
1/12

Shumeet Baluja
baluja@cs.cmu.edu

Justsystem Pittsburgh Research Center &
Carnegie Mellon University

 Abstract

When trying to solve a combinatorial optimization problem, often multiple
algorithms and/or multiple runs of the same algorithm are used in order to
find multiple local minima. The information gained from previous search runs
is commonly discarded when selecting initialization points for future runs.
We present a method which uses information from previous runs to determine
promising starting points for future searches. Our algorithm, termed COMIT,
models inter-parameter dependencies present in the previously found high-
evaluation solutions. COMIT incrementally learns optimal dependency trees
that model the pairwise dependencies in a set of good solutions found in pre-
vious searches. COMIT then samples the probability distributions modeled
by these trees to generate new starting points for future searches. This algo-
rithm has been successfully applied to jobshop scheduling, traveling sales-
man, knapsack, rectangle packing, and bin-packing problems.

Combining Multiple Optimization Runs with
Optimal Dependency Trees

Scott Davies
scottd@cs.cmu.edu

School of Computer Science
Carnegie Mellon University

Abstract

When trying to solve a combinatorial optimization problem, often multi-
ple algorithms and/or multiple runs of the same algorithm are used in
order to find multiple local minima. The information gained from previ-
ous search runs is commonly discarded when selecting initialization
points for future runs. We present a method which uses information from
previous runs to determine promising starting points for future searches.
Our algorithm, termed COMIT, models inter-parameter dependencies
present in the previously found high-evaluation solutions. COMIT incre-
mentally learns optimal dependency trees that model the pairwise depen-
dencies in a set of good solutions found in previous searches. COMIT
then samples the probability distributions modeled by these trees to gen-
erate new starting points for future searches. This algorithm has been suc-
cessfully applied to jobshop scheduling, traveling salesman, knapsack,
rectangle packing, and bin-packing problems.

1Justsystem Pittsburgh Research Center
4616 Henry St.,

Pittsburgh, PA. 15213
baluja@cs.cmu.edu

2School of Computer Science
Carnegie Mellon University

Pittsburgh, PA. 15213
scottd@cs.cmu.edu

Combining Multiple Optimization Runs with
Optimal Dependency Trees

Shumeet Baluja1,2 & Scott Davies2

June 30, 1997
CMU-CS-97-157

Scott Davies was supported by a Graduate Student Research Fellowship from the National Sci-
ence Foundation. The views and conclusions contained in this document are those of the authors
and should not be interpreted as representing the official policies, either expressed or implied, of
the National Science Foundation.

2/12

Keywords:

Combinatorial Optimization, Dependency Trees, Probability Models, Bayesian
Networks, Heuristic Search.

3/12

1 Introduction

Either implicitly or explicitly, all black-box combinatorial optimization algorithms con-
centrate the generation of candidate solutions on regions of the solution space close to the
best previously found solutions. For example, hillclimbing and simulated annealing only
generate candidate solutions directly neighboring previously discovered solutions.
Genetic algorithms use the crossover operator to combine pairs of previously found good
solutions into new candidate solutions by placing random subsets of the “parents’” bits
into their respective positions in the “child” solution. By concentrating the generation of
candidate solutions in this manner, such algorithms often manage to find good solutions
without having to explore too much of the search space. The inevitable side effect of this
concentration, however, is that these algorithms often converge to solutions which are
“good” compared to closely related solutions, but which are far from optimal. Conse-
quently, these algorithms are often restarted from random initialization points and rerun in
the hope that they will find better local optima.

After performing several such restarts, however, there is information to be gained by ana-
lyzing the various local optima found in multiple search runs and looking for features they
have in common. This information can be used to intelligently select new starting points
for further searches. For example, if the best locally optimal solutions found so far all have
bit 4 set to the opposite value of bit 23, it may make sense to favor such solutions when
generating new initialization points for further searches. Such selection mechanisms can
help the overall search procedure in two ways: first, by increasing the chance that the local
optima found will be better than previously found local optima; and second, by decreasing
the number of solution evaluations required before these local optima are attained. One
approach to ascertaining this information was explored in [Boyan & Moore, 1997]; they
predicted the eventual fitness achieved by future hillclimbing runs based on high-level
information about previously found good solutions.

