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ABSTRACT 
This paper presents efficient methods to address the 
problem of discriminating between five facial orientations.   
We present the most efficient methods for this task to date, 
which can accurately discriminate between five facial 
orientations with approximately 92% accuracy using fewer 
than 30 pixel comparisons and greater than 99% accuracy 
using 150 pixel comparisons.   We achieve these rates by 
using a boosting method to select from a large set of 
extremely simple features.  Comparisons to other methods 
are given.   

1. INTRODUCTION 
 

The interest in face orientation discrimination arises from 
two areas. First, the rapid increase in the availability of 
inexpensive cameras makes it practical to create systems 
that automatically monitor a person while using a 
computer. By using motion, color, and size cues, it is 
possible to quickly find and segment a person’s face when 
he/she is sitting in front of a computer monitor. By 
determining whether the person is looking directly at the 
computer, or is staring away from the computer, we can 
provide feedback to any user interface that could benefit 
from knowing whether a user is paying attention or is 
distracted (such as tutoring systems, computer games, or 
even car-mounted cameras that monitor drivers).  

Second, to perform accurate face detection for use in 
video indexing or content-based image retrieval systems, 
one approach is to design detectors specific to each face 
orientation, as in [4][5][8][10]. Rather than applying all 
detectors to every location and scale, a face-orientation 
system can be applied to each candidate face location to 
“route” the candidate to the appropriate detector, thereby 
reducing the potential for false positives, and also 
reducing the computational cost of applying every 
detector.  Note that efficiency in orientation detection is 
paramount in these systems since every 20x20 sub-image 
is first passed through an orientation determination system 
before being passed to a face detection system.   In typical 
face detection systems, on the order of 106 sub-images (to 
account for scaling by steps of 1.2) must be examined in a 
single frame of 640x480 pixels [4].  

1.1. The Dataset 
The primary dataset that is used in this study is composed 
of 20x20 pixel intensity images of faces.  In each image, 
the face is in one of five orientations: frontal, right half 
profile, left half profile, right full profile or left full 
profile, as shown in Figure 1.   The right/left images are 
mirrors of each other.     
 

 

Figure 1: Examples of five faces in each orientation.  First 
row: frontal.  Second row: right half profile.  Third: left half 
profile.  Fourth: Right profile.  Fifth: Left profile.    

There are a total of 6,000 images for each orientation 
(30,000 total images).  3000 randomly selected images are 
used for training, and the remaining 27,000 are used for 
testing. This is a fairly clean dataset derived from the 
FERET database [11] with controlled lighting and the 
faces tightly cropped in the image.  The set includes 
images that were synthesized from originals to add 
variability through slight in-plane rotations and 
translations.  For each image, the pixel intensities were 
scaled linearly to span between 0 and 255.  This set was 
originally used to train a face detection system [4]; for that 
study, it was necessary to segment the face from the 
background and replace the background pixels with 
random noise, see [4] for details. This is important 
because if the background is not replaced with noise, the 
pose of the face in some of the images could be simply 
determined by detecting the background (which is fairly 
uniform in many of the original images).  With noise in the 
background, this task becomes both more realistic and 
more difficult.    



In the next section, we describe the algorithm and the 
features used in detail.   In Section 3, the results on the 
face orientation discrimination problem are presented.   
We also provide comparisons to other approaches and 
show visual examples of the classifiers.   Finally, in 
Section 4, we close the paper with conclusions and 
suggestions for future work.  
 

2. ALGORITHMS AND FEATURES 
The goal of this work is to make the process of orientation 
discrimination as efficient as possible.   Therefore, any of 
the features that are used must be easy to compute.  Our 
approach is motivated by the work of [9], in which they 
use an over-complete set of features based on rectangular 
subregions which are efficiently computed from the 
integral image for face detection.    
  For this study, we use the simplest possible features, 
relationships between pixels.  For each pixel pair (i,j) we 
effectively compute four binary features:   (pixeli = pixelj), 
(pixeli ≠ pixelj), (pixeli ≤ pixelj), (pixeli > pixelj).   The 
images that we use for this study are 20x20; but we need 
not compare a pixel to itself.  Therefore, this process 
generates (20x20)*[(20x20)-1]*4=638,400 binary features 
that can be computed for each of the training images. We 
can easily reduce this set of features by a factor of 2 by 
restricting ourselves to the upper-diagonal of the pair-wise 
feature matrix. Further, due to symmetry, the classifier will 
select either the feature F or ~F, so we can reduce the 
feature set by another factor of 2.  The final number of 
features is 159,600.  Nonetheless, this is still an extremely 
large number of features to examine – far larger than the 
number of pixels in each 20x20 sub-image.  The goal, 
given this large set of features, is to minimize the number 
of features that need to be computed when given a new 
image, while still achieving high discrimination rates.   
 In many studies, the task of feature selection is used 
as a pre-processing step to creating a classifier; a summary 
of the results with these approaches will be given in the 
next section.   The approach that we take here is to use the 
AdaBoost learning algorithm in one of its simplest forms 
[6][9];  AdaBoost can be used to combine the feature 
selection and classifier training steps.  The key idea behind 
AdaBoost is that a strong classifier can be created by 
combining many weak classifiers (classifiers that may only 
classify the training samples correctly just over 50% of the 
time).   At each step, after the weak classifier is selected 
and applied, the misclassified samples are re-weighted so 
that the next classifier puts more emphasis on solving the 
incorrectly labeled samples.  The final strong classifier is a 
weighted combination of the weak classifiers.   
 There are two challenges to using this approach.  
First, we only want to use a small set of features – 
computing all 159,600 binary features to classify a new 
image would be computationally prohibitive. Second, the 

