
Abstract

Many combinatorial optimization algorithms have no mechanism to capture
inter-parameter dependencies. However, modeling such dependencies may allow
an algorithm to concentrate its sampling more effectively on regions of the search
space which have appeared promising in the past. We present an algorithm which
incrementally learns second-order probability distributions from good solutions
seen so far, uses these statistics to generate optimal (in terms of maximum likeli-
hood) dependency trees to model these distributions, and then stochastically gen-
erates new candidate solutions from these trees. We test this algorithm on a
variety of optimization problems. Our results indicate superior performance over
other tested algorithms that either (1) do not explicitly use these dependencies, or
(2) use these dependencies to generate a more restricted class of dependency
graphs.
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1. INTRODUCTION

When performing combinatorial optimization, we wish to concentrate the
generation of candidate solutions to regions of the solution space which have a
high probability of containing solutions better than those previously sampled.
Most optimization algorithms attempt to do this by searching around the location
of the best previous solutions. There are many ways to do this:

Gradient Descent/Simulated Annealing: Only generate candidate solutions
neighboring a single current solution. These algorithms make no attempt to
model the dependence of the solution quality upon particular solution parameters.

Genetic Algorithms (GAs): attempt to implicitly capture dependencies between
parameters and the solution quality by concentrating samples on combinations of
high-performance members of the current population, through the use of the
crossover operator. Crossover combines the information contained within pairs
of selected "parent" solutions by placing random subsets of each parent's bits into
their respective positions in a new "child" solution. Note that no explicit
information is kept about which groups of parameters contributed to the quality
of candidate solutions. Therefore, the crossover is randomized, and must be
performed repeatedly, as most of the crossovers yield unproductive results.

Population-Based Incremental Learning (PBIL): PBIL explicitly captures the
first-order dependencies between individual solution parameters and solution
quality. PBIL uses a vector of first-order probabilities to model a simple
probability distribution over all bit-strings. The probability vector is adjusted to
increase the likelihood of generating high-evaluation solutions. To do this, as the
search progresses, the probability vector is moved towards the highest-
performing individual in each generation. No attempt is made to model the inter-
parameter dependencies. However, for many optimization problems drawn from
the GA literature, the use of these statistics alone allows PBIL to outperform
standard GAs and hill-climbers [Baluja, 1997].

Mutual Information Maximization for Input Clustering (MIMIC): This work
extends PBIL by (1) capturing some of the pair-wise dependencies between the
solution parameters, and (2) providing a statistically meaningful way of updating
the distribution from which samples are generated. MIMIC maintains at least the
top N% of all previously generated solutions, from which it calculates pair-wise
conditional probabilities. MIMIC uses a greedy search to generate a chain in
which each variable is conditioned on the previous variable. The first variable in
the chain, X1, is chosen to be the variable with the lowest unconditional entropy
H(X1). When deciding which subsequent variable Xi+1 to add to the chain,
MIMIC selects the variable with the lowest conditional entropy H(Xi+1 | Xi).
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After creating the full chain, it randomly generates more samples from the
distribution specified by this chain. The entire process is then repeated.

The work presented in this paper extends MIMIC. Our algorithm maintains
second-order statistics similar to those employed by MIMIC. However, while
MIMIC was restricted to a greedy heuristic for finding chain-based models, our
algorithm uses a broader class of models, and finds the optimal model within that
class. The algorithm will be described in Section 2. The empirical results
described in Section 3 demonstrate that, in most cases examined, the performance
of the combinatorial optimization algorithms consistently improves as the
accuracy of the statistical model increases. In Section 4, we draw our conclusions
and discuss avenues of future research.

2. ALGORITHM

We wish to model a probability distribution P(X1, ..., Xn) over bit-strings of
length n, where X1, ..., Xn are variables corresponding to the values of the bits.
Suppose we restrict our model P′(X1, ..., Xn) to models of the following form:

(1)

Here, m = (m1, ..., mn) is some unknown permutation of (1, ..., n); p(i) maps the
integers 0 < i≤ n to integers 0≤ p(i) < i; and P(Xi | X0) is by definition equal to
P(Xi) for all i. In other words, we restrict P′ to factorizations in which the
conditional probability distribution for any one bit depends on the value of at
most one other bit. (In Bayesian network terms, this means we are restricting our
models to networks in which each node can have at most one parent.)