In this paper, we describe the COMIT algorithm (Combining Optimizers withMutual
InformationTrees). This algorithm uses optimal dependency trees as probabilistic models
of the interparameter dependencies exhibited by good solutions found in previous optimi-
zation runs. By sampling these probabilistic models, we increase the probability of select-
ing future starting points that are in basins of the search space which lead to high-
evaluation solutions. This method significantly improves the quality of solutions found
within a fixed number of solution evaluations on a large set of optimization problems.

Instead of using these probabilistic models to generate starting points for other optimiza-
tion algorithms, one could imagine inserting good bit-strings generated by the model
directly back into the data set on which the model is based, and then immediately updating
the model. This approach has been used in previous work [De Bonet, et. al., 1997] [Baluja
& Davies, 1997]. The MIMIC algorithm used a heuristic greedy search to generate a chain
in which each variable is conditioned on the previous variable [De Bonet,et. al., 1997].
[Baluja & Davies, 1997] extended this work to use a larger class of models – trees, and
used a search technique which is guaranteed to find the optimal tree structure. Thus far,
both of these approaches have been used for optimizing relatively small problems
(< 2256); extending these models to large problems is challenging because of (1) computa-
tional expense, and (2) the large sizes of data-sets needed to model the search space with-
out prematurely converging the search. Overcoming these problems is currently an avenue
of research. In this paper, we explore an alternate use of these models: combining the runs
of multiple faster search algorithms. We gain the benefits of modeling the dependencies in
the search space at a significantly reduced computational cost. This approach also has the
advantage of being able to combine the strengths of several different search algorithms by
allowing each algorithm to contribute its good solutions to the probabilistic model. This
ability is important since each algorithm can have a different bias which causes it to search
different parts of the solution space, thereby allowing it to contribute to the diversity of
solutions from which the dependencies are modeled.

4/12

In the next section, we describe the COMIT algorithm. In section 3, we provide empirical
results demonstrating the effectiveness of the algorithm. For this paper, we restrict our
attention to combining the results from multiple hillclimbing runs; however, extending the
algorithm to use other underlying combinatorial optimization algorithms is straightfor-
ward. In section 4, we close the paper with conclusions and directions for future research.

2 Modeling dependencies in COMIT

Suppose we have a set of good solutions,S, found over several previous hillclimbing runs.
In this paper, we assume that the solutions are encoded as binary bitstrings; however,
higher cardinality alphabets can also easily be used. We wish to discover what interparam-
eter dependencies are exhibited by the bit strings inS, and use this information to generate
good starting points for future hillclimbing runs. To do this, we try to model a probability
distribution P(X) = P(X1, ..., Xn) over bit-strings of length n, where X1, ..., Xn are vari-
ables corresponding to the values of the bits. We try to learn a simplified model P’(X1, ...,
Xn) of the empirical probability distribution P(X1, ..., Xn) entailed by the bitstrings in S.
As in [Baluja & Davies, 1997], we restrict our model P′(X1, ..., Xn) to the following form:

(1)

Here, m = (m1, ..., mn) is some unknown permutation of (1, ..., n); p(i) maps the integers
0 < i ≤ n to integers 0≤ p(i) < i; and P(Xi | X0) is by definition equal to P(Xi) for all i. In
other words, we restrict P′ to factorizations in which the conditional probability distribu-
tion for any one bit depends on the value of at most one other bit. (In Bayesian network
terms, this means that in our models, each node can have at most one parent.)

A method for finding the optimal model within these restrictions is presented in [Chow
and Liu, 1968]. A complete weighted graphG is created in which every variable Xi is rep-
resented by a corresponding vertex Vi, and in which the weight Wij for the edge between
vertices Vi and Vj is set to the mutual information I(Xi,Xj) between Xi and Xj. The edges
in the maximum spanning tree ofG determine an optimal set of (n-1) conditional proba-
bilities with which to model the original probability distribution. Since the edges inG are
undirected, a decision must be made about the directionality of the dependencies with
which to construct P′; however, all such orderings conforming to Equation 1 model identi-
cal distributions. Among all trees, this algorithm produces the tree which maximizes the
likelihood of the data when the algorithm is applied to empirical observations drawn from
any unknown distribution.