combination of these features (the learner) must be cheap 
to compute, since potentially many learners will be used.  
As in [9], we limit the weak classifiers that AdaBoost can 
use in creating a strong classifier to single features; 
however, here the features are restricted to represent the 
relationship between two pixels.  The classifier can only 
choose to use the feature F or its complement, ~F.  No 
transformation of the features can be used.   Enforcing this 
limitation has two benefits; first, it is cheap to compute, 
and second, at each step in the boosting procedure only a 
single new feature needs to be computed.     
 
Given example images (x1,y1) .. (xn,yn) where yi = 0,1 for 
negative and positive examples. 
 

Initialize weights w1,i = 1/2N, 1/2P for yi = 0,1 respectively, 
where N & P  are the number of negative and positive samples. 
 

For t = 1,…,T (maximum # of features to use): 
  1. Normalize weights  wt,i  such that Σi wt,i  = 1.0 
  2. For each feature, Fj, see how well it (or ~Fj) predicts the   
classification.  Measure the error with respect to the weights wt:   
errort =   Σi wt,i | Fj – yi |  or  errort =   Σi wt,i | ~Fj – yi |   
  3. Choose the feature (Fj (or ~Fj)) with the lowest errort.  
  4. Update the weights: 
         if example is classified incorrectly: 
  wt+1,i = wt,i 
         else 
              wt+1,i = wt,iBt 

          where 
              Bt  = 

t

t

error-1
error  

 

For binary classification, the output of the strong classifier is: 
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where Ft(x) is the value of feature Ft computed for instance x. 

Figure 2: A boosting algorithm (taken from [9]).  Note that 
the “classifier” used here is simply the feature (or ~feature) 
itself.  The final classifier outputs a weighted combination of 
the classifiers (in this case just feature F  or  ~F). 

 An instance of the AdaBoost algorithm is shown in 
Figure 2; it is shown for a binary classification problem.   
To compare the outputs of multiple classifiers, instead of 
using a simple 0,1 output, the final classification was taken 
to be the maximum of the normalized outputs for each of 
the classifiers:
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3. RESULTS 

Using the AdaBoost algorithm described in the previous 
section, five separate strong classifiers were built.  Each 
classifier was trained to discriminate images in a given 
class from images in every other class. AdaBoost was run 



until 500 features were selected for each classifier 
(T=500).  A test image is then assigned to the class 
corresponding to the strong classifier with maximal output. 
The results are shown in Figure 3.  Note that with just 6 
features per strong classifier, we achieve over 90% 
classification accuracy on the test set.  By using 30 
features per strong classifier, 99% accuracy is achieved1. 

We also consider a variant of the AdaBoost algorithm 
to speed training. With the original AdaBoost algorithm, 
at each iteration, approximately 159,600 features must be 
examined.  However, in an image, many pixels may 
contain redundant information.  It may be possible to only 
examine a small number of these features and achieve the 
same results.  To test this hypothesis, in each round of 
AdaBoost, instead of looking at all the possible features, 
P% were randomly selected to be examined; the weak 
classifier could only be selected from this restricted set.  In 
subsequent rounds, the set was again randomly selected.   
Several settings of P were tried: 1%, 5%, 10%, 50% and 
100%.  Setting P=100% corresponds to the original 
AdaBoost algorithm.  Setting P=1% means that at each 
iteration, on average, only 1% of the total features are 
candidates for selection.  As can be seen in Figure 3, the 
results are close for the settings of P tried.  Note that P has 
a linear relation to the training time (P=1% is 
approximately 100 times faster than P=100%).  

Because the features that are used are simple pixel 
comparisons, it is easy to visually examine the features 
that are used.  A detailed look at the top 5 features that 
were selected for use by the frontal face pose classifier is 
shown in Figure 4.    The first feature selected assumes 
that the space between the eyes will be brighter than 
directly below the nose.   The feature works well for 
frontal faces as this is often the case.  However, in all of 
the other orientations, it is often the case that the pixel 
location that should be bright falls on an eye, and is 
therefore relatively dark.  Therefore, it is a good 
discriminatory feature.   