A method for finding the optimal model within these restrictions is presented in
[Chow and Liu, 1968]. A complete weighted graph G is created in which every
variable Xi is represented by a corresponding vertex Vi, and in which the weight
Wij  for the edge between vertices Vi and Vj is set to the mutual information
I(X i,Xj) between Xi and Xj. The edges in the maximum spanning tree of G
determine an optimal set of (n-1) first-order conditional probabilities with which
to model the original probability distribution. Since the edges in G are
undirected, a decision must be made about the directionality of the dependencies
with which to construct P′; however, all such orderings conforming to Equation 1
model identical distributions. Among all trees, this algorithm produces the tree

P′ X1…Xn( ) P Xm i( ) Xm p i( )( )( )
i 1=

n

∏=
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which maximizes the likelihood of the data when the algorithm is applied to
empirical observations drawn from any unknown distribution.

We employ a version of this algorithm for combinatorial optimization as
follows. We incrementally learn second-order statistics from previously seen
"good" bit-strings; using a version of Chow and Liu's algorithm, we determine
optimal subsets of these statistics with which to create model probability
distributions P′(X1, ..., Xn) of the form assumed in Equation 1. These
distributions are used to generate new candidate bit-strings which are then
evaluated. The best bit-strings are used to update the second-order statistics;
these statistics are used to generate another dependency tree; and so forth, until
the algorithm's termination criteria are met.

Our algorithm maintains an arrayA containing a numberA[X i=a, Xj=b] for
every pair of variables Xi and Xj and every combination of binary assignments to
a andb, whereA[X i=a, Xj=b] is as an estimate of how many recently generated
"good" bit strings have had bit Xi=a and bit Xj=b. Since the probability
distribution will gradually shift towards better bit-strings, we put more weight on
more recently generated bit-strings. AllA[X i=a, Xj=b] are initialized to some
constant Cinit before the first iteration of the algorithm; this causes the algorithm's
first set of bit-strings to be generated from the uniform distribution.

We calculate first- and second-order probabilities P(Xi) and P(Xi, Xj) from the
current values ofA[X i=a, Xj=b]. From these probabilities we calculate the mutual
information, I(Xi, Xj), between all pairs of variables Xi and Xj:

(2)

We then create a dependency tree containing an optimum set of n-1 first-order
dependencies. To do this, first, we select an arbitrary bit Xroot to place at the root
of the tree. (In our implementation we select the bit with the lowest unconditional
entropy, in order to make it more comparable with MIMIC.) Then, we add all
other bits to the tree as follows: we find the pair of bits Xin and Xout – where Xout
is any bit not yet in the tree, and Xin is any bit already in the tree – with the
maximum mutual information I(Xin, Xout). We add Xout to the tree, with Xin as
its parent, and repeat this process until all the bits have been added to the tree. By
keeping track of which bit inside the tree has the highest mutual information with
each bit still outside the tree, we can perform the entire tree-growing operation in
O(n2) time. Because our algorithm is a variant of Prim's algorithm for finding
minimum spanning trees [Prim, 1957], it can easily be shown that it constructs a

I X i X j,( ) P Xi a X j b=,=( )
P Xi a X j b=,=( )

P Xi a=( ) P X j b=( )⋅
------------------------------------------------------log⋅

a b,
∑=
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tree that maximizes the sum

(3)

which in turn minimizes the Kullback-Leibler divergence D(P||P′), as shown in
[Chow & Liu, 1968]. For all i, our algorithm sets m(i) = j if Xj was the ith bit

added to the tree, and sets p(i) = j if the jth bit to be added to the tree was the
parent of the ith bit to be added. (m(p(1)) is X0, a dummy node with a constant
value.) Our modeled probability distribution P′(X1, ..., Xn) is then specified by
Equation 1. Among all distributions of the same form, this distribution
maximizes the likelihood of the data when the data is a set of empirical
observations drawn from any unknown distribution.

