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Abstract

In this paper, we present a neural network-based face detection system. &imilee systems
which are limited to detecting upright, frontal faces, this system defeces at any degree of
rotation in the image plane. The system employs multiple networks; the firstagitet” network
which processes each input window to determine its orientation and then usesfdinmation
to prepare the window for one or more “detector” networks. We present the trainitigpdse
for both types of networks. We also perform sensitivity analysis on the networkgrasdnt
empirical results on a large test set. Finally, we present prelimiresylts for detecting faces
which are rotated out of the image plane, such as profiles and semi-profiles.
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1 Introduction

In our observations of face detector demonstrations, we have found that users expsdbfbe
detected at any angle, as shown in Figure 1. In this paper, we present a néwakrsased
algorithm to detect faces in gray-scale images. Unlike similar previotisragsvhich could only
detect upright, frontal facgSung, 1996, Rowlegt al, 1998, Moghaddam and Pentland, 1995,
Pentlandet al,, 1994, Burel and Carel, 1994, Colmenarez and Huang, 1997, Gs$waia 1997,
Lin et al, 1997, Vaillantet al, 1994, Yang and Huang, 1994, Yow and Cipolla, 19%6is system
efficiently detects frontal faces which can be arbitrarily rotatetthwithe image plane. We also
present preliminary results on detecting upright faces which are rotated the ahage plane,
such as profiles and semi-profiles.

Many face detection systems are template-based; they encode fag@isimiaectly in terms
of pixel intensities. These images can be characterized by probabilistielmof the set of face
images[Colmenarez and Huang, 1997, Moghaddam and Pentland, 1995, Pesttlaiydl994,
or implicitly by neural networks or other mechanistBsirel and Carel, 1994, Osuma al., 1997,
Rowleyet al, 1998, Sung, 1996, Vaillamt al, 1994, Yang and Huang, 19p4Dther researchers
have taken the approach of extracting features and applying either manually oaticédigngener-
ated rules for evaluating these features. By using a graph-matching algonttetected features,
[Leunget al, 1999 can also achieve rotation invariance. Our paper presents a general method t
make template-based face detectors rotation invariant.

Our system directly analyzes image intensities using neural networks, whe@seqtars are
learned automatically from training examples. There are many ways toausal networks for
rotated-face detection. The simplest would be to employ one of the existing froptaght, face
detection systems. Systems sucHRewley et al, 1999 use a neural-network based filter that
receives as input a small, constant-sized window of the image, and geraeratetput signifying
the presence or absence of a face. To detect faces anywhere in the inputethes &lbplied
at every location in the image. To detect faces larger than the wind@y thig input image is
repeatedly subsampled to reduce its size, and the filter is applied asealeh To extend this
framework to capture faces which are rotated, the entire image can lsedlyeotated by small
increments and the detection system can be applied to each rotated inoaggver this would be
an extremely computationally expensive procedure. For example, the systeneddpdiRowley
et al, 1999 was invariant to approximately0° of rotation from upright (both clockwise and

Figure 1: People expect face detection systems to be able to detattddaces. Here we show the output
of our new system.
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Figure 2: Overview of the algorithm.

counterclockwise). Therefore, the entire detection procedure would need to Exlapidast18
times to each image, with the image rotated in increments of
An alternate, significantly faster procedure is described in this pap@mdiryg some early
results in[Baluja, 1997. This procedure uses a separate neural network, termed a “router”, to
analyze the input window before it is processed by the face detector. The roupertss the same
region that the detector network will receive as input. If the input containsea flae router returns
the angle of the face. The window can then be “derotated” to make the face uprigattidbthe
router networkdoes notequire a face as input. If a non-face image is encountered, the router will
return a meaningless rotation. However, since a rotation of a non-face imhgeeld another
non-face image, the detector network will still not detect a face. On the b#met, a rotated face,
which would not have been detected by the detector network alone, will be rabadedupright
position, and subsequently detected as a face. Because the detector netwgripgpbatl once at
each image location, this approach is significantly faster than exhaustiyelyg all orientations.
Detailed descriptions of the example collection and training methods, netwarketures,
and arbitration methods are given in Section 2. We then analyze the perforofaraeh part of
the system separately in Section 3, and test the complete system onge/telstrsets in Section 4.
We find that the system is able to detect 86.3% of the faces over a total of 115 gampbges,
with a very small number of false positives. Conclusions and directions forefuasearch are
presented in Section 5.

