
Human Face Detection in Visual Scenes

Henry A. Rowley Shumeet Baluja Takeo Kanade

November 1995
CMU-CS-95-158R

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

We present a neural network-based face detection system. A retinally connected neural network
examines small windows of an image, and decides whether each window contains a face. The
system arbitrates between multiple networks to improve performance over a single network. We
use a bootstrap algorithm for training the networks, which adds false detections into the training
set as training progresses. This eliminates the difficult task of manually selecting non-face training
examples, which must be chosen to span the entire space of non-face images. Comparisons with
other state-of-the-art face detection systems are presented; our system has better performance in
terms of detection and false-positive rates.

This work was partially supported by a grant from Siemens Corporate Research, Inc., by the Department of
the Army, Army Research Office under grant number DAAH04-94-G-0006, and by the Office of Naval Research
under grant number N00014-95-1-0591. This work was started while Shumeet Baluja was supported by a National
Science Foundation Graduate Fellowship. He is currently supported by a graduate student fellowship from the
National Aeronautics and Space Administration, administered by the Lyndon B. Johnson Space Center. The views
and conclusions contained in this document are those of the authors, and should not be interpreted as necessarily
representing official policies or endorsements, either expressed or implied, of the sponsoring agencies.

Keywords: Face detection, Pattern recognition, Computer vision, Artificial neural networks,
Machine learning

1 Introduction

In this paper, we present a neural network-based algorithm to detect frontal views of faces in
gray-scale images1. The algorithms and training methods are general, and can be applied to other
views of faces, as well as to similar object and pattern recognition problems.

Training a neural network for the face detection task is challenging because of the difficulty in
characterizing prototypical “non-face” images. Unlike face recognition, in which the classes to be
discriminated are different faces, the two classes to be discriminated in face detection are “images
containing faces” and “images not containing faces”. It is easy to get a representative sample of
images which contain faces, but it is much harder to get a representative sample of those which do
not. The size of the training set for the second class can grow very quickly.

We avoid the problem of using a huge training set for non-faces by selectively adding images to
the training set as training progresses [Sung and Poggio, 1994]. This “bootstrap” method reduces
the size of the training set needed. Detailed descriptions of this training method, along with
the network architecture are given in Section 2. In Section 3, the performance of the system is
examined. We find that the system is able to detect 90.5% of the faces over a test set of 130 images,
with an acceptable number of false positives. Section 4 briefly discusses some techniques that can
be used to make the system run faster, and Section 5 compares this system with similar systems.
Conclusions and directions for future research are presented in Section 6.

2 Description of the System

Our system operates in two stages: it first applies a set of neural network-based filters to an image,
and then uses an arbitrator to combine the filter outputs. The filter examines each location in the
image at several scales, looking for locations that might contain a face. The arbitrator then merges
detections from individual filters and eliminates overlapping detections.

2.1 Stage One: A Neural Network-Based Filter

The first component of our system is a filter that receives as input a 20x20 pixel region of the
image, and generates an output ranging from 1 to -1, signifying the presence or absence of a face,
respectively. To detect faces anywhere in the input, the filter is applied at every location in the
image. To detect faces larger than the window size, the input image is repeatedly reduced in size
(by subsampling), and the filter is applied at each size. The filter itself must have some invariance
to position and scale. The amount of invariance built into the filter determines the number of scales
and positions at which the filter must be applied. For the work presented here, we apply the filter
at every pixel position in the image, and scale the image down by a factor of 1.2 for each step in
the pyramid.

The filtering algorithm is shown in Figure 1. First, a preprocessing step, adapted from [Sung
and Poggio, 1994], is applied to a window of the image. The window is then passed through a neural

1An interactive demonstration of the system is available on the World Wide Web at
http://www.ius.cs.cmu.edu/demos/facedemo.html, which allows anyone to submit images for processing by the face
detector, and to see the detection results for pictures submitted by other people.

1

Input
Network Outputsu

bs
am

pl
in

g

Preprocessing Neural network

pixels
20 by 20

Extracted windowInput image pyramid
(20 by 20 pixels)

Correct lighting Histogram equalization Receptive fields
Hidden units

Figure 1: The basic algorithm used for face detection.

network, which decides whether the window contains a face. The preprocessing first attempts to
equalize the intensity values in across the window. We fit a function which varies linearly across
the window to the intensity values in an oval region inside the window. Pixels outside the oval
(shown at the top of Figure 2) may represent the background, so those intensity values are ignored
in computing the lighting variation across the face. The linear function will approximate the overall
brightness of each part of the window, and can be subtracted from the window to compensate for a
variety of lighting conditions. Then histogram equalization is performed, which non-linearly maps
the intensity values to expand the range of intensities in the window. The histogram is computed for
pixels inside an oval region in the window. This compensates for differences in camera input gains,
as well as improving contrast in some cases. Examples of the results of each of the preprocessing
steps are shown in Figure 2.

The preprocessed window is then passed through a neural network. The network has retinal
connections to its input layer; the receptive fields of hidden units are shown in Figure 1. There
are three types of hidden units: 4 which look at 10x10 pixel subregions, 16 which look at 5x5
pixel subregions, and 6 which look at overlapping 20x5 pixel horizontal stripes of pixels. Each of
these types was chosen to allow the hidden units to represent features that might be important for
face detection. In particular, the horizontal stripes allow the hidden units to detect such features as
mouths or pairs of eyes, while the hidden units with square receptive fields might detect features
such as individual eyes, the nose, or corners of the mouth. Although the figure shows a single
hidden unit for each subregion of the input, these units can be replicated. For the experiments
which are described later, we use networks with two and three sets of these hidden units. Similar
input connection patterns are commonly used in speech and character recognition tasks [Waibel
et al., 1989, Le Cun et al., 1989]. The network has a single, real-valued output, which indicates
whether or not the window contains a face.

