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Abstract

In this paper, we present a neural network-based face detection system. Unlikesimilar systems
which are limited to detecting upright, frontal faces, this system detects faces at any degree of
rotation in the image plane. The system employs multiple networks; the first is a “router” network
which processes each input window to determine its orientation and then uses this information
to prepare the window for one or more “detector” networks. We present the training methods
for both types of networks. We also perform sensitivity analysis on the networks, andpresent
empirical results on a large test set. Finally, we present preliminaryresults for detecting faces
which are rotated out of the image plane, such as profiles and semi-profiles.
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1 Introduction

In our observations of face detector demonstrations, we have found that users expect faces to be
detected at any angle, as shown in Figure 1. In this paper, we present a neural network-based
algorithm to detect faces in gray-scale images. Unlike similar previous systems which could only
detect upright, frontal faces[Sung, 1996, Rowleyet al., 1998, Moghaddam and Pentland, 1995,
Pentlandet al., 1994, Burel and Carel, 1994, Colmenarez and Huang, 1997, Osunaet al., 1997,
Lin et al., 1997, Vaillantet al., 1994, Yang and Huang, 1994, Yow and Cipolla, 1996], this system
efficiently detects frontal faces which can be arbitrarily rotated within the image plane. We also
present preliminary results on detecting upright faces which are rotated out ofthe image plane,
such as profiles and semi-profiles.

Many face detection systems are template-based; they encode facial images directly in terms
of pixel intensities. These images can be characterized by probabilistic models of the set of face
images[Colmenarez and Huang, 1997, Moghaddam and Pentland, 1995, Pentlandet al., 1994],
or implicitly by neural networks or other mechanisms[Burel and Carel, 1994, Osunaet al., 1997,
Rowleyet al., 1998, Sung, 1996, Vaillantet al., 1994, Yang and Huang, 1994]. Other researchers
have taken the approach of extracting features and applying either manually or automatically gener-
ated rules for evaluating these features. By using a graph-matching algorithmon detected features,
[Leunget al., 1995] can also achieve rotation invariance. Our paper presents a general method to
make template-based face detectors rotation invariant.

Our system directly analyzes image intensities using neural networks, whose parameters are
learned automatically from training examples. There are many ways to useneural networks for
rotated-face detection. The simplest would be to employ one of the existing frontal, upright, face
detection systems. Systems such as[Rowley et al., 1998] use a neural-network based filter that
receives as input a small, constant-sized window of the image, and generatesan output signifying
the presence or absence of a face. To detect faces anywhere in the input, the filter is applied
at every location in the image. To detect faces larger than the window size, the input image is
repeatedly subsampled to reduce its size, and the filter is applied at eachscale. To extend this
framework to capture faces which are rotated, the entire image can be repeatedly rotated by small
increments and the detection system can be applied to each rotated image. However, this would be
an extremely computationally expensive procedure. For example, the system reported in[Rowley
et al., 1998] was invariant to approximately10� of rotation from upright (both clockwise and

Figure 1: People expect face detection systems to be able to detect rotated faces. Here we show the output
of our new system.
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Figure 2: Overview of the algorithm.

counterclockwise). Therefore, the entire detection procedure would need to be applied at least18
times to each image, with the image rotated in increments of20

�.
An alternate, significantly faster procedure is described in this paper, extending some early

results in[Baluja, 1997]. This procedure uses a separate neural network, termed a “router”, to
analyze the input window before it is processed by the face detector. The router’s input is the same
region that the detector network will receive as input. If the input contains a face, the router returns
the angle of the face. The window can then be “derotated” to make the face upright. Note that the
router networkdoes notrequire a face as input. If a non-face image is encountered, the router will
return a meaningless rotation. However, since a rotation of a non-face image will yield another
non-face image, the detector network will still not detect a face. On the otherhand, a rotated face,
which would not have been detected by the detector network alone, will be rotated to an upright
position, and subsequently detected as a face. Because the detector network is only applied once at
each image location, this approach is significantly faster than exhaustivelytrying all orientations.

Detailed descriptions of the example collection and training methods, network architectures,
and arbitration methods are given in Section 2. We then analyze the performanceof each part of
the system separately in Section 3, and test the complete system on two large test sets in Section 4.
We find that the system is able to detect 86.3% of the faces over a total of 115 complex images,
with a very small number of false positives. Conclusions and directions for future research are
presented in Section 5.