2 Algorithm

The overall algorithm for the detector is given in Figure 2. Initially, a pyichaf images is gener-
ated from the original image, using scaling steps of 1.2. Each 20x20 pixel windowtofexeel of
the pyramid then goes through several processing steps. First, the window iscess@d using
histogram equalization, and given tecuter network The rotation angle returned by the router is
then used to rotate the window with the potential face to an upright positionl\s it derotated
windowis preprocessed and passed to one or more detector neflRukteyet al, 1999, which
decide whether or not the window contains a face.

The system as presented so far could easily signal that there are tvgoofaeery different
orientations located at adjacent pixel locations in the image. To counter soaiaées, and to
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reinforce correct detections, some arbitration heuristics are employeddeBmgn of the router
and detector networks and the arbitration scheme are presented in theriglkaisections.

2.1 TheRouter Network

The first step in processing a window of the input image is to apply the router netwauk.
network assumes that its input window contains a face, and is trained tagsiisiorientation.
The inputs to the network are the intensity values in a 20x20 pixel window of the imdweh(have
been preprocessed by a standard histogram equalization algorithm). The output antdéai
is represented by an array of 36 output units, in which each:uejpresents an angle of 10°.
To signal that a face is at an anglefpfeach output is trained to have a valueaf( — i * 10°).
This approach is closely related to the Gaussian weighted outputs used utdheraous driving
domain[Pomerleau, 1992 Examples of the training data are given in Figure 3.
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Figure 3: Example inputs and outputs for training the router network.

Previous algorithms using Gaussian weighted outputs inferred a single valueneombty
computing an average of the positions of the outputs, weighted by their activationangles,
which have a periodic domain, a weighted sum of angles is insufficient. Insteadtexmaret each
output as a weight for a vector in the direction indicated by the output numbed compute a
weighted sum as follows:

35 35
(Z output; * cos(z * 10°), > output, * sin(i * 100))
=0 =0

The direction of this average vector is interpreted as the angle of the face.

The training examples are generated from a set of manually labelled exangges contain-
ing 1048 faces. In each face, the eyes, tip of the nose, and the corners andtémemouth
are labelled. The set of labelled faces are then aligned to one another usiegative proce-
dure[Rowleyet al, 1999. We first compute the average location for each of the labelled features
over the entire training set. Then, each face is aligned with the avératee locations, by com-
puting the rotation, translation, and scaling that minimizes the distancesdietthe corresponding
features. Because such transformations can be written as linear furddtithresr parameters, we
can solve for the best alignment using an over-constrained linear systésnitéfating these steps
a small number of times, the alignments converge.
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Figure4: Left: Average of uprightface examples. Right: Positionawdrage facial feature locations (white
circles), and the distribution of the actual feature lowasifrom all the examples (black dots).

The averages and distributions of the feature locations are shown in Figure d tl@nfaces
are aligned to have a known size, position, and orientation, we can control the avhwanation
introduced into the training set. To generate the training set, the facestated to a random
(known) orientation, which will be used as the target output for the router network.atles are
also scaled randomly (in the range from 1 to 1.2) and translated by up to hakla fpor each of
1048 faces, we generate 15 training examples, yielding a total of 15720 examples.

The architecture for the router network consists of three layers, an input layi€Oofinits,
a hidden layer of 15 units, and an output layer of 36 units. Each layer is fully connected t
next. Each unit uses a hyperbolic tangent activation function, and the networkedizsing the
standard error backpropogation algorithm.

2.2 The Detector Network

After the router network has been applied to a window of the input, the window is tettdta
make any face that may be present upright.

The remaining task is to decide whether or not the window contains an upright facalgbhe
rithm used for detection is identical to the one presentd@Rowleyet al, 1999. The resampled
image, which is also 20x20 pixels, is preprocessed in two $&msg, 1996 First, we fit a func-
tion which varies linearly across the window to the intensity values iowah region inside the
window. The linear function approximates the overall brightness of each part ofitidew, and
can be subtracted to compensate for a variety of lighting conditions. Second, &mstegualiza-
tion is performed, which expands the range of intensities in the window. The prepedcesmdow
is then given to one or mormetector networksThe detector networks are trained to produce an
output of+1.0 if a face is present, and1.0 otherwise.

The detectors have two sets of training examples: images which are dacksnages which
are not. The positive examples are generated in a manner similar to thatrotitte however, as
suggested ifRowleyet al, 1999, the amount of rotation of the training images is limited to the
range—10° to 10°.