Examples of output from a single network are shown in Figure 3. In the figure, each box
represents the position and size of a window to which the neural network gave a positive response.
The network has some invariance to position and scale, which results in multiple boxes around
some faces. Note also that there are some false detections; they will be eliminated by methods

2

Oval mask for ignoring
background pixels:

Original window:

Best fit linear function:

Lighting corrected window:
(linear function subtracted)

Histogram equalized window:

Figure 2: The steps in preprocessing a window. First, a linear function is fit to
the intensity values in the window, and then subtracted out, correcting for some
extreme lighting conditions. Then, histogram equalization is applied, to correct for
different camera gains and to improve contrast. For each of these steps, the mapping
is computed based on pixels inside the oval mask, while the mapping is applied to
the entire window.

3

presented in Section 2.2.

A B

Figure 3: Images with all the above threshold detections indicated by boxes.

To train the neural network used in stage one to serve as an accurate filter, a large number of face
and non-face images are needed. Nearly 1050 face examples were gathered from face databases
at CMU and Harvard2. The images contained faces of various sizes, orientations, positions, and
intensities. The eyes and the center of the upper lip of each face were located manually, and these
points were used to normalize each face to the same scale, orientation, and position, as follows:

1. The image is rotated so that both eyes appear on a horizontal line.

2. The image is scaled so that the distance from the point between the eyes to the upper lip is
12 pixels.

3. A 20x20 pixel region, centered 1 pixel above the point between the eyes and the upper lip, is
extracted.

In the training set, 15 face examples are generated from each original image, by randomly rotating
the images (about their center points) up to 10�, scaling between 90% and 110%, translating up
to half a pixel, and mirroring. Each 20x20 window in the set is then preprocessed (by applying
lighting correction and histogram equalization). A few example images are shown in Figure 4. The
randomization gives the filter invariance to translations of less than a pixel and scalings of 20%.
Larger changes in translation and scale are dealt with by applying the filter at every pixel position
in an image pyramid, in which the images are scaled by factors of 1.2.

Practically any image can serve as a non-face example because the space of non-face images is
much larger than the space of face images. However, collecting a “representative” set of non-faces
is difficult. Instead of collecting the images before training is started, the images are collected
during training, in the following manner, adapted from [Sung and Poggio, 1994]:

1. Create an initial set of non-face images by generating 1000 images with random pixel
intensities. Apply the preprocessing steps to each of these images.

2Dr. Woodward Yang at Harvard provided over 400 mug-shot images which we used for training.

4

Figure 4: Example face images, randomly mirrored, rotated, translated, and scaled
by small amounts.

2. Train a neural network to produce an output of 1 for the face examples, and -1 for the non-face
examples.

3. Run the system on an image of scenery which contains no faces. Collect subimages in which
the network incorrectly identifies a face (an output activation > 0).

4. Select up to 250 of these subimages at random, apply the preprocessing steps, and add them
into the training set as negative examples. Go to step 2.

Some examples of non-faces that are collected during training are shown in Figure 5. We used 120
images of scenery for collecting negative examples in this bootstrap manner. A typical training run
selects approximately 8000 non-face images from the 146,212,178 subimages that are available at
all locations and scales in the training scenery images.

2.2 Stage Two: Merging Overlapping Detections and Arbitration

The examples in Figure 3 showed that the raw output from a single network will contain a number of
false detections. In this section, we present two strategies to improve the reliability of the detector:
merging overlapping detections from a single network and arbitrating among multiple networks.

2.2.1 Merging Overlapping Detections

Note that in Figure 3, most faces are detected at multiple nearby positions or scales, while false
detections often occur with less consistency. This observation leads to a heuristic which can
eliminate many false detections. For each location and scale at which a face is detected, the
number of detections within a specified neighborhood of that location can be counted. If the
number is above a threshold, then that location is classified as a face. The centroid of the nearby
detections defines the location of the detection result, thereby collapsing multiple detections. In
the experiments section, this heuristic will be referred to as “thresholding”.

5

Figure 5: During training, the partially-trained system is applied to images of
scenery which do not contain faces (like the one on the left). Any regions in the
image detected as faces (which are expanded and shown on the right) are errors,
which can be added into the set of negative training examples.

If a particular location is correctly identified as a face, then all other detection locations which
overlap it are likely to be errors, and can therefore be eliminated. Based on the above heuristic
regarding nearby detections, we preserve the location with the higher number of detections within
a small neighborhood, and eliminate locations with fewer detections. Later, in the discussion of the
experiments, this heuristic is called “overlap elimination”. There are relatively few cases in which
this heuristic fails; however, one such case is illustrated in the left two faces in Figure 3B, in which
one face partially occludes another.

The implementation of these two heuristics is illustrated in Figure 6. Each detection by the
network at a particular location and scale is marked in an image pyramid, labelled the “output”
pyramid. Then, each location in the pyramid is replaced by the number of detections in a specified
neighborhood of that location. This has the effect of “spreading out” the detections. Normally,
the neighborhood extends an equal number of pixels in the dimensions of scale and position, but
for clarity in Figure 6 detections are only spread out in position. A threshold is applied to these
values, and the centroids (in both position and scale) of all above threshold regions are computed.
All detections contributing to the centroids are collapsed down to single points. Each centroid is
then examined in order, starting from the ones which had the highest number of detections within
the specified neighborhood. If any other centroid locations represent a face overlapping with the
current centroid, they are removed from the output pyramid. All remaining centroid locations
constitute the final detection result.