2 Algorithm

The overall algorithm for the detector is given in Figure 2. Initially, a pyramid of images is gener-
ated from the original image, using scaling steps of 1.2. Each 20x20 pixel window of each level of
the pyramid then goes through several processing steps. First, the window is preprocessed using
histogram equalization, and given to arouter network. The rotation angle returned by the router is
then used to rotate the window with the potential face to an upright position. Finally, thederotated
windowis preprocessed and passed to one or more detector networks[Rowleyet al., 1998], which
decide whether or not the window contains a face.

The system as presented so far could easily signal that there are two faces of very different
orientations located at adjacent pixel locations in the image. To counter such anomalies, and to
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reinforce correct detections, some arbitration heuristics are employed. Thedesign of the router
and detector networks and the arbitration scheme are presented in the following subsections.

2.1 The Router Network

The first step in processing a window of the input image is to apply the router network.This
network assumes that its input window contains a face, and is trained to estimate its orientation.
The inputs to the network are the intensity values in a 20x20 pixel window of the image (which have
been preprocessed by a standard histogram equalization algorithm). The output angle ofrotation
is represented by an array of 36 output units, in which each uniti represents an angle ofi � 10�.
To signal that a face is at an angle of�, each output is trained to have a value ofcos(� � i � 10

�

).
This approach is closely related to the Gaussian weighted outputs used in the autonomous driving
domain[Pomerleau, 1992]. Examples of the training data are given in Figure 3.

Figure 3: Example inputs and outputs for training the router network.

Previous algorithms using Gaussian weighted outputs inferred a single value from them by
computing an average of the positions of the outputs, weighted by their activations. Forangles,
which have a periodic domain, a weighted sum of angles is insufficient. Instead, we interpret each
output as a weight for a vector in the direction indicated by the output numberi, and compute a
weighted sum as follows:
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The direction of this average vector is interpreted as the angle of the face.
The training examples are generated from a set of manually labelled example images contain-

ing 1048 faces. In each face, the eyes, tip of the nose, and the corners and centerof the mouth
are labelled. The set of labelled faces are then aligned to one another using aniterative proce-
dure[Rowleyet al., 1998]. We first compute the average location for each of the labelled features
over the entire training set. Then, each face is aligned with the averagefeature locations, by com-
puting the rotation, translation, and scaling that minimizes the distances between the corresponding
features. Because such transformations can be written as linear functionsof their parameters, we
can solve for the best alignment using an over-constrained linear system. After iterating these steps
a small number of times, the alignments converge.
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Figure 4: Left: Average of upright face examples. Right: Positions ofaverage facial feature locations (white
circles), and the distribution of the actual feature locations from all the examples (black dots).

The averages and distributions of the feature locations are shown in Figure 4. Once the faces
are aligned to have a known size, position, and orientation, we can control the amountof variation
introduced into the training set. To generate the training set, the faces arerotated to a random
(known) orientation, which will be used as the target output for the router network. The faces are
also scaled randomly (in the range from 1 to 1.2) and translated by up to half a pixel. For each of
1048 faces, we generate 15 training examples, yielding a total of 15720 examples.

The architecture for the router network consists of three layers, an input layer of400 units,
a hidden layer of 15 units, and an output layer of 36 units. Each layer is fully connected to the
next. Each unit uses a hyperbolic tangent activation function, and the network is trained using the
standard error backpropogation algorithm.

2.2 The Detector Network

After the router network has been applied to a window of the input, the window is derotated to
make any face that may be present upright.

The remaining task is to decide whether or not the window contains an upright face. Thealgo-
rithm used for detection is identical to the one presented in[Rowleyet al., 1998]. The resampled
image, which is also 20x20 pixels, is preprocessed in two steps[Sung, 1996]. First, we fit a func-
tion which varies linearly across the window to the intensity values in anoval region inside the
window. The linear function approximates the overall brightness of each part of thewindow, and
can be subtracted to compensate for a variety of lighting conditions. Second, histogram equaliza-
tion is performed, which expands the range of intensities in the window. The preprocessed window
is then given to one or moredetector networks. The detector networks are trained to produce an
output of+1:0 if a face is present, and�1:0 otherwise.