Once we have generated a model dependency tree specifying P′(X1, ..., Xn), we
use it to generate K new bit-strings. Each bit-string is generated in O(n) time
during a depth-first traversal of the tree, and then evaluated; the best M are
chosen to updateA. First, we multiply all entries inA by a decay factor,α,
between 0 and 1; this puts more weight on the more recently generated bit-
strings. Then, we add 1.0 toA[X i=a, Xj=b] for every bit-string out of the best M
in which bit Xi=a and bit Xj=b. After updatingA, we recompute the mutual
information between all pairs of variables, use these to generate another
dependency tree, use this tree to generate more samples, and continue the cycle
until a termination condition is met. High-level pseudo-code is shown in Figure 1.

The values ofA[X i=a, Xj=b] at the beginning of an iteration may be thought of
as specifying a prior probability distribution over “good” bit-strings: the ratios of
the values withinA[X i=a, Xj=b] specify the distribution, while the magnitudes of
these values, multiplied byα, specify an “equivalent sample size” reflecting how
confident we are that this prior probability distribution is accurate.1

Unlike the algorithm used in [De Bonet, et al., 1997], we do not maintain a
record of data from previous generations. This eliminates the time and memory
that would be required to keep a large number of old bit-strings sorted according
to their evaluations. Our method is also closer to that employed by PBIL, which
make empirical comparisons with PBIL more meaningful. On the other hand, the
relationship between the entries inA[X i=a, Xj=b] and the data the algorithm has

1. The values ofA are, in some respects, similar to the coefficients of Dirichlet distributions– a correspondence
which suggests the use of Bayesian scoring metrics in place of information-theoretic ones in the future, such as
those used in [Cooper and Herskovits, 1992] and [Heckerman, et al., 1995].

I Xm i( ) Xm p i( )( ),( )
i 1=

n

∑
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generated in the past is less clear. In this paper, we compare the performance of
our dependency tree algorithm with an algorithm similar to MIMIC that produces
chain-shaped dependency graphs. Both algorithms update the values of
A[X i=a, Xj=b] in the manner described above. In future work, we will investigate
the effects of explicitly maintaining and using previously generated solutions.

Example dependency graphs shown in Figure 2 illustrate the types of
probability models learned by PBIL, our dependency chain algorithm, and our
dependency tree algorithm. We use Bayesian network notation for our graphs: an
arrow from node Xp to node Xc indicates that Xc’s probability distribution is
conditionally dependent on the value of Xp. These models were learned while
optimizing a noisy version of a two-color graph coloring problem in which there
is a 0.5 probability of adding 1 to the evaluation function for every edge
constraint satisfied by the candidate solution.

 INITIALIZATION:
    For all bits i and j and all binary assignments toa andb, initializeA[X i=a, Xj=b] to Cinit.

 MAIN LOOP: Repeat until Termination Condition is Met
      1. Generate a dependency tree
          -Set the root to an arbitrary bit Xroot
          -For all other bits Xi, set bestMatchingBitInTree[Xi] to Xroot.
          -While not all bits have been added to the tree:
             -Out of all the bits not yet in the tree, pick the bit Xadd with the maximum

mutual information I(Xadd, bestMatchingBitInTree[Xadd]), usingA to estimate
the relevant probability distributions.

-Add Xadd to the tree, with bestMatchingBitInTree[Xadd] as its parent.
-For each bit Xout still not in the tree, compare I(Xout, bestMatchingBitInTree[Xout]) with

I(Xout , Xadd). If I(X out, Xadd) is greater, set bestMatchingBitInTree[Xout] = Xadd.

      2. Generate K bit-strings based on the joint probability encoded by the dependency tree
        generated in the previous step. Evaluate these bit-strings.