2.2.2 Arbitration among Multiple Networks

To further reduce the number of false positives, we can apply multiple networks, and arbitrate
between the outputs to produce the final decision. Each network is trained in a similar manner,
but with random initial weights, random initial non-face images, and random permutations of the
order of presentation of the scenery images. As will be seen in the next section, the detection and
false positive rates of the individual networks will be quite close. However, because of different

6

detections overlaid centers of detections
Input image pyramid,

Overlapping detections

"Output" pyramid:

False detect

in x and y, not in scale

Centroids (in position and scale)Face locations and scales
represented by centroids

Final detection result

centroid of detections extended across scale overlapping detection
Spreading out detections Collapse clusters to Potential face locations Final result after removing

Final result

A B

Computations on output pyramid

C D E

Input image pyramid

Figure 6: The framework used for merging multiple detections from a single net-
work: A) The detections are recorded in an image pyramid. B) The detections
are “spread out” and a threshold is applied. C) The centroids in scale and position
are computed, and the regions contributing to each centroid are collapsed to single
points. In the example shown, this leaves only two detections in the output pyra-
mid. D) The final step is to check the proposed face locations for overlaps, and
E) to remove overlapping detections if they exist. In this example, removing the
overlapping detection eliminates what would otherwise be a false positive.

7

training conditions and because of self-selection of negative training examples, the networks will
have different biases and will make different errors.

Each detection by a network at a particular position and scale is recorded in an image pyramid,
as shown in Figure 7. One way to combine two such pyramids is by ANDing them. This strategy
signals a detection only if both networks detect a face at precisely the same scale and position. Due
to the biases of the individual networks, they will rarely agree on a false detection of a face. This
allows ANDing to eliminate most false detections. Unfortunately, this heuristic can decrease the
detection rate because a face detected by only one network will be thrown out. However, we will
show later that individual networks can all detect roughly the same set of faces, so that the number
of faces lost due to ANDing is small.

Similar heuristics, such as ORing the outputs of two networks, or voting among three networks,
were also tried. Eac of these arbitration methods can be applied before or after the “thresholding”
and “overlap elimination” heuristics. If applied afterwards, we combine the centroid locations
rather than actual detection locations, and require them to be within some neighborhood of one
another rather than precisely aligned.

Arbitration strategies such as ANDing, ORing, or voting seem intuitively reasonable, but
perhaps there are some less obvious heuristics that could perform better. To test this hypothesis,
we applied a separate neural network to arbitrate among multiple detection networks. For a
given position in the detection pyramid, the arbitration network examines a small neighborhood
surrounding that location in the output of each individual network. For each network, we count the
number of detections in a 3x3 pixel region at each of three scales around the location of interest,
resulting in three numbers for each detector, which are fed to the arbitration network, as shown in
Figure 8. The arbitration network is trained to produce a positive output for a given set of inputs
only if that location contains a face, and to produce a negative output for locations without a face.
As will be seen in the next section, using an arbitration network in this fashion produced results
comparable to (and in some cases, slightly better than) those produced by the heuristics presented
earlier.

3 Experimental Results

A large number of experiments were performed to evaluate the system. We first show an analysis
of which features the neural network is using to detect faces, then present the error rates of the
system over three large test sets.

3.1 Sensitivity Analysis

In order to determine which part of the input image the network uses to decide whether the input
is a face, we performed a sensitivity analysis using the method of [Baluja and Pomerleau, 1995a].
We collected a positive test set based on the training database of face images, but with different
randomized scales, translations, and rotations than were used for training. The negative test set
was built from a set of negative examples collected during the training of an earlier version of
the system. Each of the 20x20 pixel input images was divided into 25 4x4 pixel subimages. For
each subimage in turn, we went through the test set, replacing that subimage with random noise,
and tested the neural network. The number of errors made by the network is an indication of how

8

AND

False detects

False detect

Network 1’s detections (in an image pyramid) Network 2’s detections (in an image pyramid)

Result of AND (false detections eliminated)

Figure 7: ANDing together the outputs from two networks over different positions and scales can
improve detection accuracy.

9

from one network overlaid
In

p
u

t
im

ag
e

at
 t

h
re

e
sc

al
es

, w
it

h
 d

et
ec

ti
o

n
s

fr
o

m
 o

n
e

n
et

w
o

rk
Input images, detections

image pyramid
Detection centers in an

Network 1 Network 2 Network 3

Number of detections in region

Where the network found a face

Where the arbitration network is looking

Decision region (center of region

Output unit

Hidden units

Where a detection network found a face

R
es

u
lt

 o
f

ar
b

it
ra

ti
o

n

2 0 1 1 22 5 6 5

of interest at a particular scale
(maximum of 9)

(outside the current region of interest)

of interest, middle scale value)

D
et

ec
ti

o
n

s
fr

o
m

 t
h

re
e

n
et

w
o

rk
s

at
 t

h
re

e
sc

al
es

A
rb

it
ra

ti
o

n
 n

et
w

o
rk

1 and 3 are not shown
Detections from networks

Figure 8: The inputs and architecture of the arbitration network to arbitrate among multiple face
detection networks.

10

important that portion of the image is for the detection task. Plots of the error rates for two networks
we developed are shown in Figure 9. Network 1 uses two sets of the hidden units illustrated in
Figure 1, while Network 2 uses three sets.

0

5

10

15

20

0

10

20

0

2000

4000

6000

0

5

10

15

20

0

10

20

0

2000

4000

6000

Network 1 Face at Same Scale Network 2

Figure 9: Error rates (vertical axis) on a small test resulting from adding noise to
various portions of the input image (horizontal plane), for two networks. Network
1 has two copies of the hidden units shown in Figure 1 (a total of 58 hidden units
and 2905 connections), while Network 2 has three copies (a total of 78 hidden units
and 4357 connections).

The networks rely most heavily on the eyes, then on the nose, and then on the mouth (Figure 9).
Anecdotally, we have seen this behavior on several real test images. Even in cases in which only
one eye is visible, detection of a face is possible, though less reliable, than when the entire face is
visible. The system is less sensitive to the occlusion of features such as the nose or mouth.