The detectors have two sets of training examples: images which are faces,and images which
are not. The positive examples are generated in a manner similar to that of therouter; however, as
suggested in[Rowleyet al., 1998], the amount of rotation of the training images is limited to the
range�10� to 10

�.
Training a neural network for the face detection task is challenging because of the difficulty in

characterizing prototypical “non-face” images. Unlike facerecognition, in which the classes to be
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discriminated are different faces, the two classes to be discriminated in facedetectionare “images
containing faces” and “images not containing faces”. It is easy to get a representative sample of
images which contain faces, but much harder to get a representative sampleof those which do not.
Instead of collecting the images before training is started, the images arecollected during training
in the following “bootstrap” manner, adapted from[Sung, 1996]:

1. Create an initial set of non-face images by generating 1000 random images.

2. Train the neural network to produce an output of+1:0 for the face examples, and�1:0 for the non-
face examples. In the first iteration, the network’s weightsare initialized random. After the first
iteration, we use the weights computed by training in the previous iteration as the starting point.

3. Run the system on an image of scenerywhich contains no faces. Collect subimages in which the
network incorrectly identifies a face (an output activation> 0:0).

4. Select up to 250 of these subimages at random, and add them into the training set as negative exam-
ples. Go to step 2.

Some examples of non-faces that are collected during training are shown in Figure 5. At runtime,
the detector network will be applied to images which have been derotated, so itmay be advanta-
geous to collect negative training examples from the set of derotated non-face images, rather than
only non-face images in their original orientations. In Section 4, both possibilities are explored.

Figure 5: Left: The partially-trained system is applied to images of scenery which do not contain faces.
Right: Any regions in the image detected as faces are errors,which can be added into the set of negative
training examples.

2.3 The Arbitration Scheme

As mentioned earlier, it is possible for the system described so far to signal faces of very different
orientations at adjacent pixel locations. A simple postprocessing heuristic isemployed to rectify
such inconsistencies. Each detection is placed in a 4-dimensional space, where the dimensions are
thex andy positions of the center of the face, the level in the image pyramid at which the face was
detected, and the angle of the face, quantized to increments of10

�. For each detection, we count
the number of detections within 4 units along each dimension (4 pixels, 4 pyramid levels, or40�).
This number can be interpreted as a confidence measure, and a threshold is applied. Once a face
passes the threshold, any other detections in the 4-dimensional space which would overlap it are
discarded.
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Although this postprocessing heuristic was found to be quite effective at eliminating false de-
tections, we have found that a single detection network still yields an unacceptably high false
detection rate. To further reduce the number of false detections, and reinforcecorrect detections,
we arbitrate between two independently trained detector networks, as in[Rowley et al., 1998].
Each network is given the same set of positive examples, but starts with different randomly set
initial weights. Therefore, each network learns different features, andmake different mistakes. To
use the outputs of these two networks, the postprocessing heuristics of the previous paragraph are
applied to the outputs of each individual network, and then the detections from the two networks
are ANDed. The specific preprocessing thresholds used in the experiments will begiven in Sec-
tions 4. These arbitration heuristics are very similar to, but computationally less expensive than,
those presented in[Rowleyet al., 1998].

3 Analysis of the Networks

In order for the system described above to be accurate, the router and detector must perform ro-
bustly and compatibly. Because the output of the router network is used to derotate the input for
the detector, the angular accuracy of the router must be compatible with the angular invariance of
the detector. To measure the accuracy of the router, we generated test example images based on
the training images, with angles between�30� and30� at1� increments. These images were given
to the router, and the resulting histogram of angular errors is given in Figure 6 (left). As can be
seen,92% of the errors are within�10�.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

-30 -20 -10 0 10 20 30

F
re

q
u

e
n

c
y

 o
f 

E
rr

o
r

Angular Error

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-30 -20 -10 0 10 20 30

F
ra

c
ti

o
n

 o
f 

F
a

c
e

s
 D

e
te

c
te

d

Angle from Upright

Figure 6: Left: Frequency of errors in the router network with respectto the angular error (in degrees).
Right: Fraction of faces that are detected by the detector networks, as a function of the angle of the face
from upright.

The detector network was trained with example images having orientations between�10� and
10

�. It is important to determine whether the detector is in fact invariant torotations within this
range. We applied the detector to the same set of test images as the router, andmeasured the frac-
tion of faces which were correctly classified as a function of the angle of theface. Figure 6 (right)
shows that the detector detects over 90% of the faces that are within10

� of upright, but the ac-
curacy falls with larger angles. In summary, since the router’s angular errors are usually within
10

�, and since the detector can detect most faces which are rotated up to10

�, the two networks are
compatible.
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4 Empirical Results

In this section, we integrate the pieces of the system, and test it on two sets of images. The first
set, which we will call the upright test set, is Test Set 1 from[Rowley et al., 1998]. It contains
many images with faces against complex backgrounds and many images without any faces. There
are a total of 130 images, with 511 faces (of which 469 are within10

� of upright), and 83,099,211
windows to be processed. The second test set, referred to as the rotated test set, consists of 50
images (with 34,064,635 windows) containing 223 faces, of which 210 are at angles of morethan
10

� from upright.1

The upright test set is used as a baseline for comparison with an existing upright face detection
system[Rowley et al., 1998]. This will ensure that the modifications for rotated faces do not
hamper the ability to detect upright faces. The rotated test set will demonstrate the new capabilities
of our system.