FromS, we calculate empirical probabilities of the form P(Xi = a) and P(Xi = a, Xj = b) for
all combinations of i, j, a, and b (a & b are binary assignments to Xi & X j). From these
probabilities we calculate the mutual information, I(Xi, Xj), between all pairs of variables
X i and Xj:

(2)

We then use a maximum spanning tree algorithm identical to the one used in [Baluja &
Davies, 1997] (a slight variation of the algorithm originally proposed in [Chou & Liu,
1968]) to select a set ofn-1 dependencies which maximizes:

(3)

P′ X1…Xn() P Xm i() Xm p i()()()
i 1=

n

∏=

I X i X j,() P Xi a X j b=,=()
P Xi a X j b=,=()

P Xi a=() P X j b=()⋅
--log⋅

a b,
∑=

I Xm i() Xm p i()(),()
i 1=

n

∑

5/12

Among all distributions of the form specified by Equation 1, this distribution P’ minimizes
the Kullback-Leibler divergence D(P||P′):

(4)

As shown in [Chow & Liu, 1968] this distribution maximizes the likelihood of the dataset
S (it optimally models the pairwise dependencies exhibited in S). The tree generation
algorithm, summarized in Figure 1, runs in time O(|S|*n2), where|S| is the size of S andn
is the number of bits in the solution encoding.

Once we have chosen a model P’(X1...Xn), we use it to stochastically generate K candi-
date solutions. We evaluate these solutions, and use the best of these solutions as the start-
ing point of a new hillclimbing run. Once this hillclimbing run has terminated, we select a
subset of the solutions evaluated during the run to place in the dataset S. Up to
MAX_INFLUENCE solutions in S are replaced by better solutions generated during the
hillclimbing run; the size of S is kept constant. If MAX_INFLUENCE is too high, then a
single hillclimbing can causeS to prematurely converge to a set of very similar solutions.
If MAX_INFLUENCE is too low, then any hillclimbing run will not have a large enough
influence on the history to affect future search. Figure 2 shows how hillclimbing is used as
the inner-loop for finding the solutions from which to model the dependencies.

D P P′||() P X() P X()
P′ X()
---------------log

X
∑=

Generate an optimal dependency tree:
 • Set the root to an arbitrary bit Xroot
 • For all other bits Xi, set bestMatchingBitInTree[Xi] to Xroot.
 • While not all bits have been added to the tree:

• Out of all the bits not yet in the tree, pick the bit Xadd with the maximum
mutual information I(Xadd, bestMatchingBitInTree[Xadd]), usingS to estimate
the relevant probability distributions.

• Add Xadd to the tree, with bestMatchingBitInTree[Xadd] as its parent.
• For each bit Xout not in the tree, compare I(Xout, bestMatchingBitInTree[Xout]) with

I(Xout , Xadd). If I(X out, Xadd) is greater, set bestMatchingBitInTree[Xout] = Xadd.

Figure 1: Procedure for generating the dependency tree.

• Initialize the dataset S with bitstrings drawn from the uniform distribution

• While termination condition is not met:
 • Create an optimal dependency tree probabilistic model of S, as shown in Figure 1.
 • Use this model to stochastically generate K bitstrings. Evaluate these bitstrings.
 • Execute a hillclimbing run starting from the single best bitstring of these K.
 • Replace up to MAX_INFLUENCE bitstrings in S with the best bitstrings

 found during the hillclimbing run just executed.

USER DEFINED CONSTANTS:

|S|: Constant size of the dataset S.
K: Number of samples to generate from tree before hillclimbing

MAX_INFLUENCE: Max number of elements in S to replace after a single hillclimbing run.

Figure 2: The COMIT algorithm: integrating hillclimbing and the dependency tree.

6/12

3 Empirical Comparisons

3.1 Algorithm Details

Hillclimbing (HC): To test the ideas presented in this paper, we use next-ascent, stochas-
tic hillclimbing. As is commonly done with heuristic combinatorial optimization, the solu-
tions are encoded as binary vectors. The hillclimbing algorithm used has two interesting
properties. First, it allows moves to solutions with higher or equal evaluation; this is
extremely important for hillclimbing to work well in many complicated spaces, since this
allows HC to explore plateaus. Before restarting, we allow up to PATIENCE evaluations
which are worse than the best evaluation seen so far in the run. Evaluations which are
equal to the best evaluation seen so far are not counted towards the PATIENCE evaluations
(they are, of course, still counted towards the total evaluations). This parameter has a large
impact on the effectiveness of hillclimbing in large search spaces. Therefore, for each
problem, multiple settings were tried for this parameter. The range of values was (1*|X|) to
(10*|X|), where (|X| is the length of the solution encoding). In the results, the best solution
found over all of these settings is reported. Second, it is a next-ascent hillclimber; which
means that as soon as a better solution is found, it is accepted. This contrasts steepest-
ascent hillclimbing, which searches all possible single-bit flips and accepts the one with
the largest improvement. Steepest ascent hillclimbing did not work as well on the prob-
lems explored here. See Figure 3 for the hillclimbing algorithm shown in detail.