3.2 Testing

The system was tested on three large sets of images, which are completely distinct from the training
sets. Test Set A was collected at CMU, and consists of 42 scanned photographs, newspaper pictures,
images collected from the World Wide Web, and digitized television pictures. These images contain
169 frontal views of faces, and require the networks to examine 22,053,124 20x20 pixel windows.
Test Set B consists of 23 images containing 155 faces (9,678,084 windows); it was used in [Sung
and Poggio, 1994] to measure the accuracy of their system. Test Set C is similar to Test Set A, but
contains many images with more complex backgrounds and without any faces, to more accurately
measure the false detection rate. It contains 65 images, 183 faces, and 51,368,003 windows.3

A feature our face detection system has in common with many systems is that the outputs are
not binary. The neural network filters produce real values between 1 and -1, indicating whether
or not the input contains a face, respectively. A threshold value of zero is used during training

3Test Sets A and C are available over the World Wide Web, at the URL
http://www.ius.cs.cmu.edu/IUS/dylan usr0/har/faces/test.

11

to select the negative examples (if the network outputs a value of greater than zero for any input
from a scenery image, it is considered a mistake). Although this value is intuitively reasonable, by
changing this value during testing, we can vary how conservative the system is. To examine the
effect of this threshold value during testing, we measured the detection and false positive rates as
the threshold was varied from 1 to -1. At a threshold of 1, the false detection rate is zero, but no
faces are detected. As the threshold is decreased, the number of correct detections will increase,
but so will the number of false detections. This tradeoff is illustrated in Figure 10, which shows
the detection rate plotted against the number of false positives as the threshold is varied, for the
two networks presented in the previous section. Since the zero threshold locations are close to the
“knees” of the curves, as can be seen from the figure, we used a zero threshold value throughout
testing. Experiments are currently underway to examine the effect of the threshold value used
during training.

0.75

0.8

0.85

0.9

0.95

1

1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1 1

F
ra

ct
io

n
of

 F
ac

es
 D

et
ec

te
d

False Detections per Windows Examined

ROC Curve for Test Sets A, B, and C

 zero
 zero

Network 1
Network 2

Figure 10: The detection rate plotted against false positives as the detection threshold
is varied from -1 to 1, for two networks. The performance was measured over all
images from Test Sets A, B, and C. Network 1 uses two sets of the hidden units
illustrated in Figure 1, while Network 2 uses three sets. The points labelled “zero”
are the zero threshold points which are used for all other experiments.

Table 1 shows the performance for four networks working alone, examines the effect of overlap
elimination and collapsing multiple detections, and finally shows the results of using ANDing,

12

ORing, voting, and neural network arbitration. Networks 3 and 4 are identical to Networks 1
and 2, respectively, except that the negative example images were presented in a different order
during training. The results for ANDing and ORing networks were based on Networks 1 and 2,
while voting and network arbitration were based on Networks 1, 2, and 3. The neural network
arbitrators were trained using the images in Test Set A, so Test Set A cannot be used to evaluate
the performance of these systems. Three different architectures for the network arbitrator were
used. The first used 5 hidden units, as shown in Figure 8. The second used two hidden layers of
5 units each, with additional connections between the first hidden layer and the output. The last
architecture was a simple perceptron.

As discussed earlier, the “thresholding” heuristic for merging detections requires two param-
eters, which specify the size of the neighborhood used in searching for nearby detections, and
the threshold on the number of detections that must be found in that neighborhood. In Table 1,
these two parameters are shown in parentheses after the word “threshold”. Similarly, the ANDing,
ORing, and voting arbitration methods have a parameter specifying how close two detections (or
detection centroids) must be in order to be counted as identical.

As can be seen from Table 1, each system has better false positive rates on Test Sets A and C
than on Test Set B, while Test Set C yields the highest detection rate and Test Set A the lowest. This
is because of differences in the types of images in the three sets. To summarize the performance of
each system, we combined all three test sets, and produced the summary statistics shown in Table 2.
Note that because Systems 14, 15, and 16 use a neural network arbitrator which was trained using
Test Set A, we cannot provide summary data for these systems.

Systems 1 through 4 show the raw performance of the networks. Systems 5 through 8 use
the same networks, but include the thresholding and overlap elimination steps which decrease the
number of false detections significantly, at the expense of a small decrease in the detection rate.
The remaining systems all use arbitration among multiple networks. Using arbitration further
reduces the false positive rate, and in some cases increases the detection rate slightly. Note that
for systems using arbitration, the ratio of false detections to windows examined is extremely low,
ranging from 1 false detection per 229,556 windows to down to 1 in 10,387,401, depending on
the type of arbitration used. Systems 10, 11, and 12 show that the detector can be tuned to make
it more or less conservative. System 10, which uses ANDing, gives an extremely small number
of false positives, and has a detection rate of about 78.9%. On the other hand, System 12, which
is based on ORing, has a higher detection rate of 90.5% but also has a larger number of false
detections. System 11 provides a compromise between the two. The differences in performance
of these systems can be understood by considering the arbitration strategy. When using ANDing,
a false detection made by only one network is suppressed, leading to a lower false positive rate.
On the other hand, when ORing is used, faces detected correctly by only one network will be
preserved, improving the detection rate.

Systems 14, 15, and 16, all of which use neural network-based arbitration among three networks,
yield about the same performance as System 11 on Test Set B. On Test Set C, the neural network-
based arbitrators give a much lower false detection rate. System 13, which uses voting among three
networks, yields about the same detection rate and lower false positive rate than System 12, which
uses ORing of two networks. System 17 will be described in the next section.