Training a neural network for the face detection task is challenging because difficulty in
characterizing prototypical “non-face” images. Unlike fa@eognition in which the classes to be



discriminated are different faces, the two classes to be discriednatffacedetectionare “images

containing faces” and “images not containing faces”. It is easy to get aseedive sample of
images which contain faces, but much harder to get a representative sdrase which do not.
Instead of collecting the images before training is started, the imageslké&eted during training
in the following “bootstrap” manner, adapted frg8ung, 199

1. Create an initial set of non-face images by generatin@ t@@dom images.

2. Train the neural network to produce an output-at0 for the face examples, andl.0 for the non-
face examples. In the first iteration, the network’s weigds initialized random. After the first
iteration, we use the weights computed by training in th&ipres iteration as the starting point.

3. Run the system on an image of scenehjich contains no facesCollect subimages in which the
network incorrectly identifies a face (an output activatio.0).

4. Select up to 250 of these subimages at random, and add tbethé training set as negative exam-
ples. Go to step 2.

Some examples of non-faces that are collected during training are shown ie Bight runtime,
the detector network will be applied to images which have been derotatednsy ibe advanta-
geous to collect negative training examples from the set of derotated non-fagesnrather than
only non-face images in their original orientations. In Section 4, both possbilitie explored.
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Figure 5: Left: The partially-trained system is applied to images adreery which do not contain faces.
Right: Any regions in the image detected as faces are emdrigh can be added into the set of negative
training examples.

2.3 TheArbitration Scheme

As mentioned earlier, it is possible for the system described so far td $ages of very different
orientations at adjacent pixel locations. A simple postprocessing heuristiep®yed to rectify
such inconsistencies. Each detection is placed in a 4-dimensional space téhdimensions are
thex andy positions of the center of the face, the level in the image pyramid at which¢bevias
detected, and the angle of the face, quantized to increments .ofor each detection, we count
the number of detections within 4 units along each dimension (4 pixels, 4 pyrarld,ler40°).
This number can be interpreted as a confidence measure, and a threshold is appled. fare
passes the threshold, any other detections in the 4-dimensional space which werldg d\are
discarded.



Although this postprocessing heuristic was found to be quite effective at etinmgrfalse de-
tections, we have found that a single detection network still yields an unabbepigh false
detection rate. To further reduce the number of false detections, and reintoreet detections,
we arbitrate between two independently trained detector networks, [&oiwmley et al,, 1999.
Each network is given the same set of positive examples, but starts \fighedi randomly set
initial weights. Therefore, each network learns different featurespaaice different mistakes. To
use the outputs of these two networks, the postprocessing heuristics of the previousgheaagr
applied to the outputs of each individual network, and then the detections from the twarket
are ANDed. The specific preprocessing thresholds used in the experiments gilebein Sec-
tions 4. These arbitration heuristics are very similar to, but computalyolesk expensive than,
those presented {iRowleyet al, 1999.

3 Analysisof the Networks

In order for the system described above to be accurate, the router and detestqeniorm ro-
bustly and compatibly. Because the output of the router network is used to dehetatgat for
the detector, the angular accuracy of the router must be compatible with the angatance of
the detector. To measure the accuracy of the router, we generated testeekaages based on
the training images, with angles between0° and30° at1° increments. These images were given
to the router, and the resulting histogram of angular errors is given in Figuedth (As can be
seen92% of the errors are withia:10°.

0.1 1
0.09 0.9
0.08 / \ 0.8
0.07 / \ 0.7
0.06 / \ 0.6

| 0s \

0.04 0.4 / \
0.03 / \ 0.3 / \
0.02 0.2
0.01 0.1
0 0o

-30 -20 -10 0 10 20 30 -30 -20 -10 0 10
Angular Error Angle from Upright

0.05 / \

Frequency of Error

Fraction of Faces Detected

20 30

Figure 6: Left: Frequency of errors in the router network with respecthe angular error (in degrees).
Right: Fraction of faces that are detected by the detectiwarks, as a function of the angle of the face
from upright.

The detector network was trained with example images having orientationsdmeti@® and
10°. It is important to determine whether the detector is in fact invarianbtations within this
range. We applied the detector to the same set of test images as the routeeamuled the frac-
tion of faces which were correctly classified as a function of the angle dat®e Figure 6 (right)
shows that the detector detects over 90% of the faces that are withiof upright, but the ac-
curacy falls with larger angles. In summary, since the router’s angularseare usually within
10°, and since the detector can detect most faces which are rotated @fp tee two networks are
compatible.



4 Empirical Results

In this section, we integrate the pieces of the system, and test it on tevofsetages. The first
set, which we will call the upright test set, is Test Set 1 fridRowley et al, 1999. It contains
many images with faces against complex backgrounds and many images withoatesyThere
are a total of 130 images, with 511 faces (of which 469 are witbtrof upright), and 83,099,211
windows to be processed. The second test set, referred to as the rosatset teonsists of 50
images (with 34,064,635 windows) containing 223 faces, of which 210 are at angles ahaore
10° from upright?