      3. Multiply all of the entries inA by a decay factorα between 0 and 1.

      4. Choose the best M of the K bit-strings generated in step 2.
          For each bit-string S of these M, add 1.0 to everyA[X i=a, Xj=b] such that S has Xi=a and Xj =b.

Figure 1: Basic Algorithm. For each bit Xout not yet in the tree, bestMatchingBitInTree[Xout]
maintains a pointer to a bit in the tree with which Xout has maximum mutual information.
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3. EMPIRICAL COMPARISONS

In this section, we present an empirical comparison of four algorithms on five
classes of problems. For each problem, each algorithm was allowed 2000
generations, with 200 evaluations per generation. All algorithms were run
multiple times, as specified with the problem description. To measure the
significance of the differences between the Tree and Chain algorithms, the Mann-
Whitney rank-sum test is used. This is a non-parametric equivalent of the
standard two-samplet-test. The algorithms compared are described below:

Trees: This is an implementation of the algorithm described in this paper. Cinit
is set to 1000, and the decay rateα is set to 0.99. (Other decay rates were
empirically tested on a single problem; the value of 0.99 yielded the best results
for both Trees and Chains.) K=200 samples are created per generation. The top
2% (M=4 samples) are used to update the statistics (theA matrix). All parameters
were held constant through all of the runs.

Chain: This algorithm is identical to the Tree algorithm, except the dependency
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Figure 2: A: A noisy two-color graph coloring problem. B: the empty dependency graph
used by PBIL. C: the graph learned by our implementation of the dependency chain
algorithm. D: the graph learned by our dependency tree algorithm.
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graphs are restricted to chains, the type of dependency graph used in the MIMIC
algorithm. All of the other parameters’ values are the same as for Trees, and were
held constant in all of the runs.

PBIL: This is the basic version of the PBIL algorithm described in [Baluja,
1995]. The algorithm and parameters are shown in Figure 3. The parameters were
only changed on the peaks problems; parameter settings for the peaks problem
were taken from [Baluja & Caruana, 1995].

Genetic Algorithm (GA): Except when noted otherwise, the GA used in this
paper had the following parameters: 80% crossover rate (the chances that a
crossover occurs with two parents; if crossover does not occur, the parents are
copied to the children without modification); uniform crossover (in each child,
there is a 50% probability of inheriting the bit value from parent A, 50% from
parent B [Syswerda, 1989]), mutation rate 0.1% (probability of mutating each
bit), elitist selection (the best solution from generationg replaces the worst
solution in generationg+1) [Goldberg, 1989], and population size 200. The GAs
used fitness proportional selection (this means that the chances of selecting a
member of the population for recombination is proportional to its evaluation).

for i:=1 to LENGTH do P[i] = 0.5;

while (NOT termination condition)
for i:=1 to SAMPLES do

sample_vectors[i] := generate_sample_vector_according_to_probabilities (P);
evaluations[i] := evaluate(sample_vectors[i]);

best_vector := find_vector_with_best_evaluation (sample_vectors, evaluations);
for i:=1 to LENGTH do

P[i] := P[i]*(1.0-LR) + best_vector[i]*(LR);
for i:=1 to LENGTH do

if (random (0..1) < MUTATION_RATE);
direction := random (0 or 1);
P[i] := P[i]*(1.0-MUTATION_SHIFT) + direction*(MUTATION_SHIFT)

PBIL: USER DEFINED CONSTANTS (Values Used in this Study):
SAMPLES: the number of vectors generated before update of the probability vector (200).
LR: the learning rate, how fast to exploit the search performed (0.1).
LENGTH: the number of bits in a generated vector (problem specific).
MUTATION_RATE: chances of mutation (0.02), MUTATION_SHIFT: magnitude of mutation (0.05).

Figure 3: PBIL algorithm for a binary alphabet, adapted from [Baluja & Caruana, 1995].

Initialization.

Generate Samples.

Update Towards Best.