Based on the results shown in Table 1, we concluded that both Systems 11 and 15 make
acceptable tradeoffs between the number of false detections and the detection rate. Because
System 11 is less complex than System 15 (using only two networks rather than a total of four),

13

Table 1: Detection and Error Rates for Test Sets A, B, and C

Test Set A Test Set B Test Set C
miss / Detect rate # miss / Detect rate # miss / Detect rate

Type System False detects / Rate False detects / Rate False detects / Rate

0) Ideal System 0/169 100.0% 0/155 100.0% 0/183 100.0%
0 0/22053124 0 0/9678084 0 0/51368003

Single
network,
no
heuristics

1) Network 1 (2 copies of hidden units (52
total), 2905 connections)

17 89.9% 11 92.9% 9 95.1%
507 1/43497 353 1/27417 908 1/56573

2) Network 2 (3 copies of hidden units (78
total), 4357 connections)

20 88.2% 10 93.5% 11 94.0%
385 1/57281 347 1/27891 814 1/63106

3) Network 3 (2 copies of hidden units (52
total), 2905 connections)

19 88.8% 12 92.3% 13 92.9%
579 1/38088 506 1/19127 1091 1/47083

4) Network 4 (3 copies of hidden units (78
total), 4357 connections)

17 89.9% 10 93.5% 10 94.5%
693 1/31823 528 1/18330 1287 1/39913

Single
network,
with
heuristics

5) Network 1! threshold(2,1)! overlap
elimination

24 85.8% 12 92.3% 10 94.5%
222 1/99338 126 1/76810 496 1/103565

6) Network 2! threshold(2,1)! overlap
elimination

27 84.0% 13 91.6% 13 92.9%
179 1/123202 123 1/78684 417 1/123185

7) Network 3! threshold(2,1)! overlap
elimination

23 86.4% 15 90.3% 15 91.8%
250 1/88212 161 1/60112 564 1/91078

8) Network 4! threshold(2,1)! overlap
elimination

20 88.2% 17 89.0% 10 94.5%
264 1/83535 171 1/56597 617 1/83254

Arbitrating
among
two
networks

9) Networks 1 and 2! AND(0) 33 80.5% 19 87.7% 14 92.3%
67 1/329151 66 1/146638 76 1/675895

10) Networks 1 and 2! AND(0)!
threshold(2,3)! overlap elimination

52 69.2% 34 78.1% 21 88.5%
4 1/5513281 3 1/3226028 1 1/51368003

11) Networks 1 and 2! threshold(2,2)!
overlap elimination!AND(2)

36 78.7% 20 87.1% 18 90.2%
15 1/1470208 15 1/645206 33 1/1556606

12) Networks 1 and 2!thresh(2,2)!overlap
elim!OR(2)!thresh(2,1)!overlap elim

26 84.6% 11 92.9% 11 94.0%
90 1/245035 64 1/151220 208 1/246962

Arbitrating
among
three
networks

13) Networks 1, 2, 3! voting(0)! overlap
elimination

25 85.2% 13 91.6% 15 91.8%
47 1/469215 36 1/268836 112 1/458643

14) Networks 1, 2, 3! network arb. (5
hidden units)! thresh.(2,1)! overlap elim.

Used to train
arbitrator network

18 88.4% 15 91.8%
16 1/604880 20 1/2568400

15) Networks 1, 2, 3! network arb. (10
hidden units)! thresh.(2,1)! overlap elim.

Used to train
arbitrator network

18 88.4% 16 91.3%
15 1/645206 11 1/4669818

16) Networks 1, 2, 3! network arb.
(perceptron)! thresh.(2,1)! overlap elim.

Used to train
arbitrator network

18 88.4% 17 90.7%
14 1/691292 11 1/4669818

Fast
version

17) Candidate verification method described
in Section 4

58 65.7% 42 72.9% 28 84.7%
3 1/7351041 3 1/3226028 5 1/10273601

threshold(distance,threshold): Only accept a detection if there are at least threshold detections within a cube (extending along x, y, and scale) in
the detection pyramid surrounding the detection. The size of the cube is determined by distance, which is the number of a pixels from the
center of the cube to its edge (in either position or scale).

overlap elimination: It is possible that a set of detections erroneously indicate that faces are overlapping with one another. This heuristic examines
detections in order (from those having the most votes within a small neighborhood to those having the least), and removing conflicting
overlaps as it goes.

voting(distance), AND(distance), OR(distance): These heuristics are used for arbitrating among multiple networks. They take a distance
parameter, similar to that used by the threshold heuristic, which indicates how close detections from individual networks must be to one
another to be counted as occuring at the same location and scale. A distance of zero indicates that the detections must occur at precisely
the same location and scale. Voting requires two out of three networks to detect a face, AND requires two out of two, and OR requires one
out of two to signal a detection.

network arbitration(architecture): The results from three detection networks are fed into an arbitration network. The parameter specifies the
network architecture used: a simple perceptron, a network with a hidden layer of 5 fully connected hidden units, or a network with two
hidden layers of 5 fully connected hidden units each, with additional connections from the first hidden layer to the output.

14

Table 2: Combined Detection and Error Rates for Test Sets A, B, and C

Missed Detect False False detect
Type System faces rate detects rate

0) Ideal System 0/507 100.0% 0 0 in 83099211

Single
network,
no
heuristics

1) Network 1 (2 copies of hidden units (52 total),
2905 connections)

37 92.7% 1768 1 in 47002

2) Network 2 (3 copies of hidden units (78 total),
4357 connections)

41 91.9% 1546 1 in 53751

3) Network 3 (2 copies of hidden units (52 total),
2905 connections)

44 91.3% 2176 1 in 38189

4) Network 4 (3 copies of hidden units (78 total),
4357 connections)

37 92.7% 2508 1 in 33134

Single
network,
with
heuristics

5) Network 1! threshold(2,1)! overlap elimination 46 90.9% 844 1 in 98459

6) Network 2! threshold(2,1)! overlap elimination 53 89.5% 719 1 in 115576

7) Network 3! threshold(2,1)! overlap elimination 53 89.5% 975 1 in 85230

8) Network 4! threshold(2,1)! overlap elimination 47 90.7% 1052 1 in 78992

Arbitrating
among
two
networks

9) Networks 1 and 2! AND(0) 66 87.0% 209 1 in 397604

10) Networks 1 and 2! AND(0)! threshold(2,3)
! overlap elimination

107 78.9% 8 1 in 10387401

11) Networks 1 and 2! threshold(2,2)! overlap
elimination! AND(2)

74 85.4% 63 1 in 1319035

12) Networks 1 and 2! threshold(2,2)! overlap
elim. ! OR(2)! threshold(2,1)! overlap elim.