 
3.1. Alternate Approaches 
 

We compare the results obtained with AdaBoost with 
those obtained from a number of standard machine 
learning and feature reduction approaches. To build 
efficient classifiers, feature reduction is essential when 
employing classification schemes that will use all of the 
features given.  A short summary of the alternate 
approaches compared is given here.  

                                                 
1 Since there are 5 strong classifiers (one for each class) we 
conservatively assume that each classifier uses different pixels.  
Therefore, for achieving an accuracy of 90%, 30 total features 
are used, for an accuracy of 99%, 150 total features are used.  
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Figure 3:  AdaBoost error rate vs. # of features used in each 
classifier.  Note that five settings of P were examined.   Top: 
First 50 features selected.  Bottom:  Full view of 500 features 
selected.  This is the average of 5 trials per setting. 
 

We perform feature selection by computing the mutual 
information [1] between each of the 159,600 original 
features and the class label (C), selecting the top scoring 
features to build an efficient classifier.  The mutual 
information score MI(Fi; C) is given by: 
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In the reduced feature space, we employ the Naïve 
Bayesian classifier (NB) [2], limited-dependence Bayesian 
classifiers [7] (using both 1 (KDB-1) and 2 (KDB-2) 
dependence models) and Support Vector Machines [3] 
with both linear (SVM-l) and quadratic (SVM-q) kernels. 

Naïve Bayes defines a linear separator yielding a 
predicted class Cpred as: 
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Limited-dependence classifiers allow for a non-linear 
classifier where the predicted class Cpred is given by: 
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where Fij is a set of at most 1 or 2 features that have 
greatest class conditional mutual information with feature 
Fi.  Such dependency modeling helps to overcome the 
limitations of Naïve Bayes. 

Since SVMs are binary classifiers we use the same 
one-vs-rest classification approach we use with AdaBoost. 
Features are selected and a binary classifier built for each 
class separately.  Each test instance is classified into the 
category for which it gets the maximal score over all 
binary classifiers; this approach parallels the one used for 
the boosting classifier. 

We ran each of the classifiers described above on the 
same training/testing data split used with AdaBoost and 
the results are given in Table 1.  For each number of 
features, AdaBoost outperforms all other classifiers.  For 
AdaBoost (with P=100%), at 2500 features (500 features 
per class) the accuracy was 99.7%, at 150 features (30 
features per class) the accuracy was 99.0%, and at 30 
features (6 features per class) the accuracy was 92%.  

 
 

# Feat NB KDB-1 KDB-2  Feat/class SVM-l SVM-q 
2500 97.53 94.74 98.27  500 99.04 99.14 
150 94.78 95.51 92.51  30 94.45 94.96 
30 77.62 80.99 82.64  6 81.73 79.41 

Table 1: Classification accuracy (classifier vs. # of features).  
 

 

More features could potentially lead to slight gains in 
accuracy for the compared methods.  However, the 
resulting classifiers would be much more expensive to 
apply.  Since the primary motivation for our work is 
building a classifier that is efficient to apply in practice, 
using a classifier that utilized many thousands of features 
during classification would be cost prohibitive.  
Furthermore, just comparing the number of features is a 
bit deceptive;  it should be noted that applying the best 
performing of the compared methods, SVMs, requires 
time that is linear in both the number of features as well as 
the number of support vectors (which we often found to be 
on the order of 100s)2.  Consequently, such a method can 
be hundreds of times more expensive to apply than 
AdaBoost even when using the same number of features. 
 

4. CONCLUSIONS 
This paper makes several novel contributions, including 
demonstrating the power of even very simple pixel 
comparisons.  The final system discriminates between 5 
face orientations with accuracies over 99% with only 150 
pixel comparisons.  This approach yields the simplest and 
most efficient system to date for this task.  

                                                 
2 For completeness, we also tried using SVMs with RBF Kernel 
Functions directly on the pixel images.  This yielded accuracy 
comparable to the best Adaboost procedure.  However, the SVM 
chose 350 support vectors per pose; which would yield a 
classifier slower by several orders of magnitude. 

 We are extending this work first by further exploring 
the tradeoffs between feature expansion, efficient 
classification, and classifier complexity. Second, we are 
extending this work to more complex datasets, such as 
those in gender determination, within the face domain as 
well as other domains.  
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Figure 4: The first 5 features selected by the frontal face 
classifier.  The pixel under the white cross has to be brighter 
than the pixel under the black cross.   Each feature is shown 
where it would fall on a face in each orientation.   Top Row: 
First five features overlaid on frontal face image.  Second 
Row: First five features overlaid on right half profile, etc.  


