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Abstract—Decades of research have been directed towards
improving the timing of traffic lights. The ubiquity of cell phones
among drivers has created the opportunity to design new sensors
for traffic light controllers. These new sensors, which search for
radio signals that are constantly emanating from cell phones,
hold the hope of replacing the typical induction-loop sensors that
are installed within road pavements. A replacement to induction
sensors is desired as they require significant roadwork to install,
frequent maintenance and checkups, are sensitive to proper
repairs and installation work, and the construction techniques,
materials, and even surrounding unrelated ground work can be
sources of failure. However, before cell phone sensors can be
widely deployed, users must become comfortable with the passive
use of their cell phones by municipalities for this purpose. Despite
complete anonymization, public privacy concerns may remain.
This presents a chicken-and-egg problem: without showing the
benefits of using cell phones for traffic monitoring, users may
not be willing to allow this use. In this paper, we show that by
carefully training the traffic light controllers, we can unlock the
benefits of these sensors when only a small fraction of users allow
their cell phones to be used. Surprisingly, even when there is only
small percentage of opted-in users, the new traffic controllers
provide large benefits to all drivers.

I. INTRODUCTION

One of the largest complaints of commuters in the Mountain
View, California area is the amount of traffic they face during
the morning and evening rush hours. One of the problem areas,
controlled by seven main lights, is shown in Figure 1. The
goal of our project is to evaluate the timing of the traffic
lights on these intersections and also improve them through
better control algorithms and improved sensors. In [6], we first
addressed the problem of creating improved control algorithms
for the traffic light logic. In that study, we assumed that
the standard induction-loop sensors would be used. In this
paper, we examine the possibility of replacing induction-loop
sensors with sensors that monitor cell phone signals as a proxy
measure for local traffic density.

Induction loop sensors are currently widely deployed, and
have been in use since the 1960s. Induction loop sensors are
placed inside the roadway’s pavement and, at a high-level,
work by creating an electromagnetic field around the loop area.
As vehicles enter and exit the field, fluctuations in the field
are recorded as an indication that a car has passed over [5].

Despite being the most common type of sensor, other road-
mounted detectors such as cameras and microwave sensors
are also employed [20] [23]. Each provides information about
the number and type of vehicles on the road, their speed,

Fig. 1. Area to be optimized around Mountain View, California. A rush hour
traffic flow shown.

and travel times, etc. They, like induction loops, can require
significant roadwork for deployment, frequent maintenance
and monitoring, and are sensitive to proper repairs and instal-
lation work. Further, because of the variability in climate and
traffic conditions, construction techniques, materials, and even
surrounding unrelated ground work are often cited sources of
failure. Good overviews of failure modes and rates (reaching
above 25% in some geographies) can be found in [5] and the
Department of Transportation studies [8].

Instead of induction-loop sensors, directional sensors which
scan for the presence of a car by a passenger’s cell phone
have the potential to eliminate the need for placing sensors in-
ground and for alleviating many of the associated monitoring,
maintenance, and failure issues. To detect whether cars are
passing by, these sensors can use signals beyond the typical
radio-signals emanating from older cell phones, and use radio
frequencies such as wi-fi and bluetooth commonly found in



Fig. 2. Roadway data imported into the SUMO simulator. Left: The 7 lights to be optimized. Right: expanded region of traffic; yellow triangles shows a
representative traffic scenario.

smart phones today. See [19] for a good overview of cellular
phone detection techniques (a sample commercial cell phone
detector for use in vehicle and pedestrian applications can be
found in [14]). An alternative to deploying physical sensors
is to use virtual sensors that effectively work in the same
manner as physical ones. Through applications that reside
on cell phones, such as navigation/map applications that use
GPS as well as tower triangulation, drivers’ geo positions and
velocity can be determined and fed into a centralized server
that controls light controllers. Though not currently typically
done, this becomes possible if light controllers are given
access to external real-time data sources (a central server) that
aggregates anonymized driver positions.

Physical and virtual sensors each have their benefits. The
largest benefit for physical sensors is that traffic lights do not
have to be constantly connected to a central server. Rather, the
physical cell phone sensor can be deployed in a manner similar
to the already well understood locally connected induction
loop sensor. On the other hand, virtual sensors have the benefit
of not deploying extra hardware once the traffic lights are
connected to a centralized controller. Additionally, a variety
of supplementary information gathered through a cell phone’s
multitude of sensors can also augment the GPS tracks. Further,
virtual sensors have the added benefit of easily being able
to use space-time correlations in travel tracks to eliminate
potential over-counting of traffic in scenarios in which multiple
people in the same vehicle are each using their own cell
phones. Additionally, more sophisticated intelligence algo-
rithms, such as machine learning classifiers that differentiate
pedestrian and bike movement patterns from automobile traffic
can be deployed and updated easily. Though still possible
in the case with physical sensors, eliminating the unwanted
signals will either require increased sensor sensitivity or longer
term information across multiple sensors.

