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Abstract

Intelligent vehicles must make real-time tactical level decisions to drive in mixed traffic environments.
SAPIENT is a reasoning system that combines high-level task goals with low-level sensor constraints to
control simulated and (ultimately) real vehicles like the Carnegie Mellon Navlab robot vans.

SAPIENT consists of a number of reasoning modules whose outputs are combined using a voting scheme.
The behavior of these modules is directly dependent on a large number of parameters both internal and
external to the modules. Without carefully setting these parameters, it is difficult to assess whether the rea-
soning modules can interact correctly; furthermore, selecting good values for these parameters manually is
tedious and error-prone. We use an evolutionary algorithm, termed Population-Based Incremental Learn-
ing, to automatically set each module’s parameters. This allows us to determine whether the combination
of chosen modules is well suited for the desired task, enables the rapid integration of new modules into
existing SAPIENT configurations, and provides a painless way to find good parameter settings.
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Figure 1: Car A is approaching its desired exit behind a slow vehicle B. Should Car A attempt to pass?

1. Introduction

The task of driving can be characterized as consisting of three levels: strategic, tactical and operational [10].
At the highest (strategic) level, a route is planned and goals are determined; at the intermediate (tactical)
level, maneuvers are selected to achieve short-term objectives — such as deciding whether to pass a blocking
vehicle; and at the lowest level, these maneuvers are translated into control operations.

Mobile robot research has successfully addressed the three levels to different degrees. Strategic level
planners [15, 21] have advanced from research projects to commercial products. The operational level
has been investigated for many decades, resulting in systems that range from semi-autonomous vehicle
control [6, 9] to autonomous driving in a variety of situations [5, 16, 11]. Substantial progress in autonomous
navigation in simulated domains has also been reported in recent years [14, 13, 4, 12]. However, the decisions
required at the tactical level are difficult and a general solution remains elusive.

Consider the typical tactical decision scenario depicted in Figure 1: Our vehicle (A) is in the right lane of
a divided highway, approaching the chosen exit. Unfortunately, a slow car (B) blocks our lane, preventing
us from moving at our preferred velocity. Our desire to pass the slow car conflicts with our reluctance to
miss the exit. The correct decision in this case depends not only on the distance to the exit, but also on
the traffic configuration in the area. Even if the distance to the exit is sufficient for a pass, there may be
no suitable gaps in the right lane ahead before the exit. SAPIENT, described in Section 3, is a collection
of intelligent vehicle algorithms designed to drive the Carnegie Mellon Navlab [20, 7] in situations similar
to the given scenario. SAPIENT has a distributed architecture which enables researchers to quickly add
new reasoning modules to an existing configuration, but it does not address the problem of reconfiguring
the parameters in the new system. We present an evolutionary algorithm, Population Based Incremental
Learning (PBIL) that automatically searches this parameter space and learns to drive vehicles in traffic.

2. SHIVA

Simulation is essential in developing intelligent vehicle systems because testing new algorithms in human
traffic is risky and potentially disastrous. SHIVA1 (Simulated Highways for Intelligent Vehicle Algo-
rithms) [19, 18] is a kinematic micro-simulation of vehicles moving and interacting on a user-defined
stretch of roadway that models the elements of the tactical driving domain most useful to intelligent vehicle
designers. The vehicles can be equipped with simulated human drivers as well as sensors and algorithms
for automated control. These algorithms influence the vehicles’ motion through simulated commands to
the accelerator, brake and steering wheel. SHIVA’s user interface provides facilities for visualizing and
influencing the interactions between vehicles (See Figure 2). The internal structure of the simulator is

1For more information, graphics, and a 3-D walk-through, see <http://www.cs.cmu.edu/�rahuls/shiva.html>



Figure 2: SHIVA: A design and simulation tool for developing intelligent vehicle algorithms.
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Figure 3: Each vehicle is composed of three subsystems which interact with the simulated world.

comprehensively covered in [19] and details of the design tools may be found in [18].
SHIVA’s architecture is open-ended, enabling researchers to simulate interactions between a variety of

vehicle configurations. All vehicles can be functionally represented as consisting of three subsystems:
perception, cognition and control (See Figure 3).