The upright test set is used as a baseline for comparison with an existing updglutection
system[Rowley et al, 19949. This will ensure that the modifications for rotated faces do not
hamper the ability to detect upright faces. The rotated test set will deratenite new capabilities
of our system.

4.1 Router Network with Standard Upright Face Detectors

The first system we test employs the router network to determine the oriemé&ory potential
face, and then applies two standard upright face detection networkqRowley et al, 1999.
Table 1 shows the number of faces detected and the number of false alarmsegeaprtite two
test sets. We first give the results from the individual detection networkghandjive the results
of the post-processing heuristics (using a threshold of one detection). The last tioevtable
reports the result of arbitrating the outputs of the two networks, using an AND teufisis is
implemented by first post-processing the outputs of each individual network, folloywedjuiring
that both networks signal a detection at the same location, scale, and oolenfsgican be seen
in the table, the post-processing heuristics significantly reduce the numbeseti&tections, and
arbitration helps further. Note that the detection rate for the rotatedees higher than that for
the upright test set, due to differences in the overall difficulty of the twbdets.

Table 1. Results of first applying the router network, then applyimg $tandard detector netwoifli@owley

et al, 1999 at the appropriate orientation.
Upright Test Set Rotated Test Set

System Detect % # Falsg Detect % # False
Network 1 89.6% 4835 91.5% 2174
Network 2 87.5% 4111 90.6% 1842

Net 1— Postproc 85.7% 2024 89.2% 854
Net 2— Postproc 84.1% 1728 87.0% 745
Postproc—~ AND 81.6% 293 85.7% 119

4.2 Proposed System

Table 1 shows a significant number of false detections. This is in part becaustahtor networks
were applied to a different distribution of images than they were trainedlorparticular, at

1These test sets are available over the World Wide Web at the UR
http://www.cs.cmu.edu/"har/faces.html



runtime, the networks only saw images that were derotated by the router. We ket inatch
this distribution as closely as possible during training. The positive exampdesim$raining are
already in upright positions. During training, we can also run the scenery infegaswhich
negative examples are collected through the router. We trained two newodetetwworks using
this scheme, and their performance is summarized in Table 2. As can béhseese of these new
networks reduces the number of false detections by at least a factor of 4. Of gr@sysesented
here, this one has the best trade-off between the detection rate and the numiser détiections.
Images with the detections resulting from arbitrating between the netwarkgwen in Figure 7.

Table2: Results of our system, which first applies the router netwibikn applies detector networks trained

with derotated negative examples.
Upright Test Set Rotated Test Set

System Detect % # Falsg Detect % # False
Network 1 81.0% 1012 90.1% 303
Network 2 83.2% 1093| 89.2% 386

Net 1— Postproc 80.2% 710 89.2% 221
Net 2— Postproc 82.4% 747 88.8% 252
Postproc—~ AND 76.9% 34 85.7% 15

4.3 Exhaustive Search of Orientations

To demonstrate the effectiveness of the router for rotation invarianttoetewe applied the two
sets of detector networks described above without the router. The detectoiasteae applied at
18 different orientations (in increments f°) for each image location. Table 3 shows the results
using the standard upright face detection networkRofvleyet al, 1994, and Table 4 shows the
results using the detection networks trained with derotated negative example

Table 3: Results of applying the standard detector netwdRmwley et al, 1999 at 18 different image

orientations.
Upright Test Set Rotated Test Set

System Detect % # Falsg Detect % # False
Network 1 93.7% 17848  96.9% 7872
Network 2 94.7% 15828  95.1% 7328

Net 1— Postproc 87.5% 4828 94.6% 1928
Net 2— Postproc 89.8% 4207 91.5% 1719
Postproc—~ AND 85.5% 559 90.6% 259

Recall that Table 1 showed a larger number of false positives comparediabth 2, due
to differences in the training and testing distributions. In Table 1, thecietenetworks were
trained only with false-positives in their original orientations, but wiested on images that were

2After painstakingly trying to arrange these images conipdny hand, we decided to use a more systematic
approach. These images were laid out automatically by thke &@imization algorithi{Baluja, 1994. The objective
function tries to pack images as closely as possible, bymiaikig the amount of space left over at the bottom of each

page.
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Figure 7: Result of arbitrating between two networks trained withodated negative examples. The label
in the upper left corner of each image (D/T/F) gives the nunatbéaces detected (D), the total number of
faces in the image (T), and the number of false detectionsI#g label in the lower right corner of each
image gives its size in pixels.



Table 4: Networks trained with derotated examples, but applied dt8abrientations.