Whichever type of sensor is used — physical ones that

interact directly with the radio signals or virtual ones that
require access to user transmitted data through cell phone-
based applications, there must be social acceptance of the
use of this data for traffic lights. Though absolutely none
of the signals require the identification of a user, or strictly
necessitate knowing that the same (anonymous) user was at
two intersections, users need to become comfortable with
municipalities having access to even this level of anonymized
data. Privacy concerns abound; see for example [1] [12]
[15] [18]. Additional worries, some more real than others,
over battery usage, compatibility, fairness, and other policy
decisions must all be proactively addressed. Many issues may
lead to slow deployment of these sensors.

This leads to a chicken-and-egg problem. Without being
able to demonstrate the benefits of using cell phone sensors
(virtual or physical), wide acceptance of the idea may be slow.
What can we do in the meantime? In this paper, we show that
by carefully training traffic light controllers, we can unlock the
benefits of these sensors when only a small fraction of users
participate. Even when the adoption percentages are small,
properly trained traffic light controllers that employ cell phone
based sensors can reveal large benefits to all drivers — even
those that choose not to opt-in.

II. REAL-WORLD DATA

This section describes the data we collected for the exper-
iments presented in this paper. For real-world traffic experi-
mentation, two sets of data are needed: roadway information
(layout, speed limits, etc.), and travel track information: time-
stamped, anonymous location of users in the region of interest.
Note that the travel tracks are just used for training and testing
the controllers; they are not required for deployment.

To gather the road information, we combined the data avail-
able from Google maps and OpenStreetMap [10]. The results
provided reasonable estimates of roadway positions as well as



traffic light locations, as shown in Figure 2. The figure shows
the maps as rendered by the traffic simulator, SUMO [13]
(SUMO is open-source and can be freely downloaded [7]).

In addition to accurate road information, demand for each
road section must be modeled. We created a demand profile
through anonymized location data collected from opted-in
Android cell phone users [3]. The data was collected over
several months. The raw data, which itself does not include
personally identifiable information (PII), was also scrubbed to
further reduce identifiability risks.

From this data, we select data with travel-tracks that inter-
sect with the map area shown. We also filter by time, limiting
to looking at a given start and end date — in particular around
rush hour periods. We then filter all the given times down to
the weekday and time of day (e.g., Tuesday 7am local time).
This provides a close-to-realistic profile of the road demand for
Android users. By overlapping the gathered data over weeks,
we compensated for the fact that all travelers are not Android
users who provide their data.

III. TRAINING TRAFFIC LIGHT CONTROLLERS TO USE
CELL PHONE-BASED SENSORS

Many different types of light controllers are currently de-
ployed. The simplest is the static light controller, in which
there is no communication with other lights or sensors. The
light cycles between phases at predetermined intervals. On the
other end of the spectrum, more sophisticated experimental
controllers incorporate communication with other lights and/or
cars, and employ planning-based approaches [22]. Between
these two extremes are reactive controllers that use induction
loops to sense when a car is waiting and adjust their phase
switching timings based on waiting traffic. How and to what
extent the sensors influence the controller’s decision varies and
continues to be an active area of research. In a recent study, [6]
cast the controller design problem into a micro-auction based
framework in which each phase bids for a turn to become
activated (i.e., if a sensor indicates that the queue to turn left
is suddenly non-empty, the phase with a left turn arrow will
effectively increases its bid to attempt to get instantiated.) 1

In that work, the controller relied on inputs from typical
induction-loop sensors and achieved promising results in two
cities under varying heavy traffic loads. In this paper, we will
use exactly the same controllers with cell phone-based sensors
to test the effectiveness of these new sensors, while keeping
the underlying scheduling algorithms/controllers the same as
those studied previously.

Because cell phone sensors can be wirelessly deployed
without significant road work, it is possible to use multiple
sensors instead of the usual single induction loop that is
typically placed in the pavement next to a traffic light. In
our simulations, we replace each induction loop sensor with
three cell phone sensors — placed 30, 60 and 90 meters away

1Note that the approach presented in [6] differs from other auction-related
controllers in which drivers and/or automated cars can bid for the right of
way [4]. In [6], the auction serves as a unifying internal mechanism to handle
the complexities of prioritizing the different phases (colors) of the lights.

from the light along all the (typically 4) directions of the
intersection. For our simulations in Mountain View, California,
this was done for seven intersections. Unlike induction loop
sensors, however, these sensors can only detect a fraction, F ,
of the cars. That fraction is a controllable parameter and is set
to the percentage of cell phone users that we expect the sensor
to detect (either are able to detect or that users give permission
to detect). As will be described in the next section, we vary F
from 0% to 100% in testing to model different uptake rates.
We also explore the possibility of varying F during training;
the hope is that the controllers will learn to use the sensors
when appropriate and ignore them otherwise.