48 90.5% 362 1 in 229556

Arbitrating
three nets

13) Networks 1, 2, 3! voting(0)! overlap
elimination

53 89.5% 195 1 in 426150

Fast
version

17) Candidate verification method described in
Section 4

128 74.8% 11 1 in 7554474

15

we present results for it in more detail. System 11 detects on average 85.4% of the faces, with
an average of one false detection per 1,319,035 20x20 pixel windows examined. Figures 11, 12,
and 13 show example output images from System 114.

4 Improving the Speed

In this section, we briefly discuss some methods to improve the speed of the system. The work
described is preliminary, and is not intended to be an exhaustive exploration of methods to optimize
the execution time.

The dominant factor in the running time of the system described thus far is the number of 20x20
pixel windows which the neural networks must process. Applying two networks to a 320x240 pixel
image (193737 windows) on a Sparc 20 takes approximately 590 seconds. The computational cost
of the arbitration steps is negligible in comparison, taking less than one second to combine the
results of the two networks over all positions in the image.

Recall that the amount of position invariance in the pattern recognition component of our system
determines how many windows must be processed. In the related task of license plate detection,
[Umezaki, 1995] decreased the number of windows that must be processed. The key idea was to
have the neural-network be invariant to translations of about 25% of the size of a license plate.
Instead of a single number indicating the existence of a face in the window, the output of Umezaki’s
network is an image with a peak indicating where the network believes a license plate is located.
These outputs are accumulated over the entire image, and peaks are extracted to give candidate
locations for license plates.

The same idea can be applied to face detection. The original detector was trained to detect a
20x20 face centered in a 20x20 window. We can make the detector more flexible by allowing the
same 20x20 face to be off-center by up to 5 pixels in any direction. To make sure the network
can still see the whole face, the window size is increased to 30x30 pixels. Thus the center of the
face will fall within a 10x10 pixel region at the center of the window. As before, the network
has a single output, indicating the presence or absence of a face. This detector can be moved in
steps of 10 pixels across the image, and still detect all faces that might be present. The network
is trained using the bootstrap procedure described earlier. This first scanning step is illustrated in
Figure 14, which shows the input image pyramid, and the 10x10 pixel regions which are classified
as containing the centers of faces. An architecture with an image output was also tried. It yielded
about the same detection accuracy, but at the expense of more computation.

As can be seen from the figure, this network has many more false detections than the detectors
described earlier. To improve the accuracy, we treat each detection by the 30x30 detector as a
candidate face, and use the 20x20 detectors described earlier to verify it. Since the candidate faces
are not precisely located, the center of the verification network’s 20x20 window must be scanned
over the 10x10 pixel region potentially containing the center of the face. Simple arbitration
strategies, such as ANDing, can be used to combine the outputs of two verification networks.
The heuristic that faces rarely overlap can also be used to reduce computation, by first scanning

4After trying to arrange these images compactly by hand, we decided to use a more systematic approach. These
images were laid out automatically by the PBIL optimization algorithm [Baluja, 1994]. The objective function tries to
pack images as closely as possible, by maximizing the amount of space left over at the bottom of each page.

16

D: 9/9/0

B: 2/2/0

C: 1/1/0

J: 8/7/1

A: 57/57/3

I: 7/5/0

H: 3/3/0

K: 14/14/0
L: 1/1/0

G: 2/1/0

M: 1/1/0

F: 11/11/0E: 15/15/0

Figure 11: Output obtained from System 11 in Table 1. For each image, three numbers are shown:
the number of faces in the image, the number of faces detected correctly, and the number of false
detections. Some notes on specific images: False detections are present in A and J. Faces are
missed in G (babies with fingers in their mouths are not well represented in the training set), I (one
because of the lighting, causing one side of the face to contain no information, and one because of
the bright band over the eyes), and J (removed because a false detect overlapped it). Although the
system was trained only on real faces, hand drawn faces are detected in D. Images A, I, and K were
obtained from the World Wide Web, B was scanned from a photograph, C is a digitized television
image, D, E, F, H, and J were provided by Sung and Poggio at MIT, G and L were scanned from
newspapers, and M was scanned from a printed photograph.

17

D: 3/3/0

P: 1/1/0

E: 1/1/0

C: 1/1/0

N: 8/5/0

A: 12/11/3

M: 1/1/0

B: 6/5/1

O: 1/1/0

L: 4/4/0

K: 1/1/0
J: 1/1/0

T: 1/1/0

S: 1/1/0

I: 1/1/0F: 1/1/0

Q: 1/1/0

G: 2/2/0 H: 4/3/0

R: 1/1/0

Figure 12: Output obtained in the same manner as the examples in Figure 11. Some notes on
specific images: Faces are missed in A and H (for unknown reasons), B (large angle), and N (the
stylized faces are not reliably detected at the same locations and scales by the two networks, and
so are lost by the AND heuristic). False detections are present in A and B. Although the system
was trained only on real faces, hand drawn faces are detected in I and N. Images A, H, K, and R
were scanned from printed photographs, B, D, G, I, L, and P were obtained from the World Wide
Web, C, E, and S are digitized television images, F, J, M, and Q were scanned from photographs,
N and T were provided by Sung and Poggio at MIT, and O is a dithered CCD image. Image M
corresponds to Figure 3A.