COMIT: We experiment with two versions of the COMIT algorithm, with K=100 (termed
COMIT-100), which samples the tree 100 times before selecting the best point, and with
K=1000 (termed COMIT-1000), which samples the tree 1000 times. Note that these extra

while (evaluations < MAX_EVALS)
V = randomly_generate_binary_vector ();
Best = Evaluate (V);
iterations_with_worse_eval =0;
while (iterations_with_worse_eval < PATIENCE && evaluations < MAX_EVALS)

evaluations = evaluations + 1;
bit = random (1..SOLUTION_ENCODING_LENGTH);
V[bit] = Flip_Bit (V,bit);
New_Eval = Evaluate (V);

if (New_Eval < Best)
V[bit] = Flip_Bit (V,bit);
iterations_with_worse_eval ++;

else
Best = New_Eval;
if (New_Eval > Best) iterations_with_worse_eval = 0;

USER DEFINED CONSTANTS:

SOLUTION_ENCODING_LENGTH: length of the solution vector; problem specific.

PATIENCE: max number of evaluations that are worse than the best seen so far.

MAX_EVALS: max number of evaluations allowed per run.

Figure 3: Detailed Description of a Hillclimbing Algorithm, set tomaximize the returned
evaluation. Details are given for reproducibility.

7/12

evaluations are counted in the total number of evaluations allowed.

There are two other parameters which need to be set for COMIT. In this study, we set the
size of S to 1000 and MAX_INFLUENCE to 100. These are kept constant in all of our
experiments. Before the first hillclimbing run, S is initialized with bitstrings randomly
chosen from a uniform distribution.

Given that MAX_INFLUENCE is 100, the size of S was chosen by very brief experimen-
tation on the Traveling Salesman Problem (TSP). Results for this are shown in Figure 4.
Initially, we see that as the size of S increases, the solution quality increases. This is
because more solutions are used for modeling the dependencies. However, when the size
is increased beyond 1000, the solution quality declines. This is because each run is given a
fixed number of evaluations. Since S is initialized with random bitstrings, only after these
are replaced can S be effectively used. With a large |S|, it takes more hillclimbing runs to
replace these bitstrings. One way to avoid the latter problem could be to start with a
smaller data-set and let it grow as more data becomes available. However, this approach
could suffer from narrowing the search too quickly in the initial stages of the algorithm.

Augmented Hillclimbing (AHC): A possible confounding factor in determining how
effective COMIT is in comparison to HC, is the fact that COMIT-K examinesK points
before choosing one to use for hillclimbing. To ensure that it is not simply the process of
selecting theseK before hillclimbing that gives performance gains, we augment hillclimb-
ing as follows. Before the beginning of each run, AHC-K examinesK randomly chosen
points. It selects the best one as the starting position for the hillclimber. (The difference
between this and COMIT is that COMIT samples K points generated by the dependency
tree). Two versions of AHC are examined, AHC-100, and AHC-1000.

3.2 Problem Descriptions

3.2.1. Traveling Salesman Problems (TSP)

The encoding used in this study requires a bit string of sizeNlog2N bits, where N is the
number of cities in the problem. Each city is assigned a substring of length log2N which is
interpreted as an integer. The city with the lowest integer value comes first in the tour, the
city with the second lowest comes second, etc. In the case of ties, the city whose substring
comes first in the bit string comes first in the tour. This encoding was taken from
[Syswerda, 1992]. To minimize the tour length, the evaluation used is 1.0/Tour_Length.

Le
ng

th
 x

 1
0

3

1.35

1.40

1.45

1.50

1.55

1.60

1.65

1.70

500 1000 1500 2000

Tour Length

100

Tour Length as a Function of Dataset Size

Data Set Size

Figure 4: Final solution quality in the TSP domain as
a function of the size of the dataset used to learn the
dependency trees. For these experiments,
MAX_INFLUENCE=100. Experiments with
changing MAX_INFLUENCE are underway.