2.1. Perception

The perception subsystem consists of a suite of functional sensors (e.g. GPS, range-sensors, lane-trackers),
whose outputs are similar to real perception modules implemented on the Navlab vehicles. SHIVA vehicles
use these sensors to get information about the road geometry and surrounding traffic. Vehicles may control
the sensors directly, activating and panning the sensors as needed, encouraging active perception. Some
sensors also model occlusion and noise, forcing cognition routines to be realistic in their input assumptions.
Two perception components are particularly relevant to this paper: the lane tracker, and the car tracker.

The lane tracker assumes a pure-pursuit[22] model of road-following. This means that the lane tracker
suggests a steering arc that will bring the vehicle to the center of the lane after traveling a (velocity dependent)
lookahead distance. The lane tracker may also be directed to steer the vehicle towards an arbitrary lateral
offset on the road. Thus, lane changing is implemented by smoothly varying the lateral position of the
pure-pursuit point from the center of one lane to the center of the desired adjacent lane[8]. It is important
to note that the actual lateral offset of the vehicle always lags the current position of its pure-pursuit point.

Car tracking is a two step process. In the first phase, the sensor determines the nearest visible vehicle in its
range and field of view. In the second, the sensed vehicle’s position is transformed into road coordinates (i.e.



relative lateral and longitudinal offsets). This allows the tactical reasoning algorithms to remain invariant
over changes in road curvature. Car trackers scanning different areas of the road (e.g. front-right, rear-right)
are activated as needed during tactical maneuvers to provide relevant information about surrounding traffic.

2.2. Cognition

While a variety of cognition modules have been developed in SHIVA, this paper is only concerned with
two types: rule-based reasoning and SAPIENT. The rule-based reasoning module is implemented as a
monolithic decision tree. An internal state reflects the current mode of operation (lane changing, lane
tracking, seeking an exit etc.) and hand-crafted rules are used to generate actions (steering command and
velocity changes) and state transitions. While this system performs well on many scenarios, it suffers from
three main disadvantages: 1) modification of the rules is difficult since a small change in desired behavior
can require many non-local modifications; 2) hand-coded rules perform poorly in unanticipated situations;
3) implementing new features requires one to consider an exponential number of interactions with existing
rules. Similar problems were reported by Cremer et al [4] in their initial state-machine implementation
for scenario control. To address some of these problems, we have developed a distributed reasoning
architecture, SAPIENT, which is discussed more fully in Section 3.

2.3. Control

The control subsystem is compatible with the controller available on the Carnegie Mellon Navlab II robot
testbed vehicle, and only allows vehicles to control desired velocity and steering curvature. Denying control
over acceleration prevents simulated vehicles from performing operations such as platooning, but ensures
that systems developed in simulation can be directly ported onto existing hardware.

3. SAPIENT

SAPIENT (Situational Awareness Planner Implementing Effective Navigation in Traffic) [17, 3] is a rea-
soning system designed to solve tactical driving problems. To overcome deficiencies with the monolithic
reasoning systems described in Section 2.2, SAPIENT partitions the driving task into many independent
aspects, each one represented by an independent agent known as a reasoning object (See Section 3.1).

3.1. Reasoning Objects

Wherever possible, each reasoning object represents a physical entity relevant to the driving task (e.g. car
ahead, upcoming exit). Similarly, different aspects of the vehicle’s self-state (e.g. how velocity compares to
desired velocity) are also represented as individual reasoning objects. Every reasoning object takes inputs
from one or more sensors (e.g. the reasoning object for the vehicle ahead monitors forward-facing car
tracking sensors).

Each reasoning object tracks relevant attributes of the appropriate entity. Some aspects of the tactical
situation can be represented using stateless models of the entity (e.g. speed limits) while others require
information about the past (e.g. lane changing). Reasoning objects do not communicate with each other,
and are activated and destroyed in response to sensed events and higher level commands. For example, the
Exit Object activates only when the desired exit is nearby, andSensed Car Objects are destroyed
when the vehicle being tracked moves out of the region of interest. Each reasoning object examines the
repercussions of each action (See Section 3.2) as it would affect the appropriate entity. Thus an Exit
Object analyzes a possible right lane change only in terms of its impact on the chance of making the
desired exit, and ignores the possible interactions with vehicles in the right lane (this is taken care of by other
reasoning objects). Every reasoning object then presents its recommendations about the desirability of each



proposed maneuver. For this to work, all reasoning objects must share a common output representation. In
SAPIENT, every object votes over a predetermined set of actions.