No matter which algorithm/controller-type is used for traffic
light control, each approach has numerous parameters that
must be specified to complete the program. Even in the
simplest controller with fixed schedules, for each light, the
length of the phases and their offsets have a large impact on
the performance of the system. Numerous machine learning
approaches have been used in setting the parameters and
algorithms, ranging from reinforcement learning [9], [16], to
the most common: genetic algorithms (GA) [17], [21].

Despite the prevalence of genetic algorithms in this domain,
in our studies, we have found a simpler procedure, Next-
Ascent Stochastic-Hillclimbing (NASH), works as effectively
as GAs and is simpler to implement and faster in practice [11].
For the training to commence, we must first specify the set
of parameters that can be modified. Once specified, NASH
operates as follows. A parameter is randomly chosen from
the set and the modification operator for that parameter is
applied. In the simplest case, if the parameter is a real number,
it is perturbed by a small amount (for example ±5%). If the
parameter can take on a set of distinct values, another value
is selected. Once the parameter modifications are made, the
schedule is then repaired, if needed. The repair process ensures
that the parameters are consistent with each other and are set
within the appropriate ranges. For example, in the case of
fixed-schedule light settings, we may want to ensure that the
overall cycle of the light remains constant to keep all lights
synchronized, but the individual phase lengths within the cycle
can change. In this case, once a phase length perturbation
has been made, the repair process ensures that the other other
phase lengths are reduced appropriately to compensate and
keep the overall cycle length static.

Once any repairs are made, the new schedule is evaluated
with the desired objective function, where the objective func-
tion can be set to minimize the overall/average wait time,
travel time, amount of toxic emissions, etc. If the perturbation
improved the performance on the objective function over the
previous settings without the perturbation, the perturbation is
accepted, and the schedule with the perturbation becomes the
new baseline. If the perturbation has not performed as well
on the objective function, the perturbation is discarded. The
previous baseline remains unchanged and the next perturbation
starts from the previous baseline. For the optimization portion
of this study, we set the objective function to minimize the
summed travel time of all the cars in the simulation.



Fig. 3. Distributions of travel times with NASH-calibrated-lights and actual/observed data.

A. Training Specifics and Avoiding Overfitting

In this subsection, we briefly detail some of the training
specifics for reproducibility. After the perturbation and repair
process described above, the evaluation process first instanti-
ates the controllers within the SUMO framework. Then, the
recorded traffic (based on the travel tracks) is injected into the
simulation and the total travel time of the cars to travel from
their origin to destinations is calculated. In accordance to the
objective function, the lower the total, the better the solution.

For the experiments presented in this study, a number
of parameters are accessible to the training procedure for
it to modify: whether a detector was used, each individual
detector’s weight, the minimum and maximum duration of
each phase, and the light’s phase offset value (this determines
which phase the light starts in).

Similar to standard machine learning practice, it is important
to ensure that the training process does not overfit the training
data. If we simply used the travel-tracks as they were collected
from the cars in Mountain View, CA, the trained controllers
would reduce their travel times significantly. However, because
of over-training, they would not perform well on other, even
similar, scenarios. To avoid overfitting, triplets are extracted
from the original travel-tracks [origin, destination, injection-
time]. Here, origin and destination are geographic points where
the car entered/exited the area of interest, and injection-time
is the time that the car entered the zone. Recall that if the
injection-time was not used in simulation, realistic traffic jams
would not occur. Approximately 48,000 triplets are created.
Rather than using the original set of triplets directly, prior to
training, 5 related scenarios are synthesized from the original
set. For each of the 5 scenarios, each triplet may be perturbed:
there is a small probability of being replicated, deleted, or
altering the injection time by up to two minutes. These small
changes will drastically effect the overall behavior of the
system. Each parameter setting’s score is based on its ability
to minimize the summed travel-times across all 5 scenarios.
In this manner, we prevent over-training the controller to one
specific scenario, while still customizing it to realistic flows.

In all of the experiments, this entire perturb-evaluate-update

cycle is iterated until 2,000 candidate parameter settings are
tried. The best of the 2,000 parameter setting is returned as
the controller setting.