Mutate Probability
Vector.
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With this method of selection, the GA is the only algorithm tested which is
sensitive to the magnitudes of the evaluation (all the other algorithms work with
ranks). To help account for this, the lowest evaluation in each generation is
subtracted from all the evaluations before probabilities of selection are
calculated. Other rank-based selection metrics were also explored; however, they
did not reveal consistently better results. Of all the algorithms, the most effort
was spent tuning the GA’s parameters. Additionally, for many problems multiple
GAs were attempted with many different parameter settings. For these problems,
the performance for several GAs are given.

3.1 Checkerboard

This problem was originally suggested by [Boyan, 1993]. The object is to create
a checkerboard pattern of 0’s and 1’s in an NxN grid. Only the primary four
directions are considered in the evaluation. For each bit in an (N-2)(N-2) grid
centered in an NxN grid, +1 is added for each of the four neighbors that are set to
the opposite value. The maximum evaluation for the function is (N-2)(N-2)*4. In
these experiments N=16, so the maximum evaluation is 784. 30 trials were
conducted for each algorithm. The distribution of results are shown in Figure 4.

700.00 720.00 740.00 760.00 780.00
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20

0

20

0

20
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20

  

Genetic Algorithm (avg.: 740)

PBIL (avg.: 742)

Chain (avg.: 760)

Tree (avg.: 776)

Figure 4: Distribution of results for the Checkerboard Problem.



11/20

3.2 Tree-Max

In this problem set, we randomly generate probability distributions of the form
shown in Equation 1. For a given problem, a single tree-shaped network is
generated and the probabilities associated with the nodes in these networks are
randomly generated. The value of a given bit-string is the probability with which
the randomly generated network would generate that bit-string; the task is find a
bit-string that maximizes this value. This problem is designed to test the extent to
which other algorithms can capture the same statistics for which our tree
algorithm is specifically designed. We show results for three different classes of
problems: in the first, the probabilities associated with the nodes are chosen
uniformly between 0 and 1; in the second, all probabilities are chosen to lie either
between 0 and 0.2 or between 0.8 and 1.0; in the third, all probabilities are
chosen uniformly between 0.4 and 0.6. 200 problems from each of the three
distributions were tried. The results, in Figure 5, show that Chains can capture
many of the dependencies which Trees capture, but PBIL and GA cannot.
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For each problem, the relative rank of the
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3.3 The Peaks Set of Problems

This set of three problems is based on the four-peaks problem, which was
originally presented in [Baluja and Caruana, 1995]. The original four-peaks
problem is defined as follows. Given an input vector X, which is composed of N
binary elements, maximize the following:

Fitness is maximized if a string is able to get both the REWARD of 100 and if
the length of one of head(1,X) or tail(0,X) is as large as possible. The four peaks
problems also have two suboptimal local optima with fitnesses of N (independent
of T). One of these is at tail(0,X)=N, head(1,X)=0 and the other is at tail(0,X)=0,
head(1,X)=N. Hill-climbing will quickly get trapped in these local optima. For
hill-climbing to work well here, it must repeatedly make “correct” decisions
while searching large plateaus; this is extremely unlikely in practice. By
increasing T, the basins of attraction surrounding the inferior local optima
increase in size exponentially while the basins around the global optima decrease
at the same rate.

A version of the modification to the four-peaks problem suggested by [De
Bonet et. al, 1997] is tried here. In this problem, “Six-Peaks”, two more peaks are
added. Optimization methods may oscillate between multiple answers, since the
two optimal solutions require opposite values in many of the bit positions.