3.2. Actions

At the tactical level, all actions have a longitudinal and a lateral component. This choice of coordinate
frames allows reasoning objects to be invariant of the underlying road geometry as far as possible. Intu-
itively, longitudinal commands correspond to speeding up or braking, while lateral commands map to lane
changes. More complex maneuvers are created by combining these basic actions. Since the scales in the
two dimensions vary widely, longitudinal commands are interpreted as velocity changes, whereas lateral
commands correspond to changes in displacement. Thus the null action represents maintaining speed in the
current lane.

Tactical maneuvers (such as lane changing) are composed of a sequence of actions, which when con-
catenated, produce the desired change. Each reasoning object independently maintains the state required
to complete the maneuver, and while this decision complicates the internals of certain reasoning objects, it
also enables SAPIENT to easily abort maneuvers during an emergency. For example, a left lane change in
progress can be aborted if the front-left sensor reports a sudden decrease in velocity of its tracked vehicle.

Reasoning objects indicate their preference for a given action by assigning a vote to that action. The
magnitude of the vote corresponds to the intensity of the preference and its sign indicates approval or
disapproval. Each reasoning object must assign some vote to every action in the action space. This
information is expressed as the action matrix. For the experiments reported in this paper, we used the
following simple 3� 3 action matrix:

decel-left nil-left accel-left
decel-nil nil-nil accel-nil

decel-right nil-right accel-right

If smoother control is desired, an action matrix with more rows and/or columns may be used.
Since different reasoning objects can return different recommendations for the same action, conflicts

must be resolved and a good action selected. SAPIENT uses a voting arbiter to perform this assimilation.
During arbitration, the votes in each reasoning object’s action matrix are multiplied by a scalar weight, and
the resulting matrices are summed together to create the cumulative action matrix. The action with the
highest cumulative vote is selected for execution in the next time-step. This action is sent to the controller
and converted into actuator commands (steering and velocity control).

3.3. Parameters

As described in Section 3.1, different reasoning objects use different internal algorithms. Each reasoning
object’s evaluation depends on a variety of internal parameters (e.g. thresholds, gains etc) and the resulting
action matrices are then scaled by weights, known here as external parameters. Since this parameter space
grows linearly with the number of reasoning objects in the SAPIENT module, tuning these parameters
manually becomes a time-consuming and error-prone task.

When a new reasoning object is being implemented, it is difficult to determine whether poor performance
should be attributed to a bad choice of parameters, a bug within the new module or, more seriously, to a
poor representation scheme (inadequate configuration of reasoning objects). To overcome this difficulty,
we implemented a method for automatically configuring the parameter space. A total of twenty parameters,
both internal and external, were selected for this test, and each such parameter was discretized into eight
values (to be represented as a three-bit string). For internal parameters, whose values are expected to remain
within a certain small range, we selected a linear mapping (where the three bit string represented integers
from 0 to 7); for the external parameters (weights), we used an exponential representation (with the three



****** Initialize Probability Vector ******
for i := 1 to LENGTH do P[i] = 0.5;

while (NOT termination condition)
        ****** Generate Samples ******
        for i := 1 to SAMPLES do
                sample_vectors[i] := generate_sample_vector_according_to_probabilities(P);
                evaluations[i] := Evaluate_Solution( sample_vectors[i]; );
        best_vector := find_vector_with_best_evaluation( sample_vectors, evaluations );

        ****** Update Probability Vector towards best solution ******
        for i := 1 to LENGTH do
                P[i] := P[i] * (1.0 − LR) + best_vector[i] * (LR);

        ****** Mutate Probability Vector ******
        for i := 1 to LENGTH do
                if (random (0,1) < MUT_PROBABILITY) then
                        if (random (0,1) > 0.5) then mutate_direction := 1;
                        else mutate_direction := 0;
                        P[i] := P[i] * (1.0 − MUT_SHIFT) + mutate_direction * (MUT_SHIFT);

USER DEFINED CONSTANTS (Values Used in this Study):
SAMPLES: the number of vectors generated before update of the probability vector (100)
LR: the learning rate, how fast to exploit the search performed (0.1).
LENGTH: the number of bits in a generated vector (3 * 20)
MUT_PROBABILITY: the probability of a mutation occuring in each position (0.02).
MUT_SHIFT: the amount a mutation alters the value in the bit position (0.05).