IV. SETTING A REALISTIC BASELINE

Before examining how the new sensors work, we must first
have a realistic baseline performance of the deployed lights.
Despite having information on where the traffic lights are and
the actual traffic flows, the existing traffic light schedules and
behaviors are often not accessible. Rarely are they kept in
a central database, and even when they are, they are often
not always obtainable. Unfortunately, without the existing
schedule information, it is difficult to ascertain the real-
improvements of this study — especially on traffic patterns
(such as increased traffic load) that were not seen during data
collection.

In the previous section, NASH was used to train the traffic
light controllers to minimize travel times. In this section, we
use NASH to estimate the settings of the traffic lights that
are currently installed. Instead of optimizing the traffic lights
behavior to maximize throughput, we learn the traffic light
parameters which mimic the observed travel-tracks [2].

As described earlier, central to the training procedure is the
objective function. Previously, the evaluation of the controller
was based on the objective to minimize the summed time for
the cars from origin to destination. Here, we specify a new
objective function:

min
∑
c∈C
|JourneyTimeh(c)− JourneyTimea(c)| (1)

where h and a are the hypothesized and actual light settings,
and C denotes the set of cars in the simulation. Minimizing this
objective allows us to determine light settings that generate
a simulated traffic flow that closely mirrors the actual flow
through the same road network.

Numerous tests were conducted to verify that the timings
found by using this method correspond, in behavior, to those
observed in the data. Figure 3 shows the distribution of travel
times obtained through simulation with the calibrated lights



TABLE I
MEAN TRAVEL TIME (MTT) UNDER INCREASING LOAD WITH MATCHED
& STATIC-OPTIMIZED CONTROLLERS (UNIT:SECONDS). With no sensors,

this is independent of cell phone usage.

L =0.5 1.0 1.2 1.5 2.0
Baseline1: matched to existing 104 250 362 440 495

Baseline2: static-optimized 100 106 199 314 401

and those from the actual distribution. Though beyond the
scope of this paper, the reader is referred to [2] for more
details on matching deployed lights.

V. EXPERIMENTAL RESULTS:
THE RIGHT TIME TO DEPLOY CELL PHONE SENSORS?
In the previous section, we set the parameters on the

static-light controller to match the behavior of the currently
deployed lights. With those controller settings, we can test
how the currently deployed lights perform under various load
conditions. We scale the load, L, to inject up to 2× the number
of cars in the same time period. The mean travel times are
shown in the first row of Table I.

As shown in Table I, when the load is increased from 0.5×
to 2× the training load, there is the expected increase in mean
travel times (MTT) — the roadways became more crowded
and the traffic jams more severe. This is the first baseline;
it measured how the currently deployed traffic lights would
perform under increasing load.

The next row of the table establishes a much stronger
baseline which is required for a more fair comparison. We
continue with the static-timing controllers; however, the phase-
timings and phase-offsets (light programs) are trained using
NASH to minimize the mean travel time of the observed
flows. In contrast to the first row, instead of using timings for
the lights that matched those currently deployed, the static-
optimized lights’ parameters are trained to minimize travel
time. Improvement is seen under all load conditions. It is
important to note that still no sensors (cell phone or induction)
are used. This is similar to many existing traffic lights that
employ a fixed schedule that does not vary with the number
of cars waiting.

With the two baselines calculated, we return to the con-
trollers that can take advantage of sensors. The reactive
controllers (as described earlier, these are based on [6]) are
trained using NASH: in addition to the controllers’ schedules
being optimized, the weight given to the cell phone sensors
is also optimized (details are in Section III-A). First, we
examine the optimal case in which every driver that has a
cell phone that is detected. This case also approximates the
behavior of having 3 standard induction loop sensors, since
all the cars are sensed. Table II (row 1) shows the results
under these assumptions (F = 100%). Under all loads, the
performance outperformed the matched-lights and the static
optimized lights. Significant out-performance was achieved
when testing larger loads L > 1.0×. This is expected as
sensors allow the traffic lights to be adaptive to existing traffic
conditions.

TABLE II
MTT (SEC.) AUCTION-BASED CONTROLLERS TESTED WITH VARYING

CELL USAGE AND LOAD.