18

C: 2/2/0

E: 1/1/0

A: 5/5/0 B: 2/2/1 D: 4/2/0

K: 4/4/1

M: 1/1/0

J: 8/7/0

L: 2/2/0

G: 1/1/0

N: 9/9/0

F: 1/1/0

H: 1/1/0

P: 1/1/0

O: 14/12/0

I: 3/2/0

Figure 13: Output obtained in the same manner as the examples in Figure 11. Some notes on
specific images: Faces are missed in D (one due to occlusion, one due to large angle), I (for
unknown reasons), J (the large middle face is recursive, with smaller faces representing its eyes and
nose; overlap elimination would remove this face, but neither of the individual networks detected
it, possibly because the “eyes” are not dark enough), and O (one due to occlusion, one due to large
angle). False detections are present in B and K. Although the system was trained only on real faces,
hand drawn faces are detected in J and K. Image A was scanned from a printed photograph, B was
scanned from a newspaper, C, L, and N were obtained from the World Wide Web, D was provided
by Sung and Poggio at MIT, E, F, G, I, and P are digitized television images, H, M, and O were
scanned from photographs, and J and K are CCD images. Image D corresponds to Figure 3B.

19

Verified face locationsCandidate locationsInput image pyramid

10x10 pixel grid

Figure 14: Illustration of the steps in the fast version of the face detector. On the left
is the input image pyramid, which is scanned with a 30x30 detector which moves
in steps of 10 pixels. The center of the figure shows the 10x10 pixel regions (at
the center of the 30x30 detection windows) which the detector believes contain the
center of a face. These candidates are then verified by the detectors described earlier
in the paper, and the final results are shown on the right.

20

the image for large faces, and at smaller scales not processing locations which overlap with any
detections found so far. The results of these verification steps are illustrated on the right side of
Figure 14.

With these modifications, the processing time for a typical 320x240 image is about 24 seconds
on a Sparc 20. To examine the effect of these changes on the accuracy of the system, it was
applied to the three test sets used in the previous section. The results are listed as System 17
in Tables 1 and 2. As can be seen, this system has false detection rates comparable to the most
conservative of the other systems, System 10, with detection rates about 4% lower than that system.
For applications where near real-time performance is required to process a sequence of images,
this is an acceptable degradation; even if a face is missed in one image, it will often be detected in
the next image in the sequence.

Further performance improvements can be made if one is analyzing many pictures taken by a
stationary camera. By taking a picture of the background scene, one can determine which portions
of the picture have changed in a newly acquired image, and analyze only those portions of the image.
These techniques, taken together, have proved useful in building an almost real-time version of the
system suitable for demonstration purposes.

5 Comparison to Other Systems

[Sung and Poggio, 1994] reports a face detection system based on clustering techniques. Their
system, like ours, passes a small window over all portions of the image, and determines whether
a face exists in each window. Their system uses a supervised clustering method with six “face”
and six “non-face” clusters. Two distance metrics measure the distance of an input image to
the prototype clusters. The first metric measures the “partial” distance between the test pattern
and the cluster’s 75 most significant eigenvectors. The second distance metric is the Euclidean
distance between the test pattern and its projection in the 75 dimensional subspace. These distance
measures have close ties with Principal Components Analysis (PCA), as described in [Sung and
Poggio, 1994]. The last step in their system is to use either a perceptron or a neural network with a
hidden layer, trained to classify points using the two distances to each of the clusters (a total of 24
inputs). Their system is trained with 4000 positive examples and nearly 47500 negative examples
collected in the “bootstrap” manner. In comparison, our system uses approximately 16000 positive
examples and 9000 negative examples.

Table 3 shows the accuracy of their system on Test Set B, along with the results of our system
using the heuristics employed by Systems 10, 11, and 12 in Table 1. In [Sung and Poggio, 1994],
149 faces were labelled in the test set, while we labelled 155. Some of these faces are difficult
for either system to detect. Based on the assumption that [Sung and Poggio, 1994] were unable to
detect any of the six additional faces we labelled, the number of missed faces is six more than the
values listed in their paper. It should be noted that because of implementation details, [Sung and
Poggio, 1994] process a slightly smaller number of windows over the entire test set; this is taken
into account when computing the false detection rates. Table 3 shows that for equal numbers of
false detections, we can achieve higher detection rates.

The main computational cost in [Sung and Poggio, 1994] is in computing the two distance
measures from each new window to 12 clusters. We estimate that this computation requires fifty
times as many floating point operations as are needed to classify a window in our system, where

21

the main costs are in preprocessing and applying neural networks to the window.

Table 3: Comparison of [Sung and Poggio, 1994] and Our System on Test Set B

Missed Detect False False detect
System faces rate detects rate

Networks 1 and 2 ! AND(0) ! threshold(2,3) ! overlap
elimination

34 78.1% 3 1 in 3226028

Networks 1 and 2 ! threshold(2,2)! overlap elimination!
AND(2)

20 87.1% 15 1 in 645206

Networks 1 and 2 ! threshold(2,2)! overlap elimination!
OR(2)! threshold(2,1)! overlap elimination

11 92.9% 64 1 in 151220

[Sung and Poggio, 1994] (Multi-layer network) 36 76.8% 5 1 in 1929655
[Sung and Poggio, 1994] (Perceptron) 28 81.9% 13 1 in 742175

The candidate verification process used to speed up our system, described in Section 4, is similar
to the detection technique used by [Vaillant et al., 1994]. In that work, two networks were used.
The first network has a single output, and like our system it is trained to produce a maximal positive
value for centered faces, and a maximal negative value for non-faces. Unlike our system, for faces
that are not perfectly centered, the network is trained to produce an intermediate value related
to how far off-center the face is. This network scans over the image to produce candidate face
locations. Unlike our candidate face detector, it must be applied at every pixel position. However,
it runs quickly because of the network architecture: using retinal connections and shared weights,
much of the computation required for one application of the detector can be reused at the adjacent
pixel position. This optimization requires the preprocessing to have a restricted form, such that
it takes as input the entire image, and produces as output a new image. The window-by-window
preprocessing used in our system cannot be used. A second network is used for precise localization:
it is trained to produce a positive response for an exactly centered face, and a negative response for
faces which are not centered. It is not trained at all on non-faces. All candidates which produce a
positive response from the second network are output as detections. One possible problem with this
work is that the negative training examples are selected manually from a small set of images (indoor
scenes, similar to those used for testing the system). It may be possible to make the detectors more
robust using the bootstrap technique described here and in [Sung and Poggio, 1994].