Upright Test Set Rotated Test Set

System Detect % # Falsg Detect % # False
Network 1 90.6% 9140 97.3% 3252
Network 2 93.7% 7186 95.1% 2348

Net 1— Postproc 86.9% 3998 96.0% 1345
Net 2— Postproc 91.8% 3480 94.2% 1147
Postproc—~ AND 85.3% 195 92.4% 67

rotated from their original orientations. Similarly, if we apply detectammeks to images at all
18 orientations, we should expect a similar increase in the number of falsevpesigcause of
the differences in the training and testing distributions (see Tables 3 anthé)detection rates
are higher than for systems using the router network. This is because any erromrbyttrewill
lead to a face being missed, whereas an exhaustive search of all aoientagty find it. Thus, the
differences in accuracy can be viewed as a tradeoff between the detautidsise detection rates,
in which better detection rates come at the expense of much more computation.

4.4 Upright Detection Accuracy

Finally, to check that adding the capability of detecting rotated faces hason at the expense

of accuracy in detecting upright faces, in Table 5 we present the result of agphe original
detector networks and arbitration method friiRowley et al, 1999 to the two test sets used in
this papef As expected, this system does well on the upright test set, but has a poor deteetion ra
on the rotated test set.

Table5: Results of applying the original algorithm and arbitratinethod fron{Rowleyet al, 1999 to the

two test sets.
Upright Test Set Rotated Test Set

System Detect % # Falsg Detect % # False
Network 1 90.6% 928| 20.6% 380
Network 2 92.0% 853 19.3% 316

Net 1— Postproc 89.4% 516 20.2% 259
Net 2— Postproc 90.6% 453 17.9% 202
Threshold— AND 85.3% 31 13.0% 11

Table 6 shows a breakdown of the detection rates of the above systems oh&ees totated
less or more tham0°® from upright. As expected, the original upright face detector trained exclu-
sively on upright faces and negative examples in their original orientations tigenigh detection
rate on upright faces. Our new system has a slightly lower detection rate ghufaces for two

3The results for the upright test set are slightly differeont those presented [Rowleyet al, 1999 because we
now check for the detection of 4 upside-down faces, whicrevpeesent, but ignored, in the original test set. Also,
there are slight differences in the way the image pyramieisegated.
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reasons. First, the detector networks cannot recover from all the errorshypdde router net-
work. Second, the detector networks which are trained with derotated negatiwples are more
conservative in signalling detections; this is because the derotation proeées the negative
examples look more like faces, which makes the classification problem harder.

Table 6: Breakdown of detection rates for upright and rotated facms both test sets.

All Upright Faces| Rotated Faces
System Faces (<10°) (> 10°)
New system (Table 2) 79.6% 77.2% 84.1%
Upright detectofRowleyet al,, 1999 | 63.4% 88.0% 16.3%

5 Summary and Extensions

This paper has demonstrated the effectiveness of detecting faces rotdbedimage plane by
using a router network in combination with an upright face detector. The systainteito detect
79.6% of faces over two large test sets, with a small number of falsey@ssitihe technique is
applicable to other template-based object detection schemes.

We are investigating the use of the above scheme to handle out-of-plane rotdtwens.are
two ways in which this could be approached. The first is directly analogous to handHpigrie
rotations: using knowledge of the shape and symmetry of the face, it may be possibleséot
a profile or semi-profile view of a face to a frontal view (for related work,[Setteret al,, 1997,
Beymeret al, 1993). A second approach, and the one we have explored, is to partition the views
of the face, and to train separate detector networks for each view. We useteivs: left profile,
left semi-profile, frontal, right semi-profile, and right profile. The routeesponsible for directing
the input window to one of these view detectf#hang and Fulcher, 1996

Figure 8 shows some preliminary results. As can be seen, there aressgjiiidcant number
of false detections and missed faces. We suspect that one reason forlthtigritraining data is
not representative of the variations present in real images. Most of our prafileng images are
taken from the FERET databadehillipset al,, 1996, which has very uniform lighting conditions.

WASHINGTON

Figure 8: Detection of faces rotated out-of-plane.
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There are two immediate directions for future work. First, it would be iistérg to merge the
systems for in-plane and out-of-plane rotations. One approach is to build a single \wduith
recognizes all views of the face, then rotates the image in-plane to a canomnédhtion, and
presents the image to the appropriate view detector network. The second areaifemfatk
is improvement to the speed of the system. Based on the wolkmEzaki, 1995 [Rowley
et al, 1999 presented a quick algorithm based on the use of a fast (but somewhat inaccurate)
candidate detector network, whose results could then be checked by the detectoksietvor
similar technique may be applicable to the present work.
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