8/12

3.2.2. Jobshop Scheduling Problems

The problem is encoded in two ways. The first encoding is derived from [Fanget. al,
1993]. The exact encoding can be found in [Fanget al., 1993] and [Baluja, 1994]. The dif-
ference between this encoding and that used by Fang is that in this study, bit strings were
used to encode the integers (in standard binary encoding) in the range of 1..J. In contrast,
Fang used a genetic algorithm and applied crossover to only selected portions of the bit-
string. As the makespan is to be minimized, the evaluation of the potential solution is (1.0/
makespan). Two standard test problems are attempted, a 10 job, 10 machine problem and
a 20-job, 5-machine problem. A description of the problems can be found in [Muth &
Thompson, 1963].

The second encoding is very similar to the encoding used in the Traveling Salesman Prob-
lem. The drawback of this encoding is that it uses more bits than the previous one. None-
theless, empirically, it revealed improved results. Each job is assigned M entries of size
log2(J*M) bits. The total length of the encoding is J*M*log2(J*M). The value of each
entry (of length log2(J*M)) determines the order in which the jobs are scheduled. The job
which contains the smallest valued entry is scheduled first, etc. The order in which the
machines are selected for each job depends upon the ordering required by the problem
specification.

3.2.3. Knapsack Problem

In this version of the knapsack problem, there is a single bin of limited capacity, andM
elements of varying sizes and values. The problem is to select the elements which will
yield the greatest summed value without exceeding the capacity of the bin. The evaluation
of the quality of the solution is judged in two ways: If the solution selects too many ele-
ments, such that the summed size of the elements is larger than the bin size, the solution is
judged by how much it exceeds the capacity of the bin – the less it exceeds the capacity,
the better the solution. If the sum of the element sizes is within the capacity of the bin, the
sum of the values of the selected elements is used as the evaluation. To ensure that the
solutions which overfill the bin are not competitive with those which do not, their evalua-
tions are multiplied by a small constant. This makes the invalid solutions competitive only
when there are no solutions which are valid. The evaluations are described below.

The weights and values for each problem were randomly generated.

3.2.4. Bin Packing/Equal Piles

In this version of the bin packing problem, there areN bins of varying capacities andM
elements of varying sizes. The problem is to pack the bins with elements as tightly as pos-
sible, without exceeding the maximum capacity of any bin. In the problems attempted
here, the error is measured by:

10 10– size size
selectedElements

∑–
allElements

∑
 × value

selectedElements
∑

if size is greater than capacity of bin if size is less than or
equal to capacity of bin

ERROR CAP
i

ASSIGNEDi–()2

i 1=

N

∑=

CAPi is the capacity of bin i

ASSIGNEDi is the total size of the
elements in bin i.

9/12

The solution is encoded in a bit string of lengthM * log2N. Each element to be packed is
assigned a sequential substring of length log2N whose value indicates the bin in which the
element is placed. In order to minimize theERROR, the evaluation of the potential solu-
tion is 1.0/ERROR.

3.2.5. Rectangle Packing

The object of this problem is to packN rectangles as tight as possible on a page, thereby
leaving as much space at the bottom of the page as possible. The problem is encoded as
N*log2N bits. Each rectangle is assigned a unique log2N bits, which are interpreted as a
integer. The number dictates the order in which the rectangles are placed on the page. As a
rectangle is placed, it is placed as high and to the left on the page as possible. Therefore,
changing the order in which the rectangles are placed on the page will change the final
configuration of the rectangles. The evaluation function tries to first maximize the number
of rectangles which are on the page (the rectangles were chosen so that they all can fit on
the page), and after this is accomplished to maximize the amount of room left at the bot-
tom of the page.

3.2.6. Summation Cancellation

In this problem, the parameters (s1, ..., sN) in the beginning of the solution string have a
large influence on the quality of the solution. The goal is to minimize the magnitudes of
cumulative sums of the parameters. Small changes in the first parameters can cause large
changes in the evaluation. The evaluation is:

For this problem, we used 75 parameters, and each parameter was represented with 9 bits,
encoded in standard base-2, with the values uniformly spaced between -2.56 and +2.56.

3.3 Results

For each of the problems, we try the five algorithms mentioned above. For each algorithm
on each problem, we try multiple settings of the PATIENCE parameter. The setting of the
PATIENCE parameter which gives the best result is report here. This is done to give HC
and AHC an advantage; in almost every case, the lowest setting of the PATIENCE param-
eter worked the best with COMIT. The results reported are the average of at least 25 runs.
Each algorithm is given 200,000 function evaluations on each problem. The results are
shown in Table I. A summary of the results, the relative ranks of the algorithms, are pro-
vided in Table II (1=best, 5=worst). Additionally, the significance in the difference in
results is given; this is measured by the Mann-Whitney test (a non-parametric equivalent
to thet-test).