The final version of the peaks problem which was examined was the
“Continuous-Peaks” problem. Rather than forcing 0’s and 1’s to be at opposite
ends of the solution string, they are allowed to form anywhere in the string. For
this problem, a reward is given when there are greater than T contiguous bits set

FourPeaks T X,( ) MAX head1 X,( ) tail 0 X,( ),( ) Reward T X,( )+=

Reward T X,( )
100 if head 1 X,( ) T>( ) tail 0 X,( ) T>( )∧
0 otherwise




=

head b x,( ) number of contiguous leading bits set to b in X=

tail b x,( ) number of contiguous trailing bits set to b in X=

SixPeaks T X,( ) MAX head X0 X,( ) tail X¬ 0 X,( ),( ) Reward T X,( )+=

Reward T X,( )
100 if head X0 X,( ) T>( ) tail X¬ 0 X,( ) T>( )∧

0 otherwise



=
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to 0, and greater than T contiguous bits set to 1.
Since the four-peaks problem has previously been studied, we used the same

parameter settings as in the previous studies – PBIL (mutation rate = 0.0, update
from the top two vectors). For the GA, the previously used settings did not work
as well (perhaps since the total bit length is less than the previously studied
version), therefore, four GAs were experimented with here. All usedone-point
crossover [Goldberg, 1989] instead of uniform crossover, since these problems
were custom-designed to benefit from this operator. GA1 used a population size
of 200, with mutation rate 0.001; GA2 used a population size of 200, with
mutation rate 0.01; GA3 used a population size of 500 with mutation rate 0.001;
and GA4 used a population size of 500 with mutation rate 0.01. GA4 performed
the best, so all the GA results are reported with it in all of the problems. Note that
since each algorithm was allowed the same number of generations, GA3 & GA4
used 500*2000 evaluations, while all other algorithms used 200*2000.
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3.4 Real-Valued Functions

It is common to use the types of optimization algorithms discussed in this paper
on real-valued functions which have been discretized to an arbitrary precision. In
this section, two multi-dimensional optimization problems are tested. Both of the
problems were chosen because none of the parameters can be set independently.

Problem 1: Summation Cancellation
In this problem, the parameters (s1, ..., sN) in the beginning of the solution string
have a large influence on the quality of the solution. The goal is to minimize the
magnitudes of cumulative sums of the parameters. Small changes in the first
parameters can cause large changes in the evaluation. The evaluation is:

To test the effects of increasing the dimensionality of the problem, we tried
varying the dimensions (N) between 10 and 30. For each number of dimensions,
100 problems runs were simulated. In all of these problems, each parameter was
represented with 5 bits, encoded in standard base-2, with the values uniformly
spaced between -0.16 and 0.15. The results are shown in Table I.

 When using algorithms which operate in a binary alphabet, numerical
parameters are often encoded in Gray code. Gray code avoids the Hamming cliffs
which can be present between consecutive numbers when encoded in standard

Table I:  Summation Cancellation- Standard Binary Encoding. Average value of best solution
found over 100 runs of 2000 generations each. (Goal: Maximize Value)

Parameters Bits Tree Chain
95% Significance

Tree/Chain
PBIL GA

10 50 53.7 34.1 Yes 21.0 13.0
12 60 29.3 24.1 Yes 16.1 9.3
15 75 16.8 16.9 No 11.2 5.8
17 85 13.8 13.7 No 9.5 4.7
20 100 11.0 10.9 No 7.5 3.3
23 115 8.5 6.4 Yes 6.0 2.4
25 125 6.3 4.2 Yes 5.0 2.2
27 135 4.2 3.0 Yes 4.4 1.9
30 150 2.6 1.9 Yes 3.6 1.6

0.16– si 0.15≤ ≤

i 1…N=
y1 s1=

yi si yi 1–+=

i 2…N=
C

1
100000
------------------= f

1.0

C yi
1

N

∑+
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base-2 representation. We repeated the experiments above (again with 100 trials
per dimension setting) using Gray coding. The results are presented in Table II.
Because the standard GA performed poorly, and GA-based optimization often
benefits from higher mutation rates when the parameters are encoded in Gray
code, the parameters were hand-tuned. The second GA used, GA-2, has a
mutation rate 20 times that of the original GA. Note that because of the problem
specification, small changes in the sum in the denominator of the evaluation
function can lead to enormous differences in evaluation.

