n

#N

.

Figure 2. Overlapping Populations in a Massively Distributed Parallel Genetic
Algorithm.

S
ub

P
op

ul
at

io
n

#N

page 5

epochs, or major iterations. During each epoch, every processor works in parallel, yet independently, evolving
its chromosomes. There are G generations per epoch. After each epoch has ended, a small sample of chromo-
somes from each processor is swapped. Then, the next epoch is started. The analogy to punctuated equilibria is
that after G generations, the chromosomes will have slowed down their evolution by coming to an equilibrium
within their own subpopulation. Although this may not always be the case, given a sufficiently large G, the
chromosomes will become similar. With the introduction of new chromosomes from another subpopulation, it
should be possible, through many generations, to incorporate the new schemata into the current population. By
controlling the number of chromosomes that are swapped, it is possible to control the amount of potentially
new genetic information that is introduced into each subpopulation. More details of the specific implementa-
tion issues and parameters used will be given in section 3.

In order to ensure complete mixing of chromosomes throughout all subpopulations, the swaps are not always
between the same subpopulations. One method of implementing the swapping procedure is to skip e subpopu-
lations between the source and the destination subpopulation, where e is the number of epochs passed, [Whit-
ley & Starkweather, 1990] see Figure 1. Although the sudden injection of new material is an important aspect
of simulating punctuated equilibria, it is not always effective. Many times the population into which new mate-
rial is introduced is already entirely settled into an equilibrium state. If this is the case, it is possible that the
new information may not be incorporated as it is so dissimilar to the existing information.

Other parallel schemes involve swapping only with the closest neighbors. Alone, neither this nor the previ-
ously mentioned scheme addresses the problem of a subpopulation’s potential resistance to change. One of the
approaches used to address this problem is to create a separate subpopulation to which all the chromosomes
are swapped. Although this aids in avoiding the problem of resistance to change as a predominant schemata
structure does not already exist in the newly created subpopulation, its potential has not yet been fully
explored. [Liepins & Baluja, 1991].

In the next section, another type of parallelism for the GA is discussed. It incorporates the theory of punctuated
equilibria, but attempts to avoid the sudden introduction of chromosomes into subpopulations by using over-
lapping population boundaries.

.

S
ub

po
pu

la
tio

n
#1

S
ub

po
pu

la
tio

n
#2

S
ub

po
pu

la
tio

n
#3

S
ub

po
pu

la
tio

n
#4

S
ub

po
pu

la
tio

n
#5

S
ub

po
pu

la
tio

n
#6

S
ub

po
pu

la
tio

n
#7

S
ub

po
pu

la
tio

n
#8

S
ub

po
pu

la
tio

n
#N

-1

S
ub

po
pu

la
tio

n
#Nfr

om
 N

Transfer after
epoch #1

Transfer after
epoch #2

from Nfrom N-1

Figure 1. Typical transfer of chromosomes between subpopulations in parallel genetic
algorithms. Transfer after epoch 1 and 2 shown.

page 4

algorithms (pGA). A pGA is more than a means to improve the speed of the GA. Although there are many sim-
ple methods of increasing the speed of a GA, e.g. performing crossover, mutation, and evaluations in parallel,
a pGA does not have to be executed on a parallel machine. A pGA is based upon the theory of punctuated
equilibria.

In the paperDistributed Genetic Algorithms for the Floor Plan Design Problem, Cohoon et. al describe the
theory of punctuated equilibria [Cohoon, 1988]:

Punctuated Equilibria is based upon two principles: allopatric speciation
and stasis. Allopatric speciation involves the rapid evolution of new spe-
cies after a small set of members of species, peripheral isolates, becomes
segregated into a new environment. Stasis, or stability, of a species, is sim-
ply the notion of lack of change. It implies that after equilibria is reached
in an environment, there is very little drift away from the genetic composi-
tion of species. ... Punctuated Equilibria stresses that a powerful method
for generating new species is to thrust an old species into a new environ-
ment, where change is beneficial and rewarded. For this reason we should
expect a genetic algorithm approach based upon punctuated equilibria to
perform better than the typical single environment scheme.

The implication of this upon the structure of the genetic algorithm is that given a single large population, the
population will eventually converge to an equilibrium. The children chromosomes produced thereafter will be
very similar to each other and to their parents, thereby rendering crossover operators largely ineffective. One
method of resolving this problem is to create separate subpopulations. Each subpopulation evolves its chromo-
somes independently from all other subpopulations. The fitness used to determine probability of selection is
relative only to the other members within the subpopulation. Independent evolution of subpopulations should
yield closely competitive, yet possibly unique results in each subpopulation. In order to continue evolution
after the subpopulations have converged, members of species from outside subpopulations can periodically be
introduced.

There are at least two uses for parallel subpopulations. The first is, as mentioned above, to preserve diversity
and to ensure perpetual novelty in the population’s “gene pool”. Parallel subpopulations have shown their
effectiveness by solving many “GA-hard” problems which other GAs were not able to solve [Whitley & Stark-
weather, 1990], [Liepins & Baluja 1991]. The second use of the subpopulation structure is to emphasize differ-
ent characteristics in the chromosomes. For example, in multi-objective functions, the evaluations in each
subpopulation can be used to emphasize a different objective. When members of subpopulations are mixed,
the genetic information may be combined to reveal chromosomes which are strong with respect to more than a
single objective. A multi-objective optimization with parallel subpopulations can be found in [Husbands,
1991].