4.1 Router Network with Standard Upright Face Detectors

The first system we test employs the router network to determine the orientationof any potential
face, and then applies two standard upright face detection networks from[Rowley et al., 1998].
Table 1 shows the number of faces detected and the number of false alarms generated on the two
test sets. We first give the results from the individual detection networks, andthen give the results
of the post-processing heuristics (using a threshold of one detection). The last rowof the table
reports the result of arbitrating the outputs of the two networks, using an AND heuristic. This is
implemented by first post-processing the outputs of each individual network, followedby requiring
that both networks signal a detection at the same location, scale, and orientation. As can be seen
in the table, the post-processing heuristics significantly reduce the number of false detections, and
arbitration helps further. Note that the detection rate for the rotated testset is higher than that for
the upright test set, due to differences in the overall difficulty of the two test sets.

Table 1: Results of first applying the router network, then applying the standard detector networks[Rowley
et al., 1998] at the appropriate orientation.

Upright Test Set Rotated Test Set
System Detect % # False Detect % # False

Network 1 89.6% 4835 91.5% 2174
Network 2 87.5% 4111 90.6% 1842
Net 1! Postproc 85.7% 2024 89.2% 854
Net 2! Postproc 84.1% 1728 87.0% 745
Postproc! AND 81.6% 293 85.7% 119

4.2 Proposed System

Table 1 shows a significant number of false detections. This is in part because thedetector networks
were applied to a different distribution of images than they were trained on.In particular, at

1These test sets are available over the World Wide Web at the URL
http://www.cs.cmu.edu/˜har/faces.html .
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runtime, the networks only saw images that were derotated by the router. We would like to match
this distribution as closely as possible during training. The positive examples used in training are
already in upright positions. During training, we can also run the scenery imagesfrom which
negative examples are collected through the router. We trained two new detector networks using
this scheme, and their performance is summarized in Table 2. As can be seen,the use of these new
networks reduces the number of false detections by at least a factor of 4. Of the systems presented
here, this one has the best trade-off between the detection rate and the number of false detections.
Images with the detections resulting from arbitrating between the networks are given in Figure 72.

Table 2: Results of our system, which first applies the router network, then applies detector networks trained
with derotated negative examples.

Upright Test Set Rotated Test Set
System Detect % # False Detect % # False

Network 1 81.0% 1012 90.1% 303
Network 2 83.2% 1093 89.2% 386
Net 1! Postproc 80.2% 710 89.2% 221
Net 2! Postproc 82.4% 747 88.8% 252
Postproc! AND 76.9% 34 85.7% 15

4.3 Exhaustive Search of Orientations

To demonstrate the effectiveness of the router for rotation invariant detection, we applied the two
sets of detector networks described above without the router. The detectors wereinstead applied at
18 different orientations (in increments of20

�) for each image location. Table 3 shows the results
using the standard upright face detection networks of[Rowleyet al., 1998], and Table 4 shows the
results using the detection networks trained with derotated negative examples.

Table 3: Results of applying the standard detector networks[Rowley et al., 1998] at 18 different image
orientations.

Upright Test Set Rotated Test Set
System Detect % # False Detect % # False

Network 1 93.7% 17848 96.9% 7872
Network 2 94.7% 15828 95.1% 7328
Net 1! Postproc 87.5% 4828 94.6% 1928
Net 2! Postproc 89.8% 4207 91.5% 1719
Postproc! AND 85.5% 559 90.6% 259

Recall that Table 1 showed a larger number of false positives compared withTable 2, due
to differences in the training and testing distributions. In Table 1, the detection networks were
trained only with false-positives in their original orientations, but weretested on images that were

2After painstakingly trying to arrange these images compactly by hand, we decided to use a more systematic
approach. These images were laid out automatically by the PBIL optimization algorithm[Baluja, 1994]. The objective
function tries to pack images as closely as possible, by maximizing the amount of space left over at the bottom of each
page.
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Table 4: Networks trained with derotated examples, but applied at all 18 orientations.