Problem 2: Solving a System of Linear Equations
The goal of this problem is to solve forX in DX=B, when given a matrixD and
vectorB. Although there are many standard techniques for solving this problem,
it also serves as a good benchmark for combinatorial optimization algorithms
[Eshelman et. al, 1996]. Since all of the parameters are dependent on each other,
optimization is difficult. In this study,D is a 9x9 matrix,B andX are vectors of
length 9. Each value inX is an integer between [-256, 255]. The solution
encoding is 81 bits.D is randomly generated, andB set such that there is
guaranteed to be a solution toDX=B. The results for the algorithms are presented
in Table III; a total of 9 problems were tried with 25 runs per problem. The goal
is to minimize the summed parameter-by-parameter absolute difference ofDX
andB. Note that the GAs used in the previous experiments (GA1 & GA2) did not
perform well here.

Table II:  Summation Cancellation- Gray Encoding. Average value of best solution found over
100 runs of 2000 generations each. (Goal: Maximize Value)

Parameters Tree Chain
95% Significance

Tree/Chain
PBIL

GA
(mut=0.001)

GA2
(mut =0.02)

10 92008 92008 No 100000 2038.2 100000
12 42053.3 54041.8 No 100000 2020.4 100000
15 4047 7044.1 No 100000 1008.9 100000
17 26.0 26.7 Yes 98001.5 6.6 100000
20 14.4 13.7 Yes 94005 5.1 93001.4
23 8.1 7.6 Yes 90008.7 3.7 10011.8
25 5.0 5.3 Yes 73019.1 2.9 6.0
27 4.4 4.0 Yes 62028.6 2.9 3.4
30 3.0 2.9 Yes 32039.3 2.2 2.2
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3.5 Equal Products

In this problem, there are N randomly selected real valued numbers, each in the
range (0..5). The object is to select a set of these numbers such that

. The evaluation function, which must be

minimized, is the absolute difference between the products.
To test the robustness of algorithms
as the problem size changes,
problems with N= 40,50,60,70,80,
and 90 numbers were tried. For
each value of N, 16 problems were
tried, with 100 runs per problem.
Because of the large number of
trails, only the chain and tree
algorithms were attempted. The
chain version did better on the
smaller problems, with the tree version doing better on the larger problems. In
Table IV, the “Tree Better” column shows how many times (out of 16) the Tree
algorithm outperformed Chains. The “signif (>95)” column shows the number of
problems in which the difference between the chains and trees was significant to
95% (using the Mann-Whitney Test). The same statistics are shown for Chains.

Table III:  System of Linear Equations: Average value of best solution found over 25 runs of
2000 generations each. (Goal: Minimize Error)

Standard Base-2 Encoding Gray Coding

Tree Chain
95%Sig.

Tree/
Chain

PBIL GA Trees Chain
95%Sig.

Tree/
Chain

PBIL
GA
(mut
.001)

GA2
(mut
0.02)

GA3
(mut
.005)

648 520 No 2248 2965 335 341 No 1195 1341 2136 865
721 1537 Yes 3825 4118 778 799 No 1952 1246 2662 955
405 544 Yes 2981 4055 387 346 No 1011 1524 1909 785
706 1347 Yes 3204 4268 830 911 No 2120 1628 2218 990
848 1255 Yes 3031 3783 736 851 Yes 1985 1253 2265 834
313 393 Yes 2306 2908 330 335 No 621 1205 2190 720
692 1034 Yes 3331 3805 809 723 No 1987 1769 2132 1066
708 1029 Yes 2996 3965 684 641 No 1753 1311 2584 934
577 904 No 3135 3821 333 308 No 1209 1732 2511 777

selected X( )( )∏ notSelected X( )( )∏=

Table IV:  Results for Equal Multiplications

N
Tree

Better
Signif.
(> 95)?

Chain
Better

Signif.
(> 95)?