Another related system is described in [Pentland et al., 1994]. This system uses PCA to describe
face patterns (as well as smaller patterns like eyes) with a lower-dimensional space than the image
space. Rather than detecting faces, the main goal of this work is analyzing images of faces, to
determine head orientation or to recognize individual people. However, it is also possible to use
this lower-dimensional space for detection. A window of the input image can be projected into the
face space and then projected back into the image space. The difference between the original and
reconstructed images is a measure of how close the image is to being a face. Although the results
reported are quite good, it is unlikely that this system is as robust as [Sung and Poggio, 1994],
because Pentland’s classifier is a special case of Sung and Poggio’s system, using a single positive
cluster rather than six positive and six negative clusters.

[Yang and Huang, 1994] used an approach quite different from the ones presented above.
Rather than having the computer learn the face patterns to be detected, the authors manually coded

22

rules and feature detectors for face detection. Some parameters of the rules were then tuned based
on a set of training images. Their algorithm proceeds in three phases. The first phase applies
simple rules such as “the eyes should be darker than the rest of the face” to 4x4 pixel windows.
All candidate faces are then passed to phase two, which applies similar (but more detailed) rules to
higher resolution 8x8 pixel windows. Finally, all surviving candidates are passed to phase three,
which used edge-based features to classify the full-resolution window as either a face or a non-face.
The test set consisted of 60 digitized television images and photographs, each containing one face.
Their system was able to detect 50 of these faces, with 28 false detections.

6 Conclusions and Future Research

Our algorithm can detect between 78.9% and 90.5% of faces in a set of 130 total images, with
an acceptable number of false detections. Depending on the application, the system can be made
more or less conservative by varying the arbitration heuristics or thresholds used. The system has
been tested on a wide variety of images, with many faces and unconstrained backgrounds.

There are a number of directions for future work. The main limitation of the current system
is that it only detects upright faces looking at the camera. Separate versions of the system could
be trained for each head orientation, and the results could be combined using arbitration methods
similar to those presented here. It would also be interesting to apply this method to detecting other
objects.

Even within the domain of detecting frontal views of faces, more work remains. When an
image sequence is available, temporal coherence can focus attention on particular portions of the
images. As a face moves about, its location in one frame is a strong predictor of its location in next
frame. Standard tracking methods, as well as expectation-based methods [Baluja and Pomerleau,
1995b], can be applied to focus the detector’s attention.

Other methods of improving system performance include obtaining more positive examples
for training, or applying more sophisticated image preprocessing and normalization techniques.
For instance, the color segmentation method used in [Hunke, 1994] for color-based face tracking
could be used to filter images. The face detector would then be applied only to portions of the
image which contain skin color, which would speed up the algorithm as well as eliminating false
detections.

One application of this work is in the area of media technology. Every year, improved technology
provides cheaper and more efficient ways of storing information. However, automatic high-level
classification of the information content is very limited; this is a bottleneck that prevents media
technology from reaching its full potential. The work described above allows a user to make queries
of the form “Which scenes in this video contain human faces?” and to have the query answered
automatically.

Acknowledgements

The authors would like to thank to Kah-Kay Sung and Dr. Tomaso Poggio (at MIT) and Dr.
Woodward Yang (at Harvard) for providing a series of test images and a mug-shot database,
respectively. Michael Smith (at CMU) provided some digitized television images for testing

23

purposes. We also thank Eugene Fink, Xue-Mei Wang, Hao-Chi Wong, Tim Rowley, and Kaari
Flagstad for comments on drafts of this paper.

References

[Baluja and Pomerleau, 1995a] Shumeet Baluja and Dean Pomerleau. Encouraging distributed
input reliance in spatially constrained artificial neural networks: Applications to visual scene
analysis and control. Submitted, 1995.

[Baluja and Pomerleau, 1995b] Shumeet Baluja and Dean Pomerleau. Using a saliency map for
active spatial selective attention: Implementation & initial results. In G. Tesauro, D. S. Touretzky,
and T. K. Leen, editors, Advances in Neural Information Processing Systems (NIPS) 7. MIT
Press, Cambridge, MA, 1995.

[Baluja, 1994] Shumeet Baluja. Population-based incremental learning: A method for integrat-
ing genetic search based function optimization and competitive learning. CMU-CS-94-163,
Carnegie Mellon University, 1994.

[Hunke, 1994] H. Martin Hunke. Locating and tracking of human faces with neural networks.
Master’s thesis, University of Karlsruhe, 1994.

[Le Cun et al., 1989] Y. Le Cun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hub-
bard, and L. D. Jackel. Backpropogation applied to handwritten zip code recognition. Neural
Computation, 1:541–551, 1989.

[Pentland et al., 1994] Alex Pentland, Baback Moghaddam, and Thad Starner. View-based and
modular eigenspaces for face recognition. In Computer Vision and Pattern Recognition, pages
84–91, 1994.

[Sung and Poggio, 1994] Kah-Kay Sung and Tomaso Poggio. Example-based learning for view-
based human face detection. A.I. Memo 1521, CBCL Paper 112, MIT, December 1994.

[Umezaki, 1995] Tazio Umezaki. Personal communication, 1995.

[Vaillant et al., 1994] R. Vaillant, C. Monrocq, and Y. Le Cun. Original approach for the locali-
sation of objects in images. IEE Proceedings on Vision, Image, and Signal Processing, 141(4),
August 1994.

[Waibel et al., 1989] Alex Waibel, Toshiyuki Hanazawa, Geoffrey Hinton, Kiyohiro Shikano, and
Kevin J. Lang. Phoneme recognition using time-delay neural networks. Readings in Speech
Recognition, pages 393–404, 1989.

[Yang and Huang, 1994] Gaungzheng Yang and Thomas S. Huang. Human face detection in a
complex background. Pattern Recognition, 27(1):53–63, 1994.

24