0.16– si 0.15≤ ≤

i 1…N=
y1 s1=

yi si yi 1–+=

i 2…N=

1 C
1

100000
------------------= f

1.0

C yi
1

N

∑+

---------------------------=

10/12

In every problem examined, COMIT significantly improves the performance over hill-
climbing. In comparison to AHC and HC, COMIT-1000 or COMIT-100 performed the
best in every problem. To provide some intuition about how the COMIT algorithm
progresses, Figure 5 shows the values of each evaluation performed with the HC and
COMIT-1000 algorithm in the TSP domain. There are four features which should be
noticed. First, the spikes in the evaluations correspond to the beginning of hillclimbing
runs. In the COMIT graph, the spikes also represent the K samples generated by sampling
the tree. Second, for the COMIT algorithm, the random initial samples in the dataset S
were entirely removed by evaluation #90,000 (this approximately corresponds to the num-
ber of evaluations used in the first 10 hillclimbing runs; each run contributed 100 samples

Table I: Performance of HC, AHC and COMIT

Problem

|X|
Problem

 Size:
Bits

HC
Mean

(Std. Dev)

AHC-100
Mean

(Std. Dev)

AHC-1000
Mean

(Std. Dev)

COMIT-100
Mean

(Std. Dev)

COMIT-1000
Mean

(Std. Dev)

TSP - 100 City
(Minimization)

700 1629

(106)

1599

(103)

1573

(87)

1335

(87)

1336

(117)

Jobshop - Problem 1, Encoding 1
(Minimization)

500 998

(20)

988

(16)

982

(16)

978

(14)

970

(12)

Jobshop - Problem 1, Encoding 2
(Minimization)

700 965

(8)

961

(11)

957

(9)

954

(9)

953

(6)

Jobshop - Problem 2, Encoding 2
(Minimization)

700 1207

(13)

1200

(11)

1199

(11)

1196

(12)

1195

(8)

Bin-Packing 168 elements, 8 bins
(Minimization)

504 1.70e-03

(3.2e-04)

1.58e-03

(4.1e-04)

1.62e-03

(3.0e-04)

1.56e-03

(4.7e-04)

1.45e-03

(4.2e-04)

Knapsack - 512 elements
(Maximization)

512 3238

(135)

3377

(145)

3335

(99)

6684

(143)

6259

(167)

Rectangle Packing(75 rectangles)
(1.0/Evaluation) (Minimization)

525 8.32e+06

(1.4e+05)

8.23e+06

(1.6e+05)

8.25e+06

(1.6e+05)

8.24e+06

(1.3e+05)

8.21e+06

(1.7e+05)

Sum. Canc. (75 params * 9 bits)
(Minimization)

675 64

(3)

61

(3)

59

(3)

54

(4)

52

(4)

Table II: Relative Ranks of HC, AHC and COMIT (Algorithm with Rank=1 highlighted)

Problem

|X|
Problem

 Size:
Bits

HC
AHC-
100

AHC-
1000

COMIT-
100

Significance > 90%?
(COMIT-100 vs.:) COMIT-

1000

Significance > 90%?
(COMIT-1000 vs.:)

HC
AHC-
100

AHC-
1000

HC
AHC-
100

AHC-
1000

TSP - 100 City 700 5 4 3 1 Y Y Y 2 Y Y Y

Jobshop - Problem 1, Encoding 1 500 5 4 3 2 Y Y N 1 Y Y Y

Jobshop - Problem 1, Encoding 2 700 5 4 3 2 Y Y Y 1 Y Y Y

Jobshop - Problem 2, Encoding 2 700 5 4 3 2 Y N N 1 Y N N

Bin-Packing 168 elements, 8 bins 504 5 3 4 2 Y N N 1 Y Y Y

Knapsack - 512 elements 512 5 3 4 1 Y Y Y 2 Y Y Y

Rectangle Packing(75 rectangles) 525 5 2 4 3 Y N N 1 Y N N

Sum. Canc. (75 params * 9 bits) 675 5 4 3 2 Y Y Y 1 Y Y Y

11/12

to the dataset, and the size of S is 1000). Third, the magnitude of the spikes in the COMIT
plot gradually decreases; this corresponds to the COMIT algorithm learning to seed the
hillclimbing runs with high-quality solutions. Fourth, most importantly, even before the
HC runs arestarted at noticeably better solutions, thefinal solutions found at each hill-
climbing run have improved over standard hillclimbing; good initial points for search have
been found. By using the interparameter dependency models to generate starting points,
the hillclimbing runs are started are in basins of the search space which lead to high-eval-
uation solutions.