40 0/16 n/a 16/16 16/16
50 8/16 0/8 8/16 0/8
60 15/16 5/15 1/16 0/1
70 14/16 6/14 1/16 0/1
80 15/16 1/15 2/16 0/2
90 14/16 4/14 2/16 0/2
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3.6 Summary

In this section, we have presented a large number of empirical results. Five sets
of problems were tried, using four algorithms (Trees, Chains, PBIL & GAs). In
almost all of the problems, the Tree and Chain algorithms outperformed both
PBIL and GAs. The exception to this was the “Summation Cancellation”
problem utilizing Gray encodings. As can be seen from the results with the
varieties of GAs used on the Gray-Code problems, the frequency with which
mutation is applied can have a large impact on the performance of the algorithm.
The version of the Tree and Chain algorithms used in this study did not have any
form of mutation; however, they could easily be extended to include mutation-
like operations.

Between the Tree and Chain algorithms, the Tree algorithm performed at least
as well as the Chain algorithm on almost every problem examined, and often
performed significantly better. The notable exception to this is the small versions
of “Equal Products” problems, in which the Chains performed better. We are
currently analyzing what features of this problem cause Chains to perform better.

Perhaps the most important result to notice is that in most cases examined, the
performance of the combinatorial optimization algorithms consistently improved
as the accuracy of their statistical models increased.

4. CONCLUSIONS & FUTURE DIRECTIONS

We have shown that using incrementally learned second-order probabilities to
generate optimal tree-structured probabilistic networks can significantly improve
the performance of combinatorial optimization algorithms. Two obvious
questions arise: could these results be extended to handle higher-order
dependencies, and would modeling such dependencies result in more effective
combinatorial optimization algorithms?

Suppose we are given a set of variables X; a database D={C1, ..., Cm}, where
each Ci is an instance of all variables in X; a scoring metric M(D, B) which
evaluates how well a network structure B models the dependencies in the data D;
and a real value p. The k-LEARN problem may be described as follows: does
there exist a network structure B defined over the variables in X, where each
node in B has at most k parents, such that M(D, B)≥ p?

The algorithm we have used in this paper provides a solution for the case in
which k=1 and M(D, B) is the likelihood of the data D given the network B.
Unfortunately, it has been shown that k-LEARN is NP-complete for k > 1 for the
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types of scoring metrics we would probably wish to employ [Chickering, et al.,
1995]. However, search heuristics for finding approximate solutions have been
developed for automatically learning Bayesian networks from data [Heckerman,
et al., 1995]. A common approach is to perform hill-climbing over network
structures, starting with a relatively simple network – often the optimal tree-
shaped network produced by algorithms similar to the one presented here.

While it would be computationally expensive, it would be interesting to see
whether learning more complex network structures through such hill-climbing
procedures might allow combinatorial optimization algorithms similar to PBIL,
MIMIC, and the algorithm developed in this paper to reach better solutions with
fewer evaluations. It is not cleara priori that it is necessarily desirable to use a
more complex model of the “good” bit-strings generated so far: the more tightly
the model fits the old “good” data, the more heavily the algorithm will wind up
concentrating on exploitation rather than exploration. Nonetheless, we feel that
experiments with more flexible probabilistic models would be invaluable.

The types of statistics maintained in our algorithm can be used to combine the
outputs from other methods of optimization. For example, multiple hill-climbing
or genetic algorithm runs are often used to find different local optima. The best
solutions from multiple runs of any of these algorithms, or even from different
algorithms, can be used to collect the second-order statistics used in this study.
Once these statistics are collected, and the dependency graph is created, the
candidate solutions generated by our algorithm can be used either to update the
statistics used by our algorithm, or to re-initialize the other algorithms with good
starting points. If the second method is employed, rather than updating the
statistics with the strings generated from the previous model, the model could be
updated with the strings returned by the separate search procedure. Somewhat
similar methods have been explored by [Boyan & Moore, 1997].

Many ideas used in other combinatorial algorithms can easily be incorporated,
such as mutation, weighting the contribution of candidate solutions according to
their evaluations, and explicitly recording and using old solutions to model
probability distributions. Additionally, our algorithm can easily be extended to
handle variables with more than two values. We are also currently extending it to
handle real-valued variables. There are many opportunities here for exploiting
recent research, such as [Geiger and Heckerman, 1994], on learning Bayesian
networks for real-valued functions.
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