Upright Test Set Rotated Test Set
System Detect % # False Detect % # False

Network 1 90.6% 9140 97.3% 3252
Network 2 93.7% 7186 95.1% 2348
Net 1! Postproc 86.9% 3998 96.0% 1345
Net 2! Postproc 91.8% 3480 94.2% 1147
Postproc! AND 85.3% 195 92.4% 67

rotated from their original orientations. Similarly, if we apply detector networks to images at all
18 orientations, we should expect a similar increase in the number of false positives because of
the differences in the training and testing distributions (see Tables 3 and 4). The detection rates
are higher than for systems using the router network. This is because any error by therouter will
lead to a face being missed, whereas an exhaustive search of all orientations may find it. Thus, the
differences in accuracy can be viewed as a tradeoff between the detectionand false detection rates,
in which better detection rates come at the expense of much more computation.

4.4 Upright Detection Accuracy

Finally, to check that adding the capability of detecting rotated faces has notcome at the expense
of accuracy in detecting upright faces, in Table 5 we present the result of applying the original
detector networks and arbitration method from[Rowleyet al., 1998] to the two test sets used in
this paper.3 As expected, this system does well on the upright test set, but has a poor detection rate
on the rotated test set.

Table 5: Results of applying the original algorithm and arbitrationmethod from[Rowleyet al., 1998] to the
two test sets.

Upright Test Set Rotated Test Set
System Detect % # False Detect % # False

Network 1 90.6% 928 20.6% 380
Network 2 92.0% 853 19.3% 316
Net 1! Postproc 89.4% 516 20.2% 259
Net 2! Postproc 90.6% 453 17.9% 202
Threshold! AND 85.3% 31 13.0% 11

Table 6 shows a breakdown of the detection rates of the above systems on faces that are rotated
less or more than10� from upright. As expected, the original upright face detector trained exclu-
sively on upright faces and negative examples in their original orientations gives the high detection
rate on upright faces. Our new system has a slightly lower detection rate on upright faces for two

3The results for the upright test set are slightly different from those presented in[Rowleyet al., 1998] because we
now check for the detection of 4 upside-down faces, which were present, but ignored, in the original test set. Also,
there are slight differences in the way the image pyramid is generated.
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reasons. First, the detector networks cannot recover from all the errors madeby the router net-
work. Second, the detector networks which are trained with derotated negative examples are more
conservative in signalling detections; this is because the derotation processmakes the negative
examples look more like faces, which makes the classification problem harder.

Table 6: Breakdown of detection rates for upright and rotated faces from both test sets.

All Upright Faces Rotated Faces
System Faces (� 10

�) (> 10

�)

New system (Table 2) 79.6% 77.2% 84.1%
Upright detector[Rowleyet al., 1998] 63.4% 88.0% 16.3%

5 Summary and Extensions

This paper has demonstrated the effectiveness of detecting faces rotated in the image plane by
using a router network in combination with an upright face detector. The system isable to detect
79.6% of faces over two large test sets, with a small number of false positives. The technique is
applicable to other template-based object detection schemes.

We are investigating the use of the above scheme to handle out-of-plane rotations.There are
two ways in which this could be approached. The first is directly analogous to handling in-plane
rotations: using knowledge of the shape and symmetry of the face, it may be possible toconvert
a profile or semi-profile view of a face to a frontal view (for related work, see[Vetteret al., 1997,
Beymeret al., 1993]). A second approach, and the one we have explored, is to partition the views
of the face, and to train separate detector networks for each view. We used five views: left profile,
left semi-profile, frontal, right semi-profile, and right profile. The router isresponsible for directing
the input window to one of these view detectors[Zhang and Fulcher, 1996].

Figure 8 shows some preliminary results. As can be seen, there are still asignificant number
of false detections and missed faces. We suspect that one reason for this is that our training data is
not representative of the variations present in real images. Most of our profile training images are
taken from the FERET database[Phillipset al., 1996], which has very uniform lighting conditions.

Figure 8: Detection of faces rotated out-of-plane.
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There are two immediate directions for future work. First, it would be interesting to merge the
systems for in-plane and out-of-plane rotations. One approach is to build a single router which
recognizes all views of the face, then rotates the image in-plane to a canonicalorientation, and
presents the image to the appropriate view detector network. The second area for future work
is improvement to the speed of the system. Based on the work of[Umezaki, 1995], [Rowley
et al., 1998] presented a quick algorithm based on the use of a fast (but somewhat inaccurate)
candidate detector network, whose results could then be checked by the detector networks. A
similar technique may be applicable to the present work.
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