4 Conclusions & Future Work

We have shown that information gathered from previous search runs can be effectively
used for initializing new searches. By using a model of the interparameter dependencies in
previously found good solutions, we generated starting points which allowed the search
algorithm to concentrate its effort in promising regions of the search space. In all of the
problems examined, this has led to the discovery of significantly better final solutions.

Since the probabilistic model is updated relatively infrequently by COMIT – that is, only
between hillclimbing runs – it may be feasible to replace the dependency trees used here
with more sophisticated but more computationally expensive models, such as general
Bayesian networks. These can model arbitrary sets of dependencies. Rather than generat-
ing the network from scratch after every hillclimbing run, we can use the previous net-
work as the starting point for a search for network structures with which to model the
updated dataset S. If only a few modifications toS were made from the previous hillclimb-
ing run, then searching for a new Bayesian network may be relatively inexpensive.

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

5.50

6.00

0.00 100.00 200.00 300.00 400.00

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

5.50

6.00

0.00 100.00 200.00 300.00 400.00

Figure 5: These graphs show the values of every evaluation performed in the HC (top) and COMIT
(bottom) algorithms for the TSP domain. The object is to minimize the tour length. Note that these
runs are extended to 400,000 evaluations.

To
ur

 L
en

gt
h

*
10

3

Evaluation Number * 103

COMIT

HC

12/12

The purpose of this paper was not to advocate the use of COMIT with hillclimbing over
more sophisticated optimization algorithms. The purpose was, instead, to show that when
multiple runs of an optimizer are used, the information obtained from one run can be used
to guide future searches. We showed how to incorporate COMIT with hillclimbing. How-
ever, it requires no change to be used with other search algorithms such as simulated
annealing, genetic algorithms, hillclimbing, TABU search [Glover, 1989], or PBIL [Bal-
uja, 1997]. In population-based methods, such as genetic algorithms, it can be used to ini-
tialize the population. Additionally, this method can be used when multiple search
algorithms are used; the best solutions from any search algorithm can be used to update
the pair-wise statistics. The trees generated can then be sampled to provide initial samples
to begin any of these searches.

References

Baluja, S. (1997) “Genetic Algorithms and Explicit Search Statistics,”Advances in Neural
Information Processing Systems, 1996. Mozer, M.C., Jordan, M.I, & Petsche, T.
(Eds). MIT Press. Also Available as Technical Report from Carnegie Mellon Uni-
versity: CMU-CS-95-193 (http://www.cs.cmu.edu/~baluja).

Baluja, S. & Davies, S. (1997) “Using Optimal Dependency-Trees for Combinatorial
Optimization: Learning the Structure of the Search Space”,Proc. 1997 Interna-
tional Conference on Machine Learning. Also Available as Tech Report: CMU-
CS-97-107.

Boyan, J. & Moore, A. (1997) “Using Prediction to Improve Global Optimization
Search”, Submitted.

Chou. C. and Liu, C. (1968) Approximating discrete probability distributions with depen-
dence trees. IEEE Transactions on Information Theory, 14:462-467.

De Bonet, J., Isbell, C., and Viola, P. (1997) “MIMIC: Finding Optima by Estimating
Probability Densities,”Advances in Neural Information Processing Systems, 1996.
Mozer, M.C., Jordan, M.I, & Petsche, T. (Eds).

Fang, H.L., Ross, P. & Corne, D. “A Promising GA Approach to Job-Shop Scheduling,
Rescheduling and Open-Shop Scheduling Problems”. InProc. Int. Conf. on
Genetic Algorithms-95. S. Forrest, (ed). Morgan Kaufmann.

Glover, F. (1989) “Tabu-Search - Part I”,ORSA Journal on Computing 1:190-206.
Muth & Thompson (1963)Industrial Scheduling Prentice Hall International. Englewood

Cliffs, NJ.
Syswerda, G. (1989) “Uniform Crossover in Genetic Algorithms,”Int. Conf. on Genetic

Algorithms 3.2-9.