1.3. Implementing Punctuated Equilibria

It is not necessary to have a parallel machine to implement parallel subpopulations. However, it is important
that each subpopulation has evolved a number of generations before individual chromosomes are swapped
between subpopulations. This can easily be implemented serially. However, for the remainder of this section, it
shall be assumed that the implementation is on a multi-processor system.

Each subpopulation has a dedicated processor. A set of chromosomes (n) is assigned to each processor. In the
model used here, there are (N) processors. Therefore, the total number of chromosomes, is n x N. There are E

page 3

1. Introduction

1.1. Genetic Algorithms

Genetic algorithms (GA) are general purpose optimization tools designed to search irregular, poorly character-
ized function spaces. The GA is established upon the foundations of natural selection and genetic recombina-
tion. A GA combines the principles of survival of the fittest with a randomized information exchange.
Although the information exchange is randomized, the GA is far different than a simple random walk. A GA
has the ability to recognize trends toward optimal solutions, and exploit such information by guiding the search
toward them.

A genetic algorithm maintains a population of potential solutions to the objective function being optimized. In
much of the GA research done, the potential solutions have been encoded as binary bit strings. The initial
group of potential solutions is determined randomly. These potential solutions, termed “chromosomes”, are
allowed to evolve over a number of generations. At every generation, the fitness of each potential solution is
calculated. The fitness is a measure of how well the potential solution optimizes the objective function. The
subsequent generation is created by recombining pairs of chromosomes in the current generation. Recombina-
tion between two chromosomes is the method through which the populations “evolve” better solutions. The
solutions are probabilistically chosen for recombination based upon their fitness. Although the chromosomes
which optimize the objective function well will have a higher probability of being selected for recombination
than those which do not, they are not guaranteed to appear in the next generation. The “children” chromo-
somes produced by the genetic recombination are not necessarily better than their “parent” chromosomes.
Nevertheless, because of the selective pressure applied through a number of generations, the overall trend is
toward better chromosomes.

In order to optimize functions, genetic diversity must be maintained. When diversity is lost, it is possible for
the GA to settle into a local optimum. There are two fundamental mechanisms which the basic GA uses to
maintain diversity. The first, mentioned above, is a probabilistic scheme of selecting which chromosomes to
recombine. This insures that schemata, other than the ones represented in the best chromosomes, appears in the
subsequent generation. Only recombining good chromosomes will very quickly converge the population with-
out extensive exploration, thereby increasing the possibility of finding only a local optimum. The second
mechanism is mutations; mutations are used to help preserve diversity and to escape from local optima. The
mutation operator is usually implemented as a random bit flip. In the traditional genetic algorithm, the muta-
tion rate is kept at a very low constant.

The genetic algorithm is typically allowed to continue for an arbitrary number of generations. At the conclu-
sion of the number of specified generations, the best chromosome in the final population, or the best chromo-
some ever found, is returned.

Unlike the majority of other optimization heuristics, genetic algorithms do not work from a single point in the
function space. Methods which only use a single point to explore the function space are very susceptible to
local optima. GAs continually maintain a population of points from which the function space is explored. This
aids in searching multidimensional search space, in which many variables must be optimized, and in locating
global optima.

1.2. Punctuated Equilibria

Currently, a large amount of research is being done towards understanding the capabilities of parallel genetic

page 2

Keywords: Genetic Algorithms, Punctuated Equilibria, Massive Parallelism, DeJong’s Function Suite.

School of Computer Science
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213-3890

Abstract

The effectiveness of combinatorial search heuristics, such as Genetic Algorithms (GA), is limited by their ability to
balance the need for a diverse set of sampling points with the desire to quickly focus search upon potential solutions.
One of the methods often used to address this problem is to simulate the theory of punctuated equilibria in the GA.
The GA introduced here uses the basic premises derived from punctuated equilibria, but hopes to remedy the
problems associated with sudden introduction of new genetic material by relying upon a much greater degree of
distribution and an overlapping population architecture. Presented here is a description and preliminary empirical test
results of a massively distributed parallel genetic algorithm (mdpGA) . On the test problems attempted, the mdpGA
did significantly better than a simple parallel GA in terms of speed and the number of evaluations required to find the
optimal solutions. The massive distribution of the GA and the modified population topology prove to be far less
vulnerable than other genetic algorithms to biases in the function space which lead away from global optima.

A Massively Distributed Parallel Genetic Algorithm

(mdpGA)

Shumeet Baluja

13 October 1992

CMU-CS-92-196R

This research was partly sponsored by Defense Advanced Research Projects Agency, under contracts “Perception for Outdoor Navigation” (con-
tract number DACA76-89-C-0014, monitored by the US Army Topographic Engineering Center) and “Unmanned Ground Vehicle System” (con-
tract number DAAE07-90-C-R059, monitored by TACOM). It was also partially sponsored by the National Science Foundation, under NSF
Contract BCS-9120655, titled “Annotated Maps for Autonomous Underwater Vehicles”, and the NSF grant titled “Massively Parallel Real-Time
Computer Vision”. The views and conclusions contained in this document are those of the author and should not be interpreted as representing the
official policies, either expressed or implied, of the Defense Advanced Research Projects Agency, the National Science Foundation, or the U.S.
Government.