Cell Usage (%) L =0.5 1.0 1.2 1.5 2.0
F = 100% 100 102 105 232 314
F = 50% 101 103 103 211 305
F = 20% 105 106 107 227 309
F = 10% 113 128 141 274 330
F = 2% 282 621 692 633 763
F = 0% 847 1077 1096 1113 1063

The more difficult cases arise when a smaller percentage of
cars have usable cell phone signals. The second row examines
what happens when the fraction, F , of usable cell phones drops
by half to 50%. In this case, only 50% of the cell phone users
have opted into allowing their signal to be used for traffic
lights. The results are largely unchanged. Going further, an
important result is witnessed, even when F is dropped to
20%, little change in performance is seen compared to
the optimal case of F = 100%. This trend does not hold
when F < 10%. At F < 10%, there are noticeable increases
across all load settings. When examining F = 2% and 0%,
the controllers perform poorly in every respect, even when
compared to the currently deployed traffic lights.

These results immediately raise two questions. First, why
does the performance not degrade much in the beginning? This
has to do with the nature of traffic. In heavy traffic times the
chances of having a nearby car trigger the cell phone sensor
is high. Even in less busy times, traffic is often bursty, as
clumps of traffic travel in clusters through lights. Therefore, in
populated regions where these intelligent lights may have the
most benefit, single cars waiting at a light is rarely seen during
busy travel times. The clumpy nature of traffic controlled by
traffic lights increases the likelihood that there will be a car
near you that has a cell phone that is detected.

Second, why does performance fall below the light con-
trollers that use no sensors? This answer is more complex.
During training, we had to select a fraction of cell phones
present in the training scenarios. The results reported here
are those from training with F = 100% (even though we
test with a variety of settings 0 ≤ F ≤ 100% – as shown
in the table). Through training, the learning procedure found
the information in the sensors useful, and thus the controller
set its policies relying on readings from those sensors. In
testing, we drastically changed the underlying assumptions –
when F fell below 10%, the testing conditions sufficiently
changed from training, and the sensors no longer provided
enough information to base control decision upon. The light
controllers waited, unsuccessfully, for the sensors to trigger
phase changes. This caused severe gridlock.

This leads to a important question - what happens if we
train using scenarios in which F is small? To answers
this question, the full set of the experiments and training
procedures was repeated multiple times with various settings
for F . When F < 5% in training, the learning procedure au-
tomatically removed all sensors and effectively converted the



auction-based lights into static lights! There were not enough
cell phones to provide reliable inputs into the controller. When
F was raised higher, but under 20%, the results were varied;
some controllers used the sensors, others did not; however,
they did not consistently outperform training with F = 100%,
even when tested with lower F .

Finally, it is interesting to note that when the settings
for F were raised above 20% in training, the performance
of the controllers performed similarly to those trained with
F = 100% across all load levels in the realistic operating
regions: when the fraction of cell phones in deployment in-
creased above 10%. In all cases, below 10% actual cell phone
deployment, no matter the training scenarios, the scarcity of
cell phones was not overcome and either static controllers or
controllers with induction sensors are preferred. In summary,
when the adoption rate surpassed a relatively modest 10%-
20%, it was possible - under numerous training conditions -
to learn controllers that provided benefit to all drivers.

VI. CONCLUSIONS AND FUTURE WORK

The most salient finding is that by even using only a small
subset of drivers’ cell phone signals, traffic light controllers
can provide a benefit that is shared by all drivers. In the
simulations presented here, the tipping points are between 10-
20% of drivers. When that point is reached, cell phone based
sensors can be deployed in heavy traffic intersections – which
will likely see benefits in terms of reduced deployment cost,
reduced maintenance and less disruption caused to drivers
through installation and repairs. Before the tipping point is
reached, however, static lights, or traditional induction loop
sensors, will likely be more reliable.

The results presented in this paper are applicable to physical
and virtual sensors. If the traffic lights are coordinated through
a central server, it is possible to use cell phone GPS coor-
dinates that are uploaded to a central repository to virtually
measure traffic density on roads and thereby emulate (and
expand upon) physical sensors. Regardless of whether the
sensors are physical or virtual, many of the same adoption
hurdles and concerns will need to be addressed.

There are three immediate areas for future research. If phys-
ical sensors are to be deployed, the first step is to determine the
accuracy of commercial and research-based cell phone sensors
for this domain. This will directly impact the percentage of
users that are required to opt-in and may shift the tipping point.
Second, earlier, we alluded to the problem of finding multiple
cell phones in the same car and mistaking them as extra
traffic. Though detecting this scenario is possible, (especially
with virtual servers where the analysis is done on the server
side [20]), an interesting alternative is to intentionally not
distinguish this case. This would give preferential treatment
to cars with more riders – thereby reducing mean wait times
across passengers (not cars) and even encouraging car pooling.
This is left for policy makers to decide. Finally, training
with small F deserves to be revisited for further study. In
particular, learning to intelligently switch between sensing and

non-sensing modes may further reduce the tipping points and
make this applicable to infrequently traveled roads as well.
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