Figure 4: PBIL algorithm, explicit preservation of best solution from one generation to next is not shown.

bit string mapping to weights of 0 to 128). The latter representation increases the range of possible weights
at the cost of sacrificing resolution at the higher magnitudes. Using a longer bit string would allow finer
tuning but increase learning time. In the next section, we describe the evolutionary algorithm used for the
learning task.

4. Population Based Incremental Learning

Population-based incremental learning (PBIL) is a combination of evolutionary optimization and hill-
climbing [2, 1]. The object of the algorithm is to create a real valued probability vector which, when sampled,
reveals high quality solution vectors with a high probability. For example, if a good solution to a problem can
be encoded as the string “0101. . . ”, a suitable final probability vector would be (0:01;0:99;0:01; 0:99; . . .).

Initially, the values of the probability vector are set to 0.5. Sampling from this vector yields random
solution vectors because the probability of generating a 0 or a 1 is equal. As search progresses, the values in
the probability vector gradually shift to represent high evaluation solution vectors. This is accomplished as
follows: A number of solution vectors are generated based upon the probabilities specified in the probability
vector. The probability vector is then pushed towards the best solution vector from set. The distance the
probability vector is pushed depends upon the learning rate parameter. After the probability vector is
updated, a new set of solution vectors is produced by sampling from the updated vector, and the cycle is
continued. Each update of the probability vector marks the end of a generation. As the search progresses,
entries in the probability vector move away from their initial settings of 0.5 towards either 0.0 or 1.0. The
probability vector can be viewed as a prototype vector for generating solution vectors which have high
evaluations with respect to the available knowledge of the search space. The full algorithm is shown in
Figure 4.

Because of the small size of the population used, and the probabilistic generation of solution vectors,
it is possible that a good vector may not be created in every generation. Therefore, in order to avoid
moving towards unproductive areas of the search space, the best vector from the previous population is
included in the current population (by replacing the worst member of the current population). This solution
vector is only used if the current generation does not produce a better solution vector. In genetic algorithm
literature, this technique of preserving the best solution vector from one generation to the next is termed
elitist selection, and is used to prevent the loss of good solutions once they are found.



Figure 5: The cyclotron test track

Our application challenges PBIL in a number of ways. First, since a vehicle’s decisions depend on the
behavior of other vehicles which are not under its control, each simulation can produce a different evaluation
for the same bit string. We must evaluate each set of vehicle parameters multiple times to compensate for
the stochastic nature of the environment. Second, the PBIL algorithm is never exposed to all possible traffic
situations (thus making it impossible to estimate the “true” performance of a PBIL string). Third, since
each evaluation takes considerable time to simulate, it is important to minimize the number of evaluations
needed to learn a good set of parameters.

5. Scenario

All of the tests described below were performed on the track shown in Figure 5, known as the Cyclotron.
While this highway configuration is not encountered in real-life, it has several advantages as a testbed:

1. It is topologically identical to a highway with equally spaced exits.

2. The entire track can be displayed on a workstation screen.

3. One can create challenging traffic interactions at the entry and exit merges with only a small number
of vehicles.

4. Taking the nth exit is equivalent to traveling n laps of the course.

Each scenario was initialized with one PBIL vehicle, and eight rule-based cars (with hand-crafted decision
trees). The PBIL car was directed to take the second exit (1.5 revolutions) while the other cars had goals of
zero to five laps. Whenever the total number of vehicles on the track dropped below nine, a new vehicle
was injected at the entry ramp (with the restriction that there was always exactly one PBIL vehicle on the
course).

Whenever a PBIL vehicle left the scenario (upon taking an exit, or crashing), its evaluation was
computed based on statistics collected during its run. This score was used by the PBIL algorithm to update
the probability vector — thus creating better PBIL vehicles in the next generation.

While driving performance is often subjective, all good drivers should display the following character-
istics: they should drive without colliding with other cars, try to take the correct exit, maintain their desired



velocity and drive without straddling the lane markers. Additionally, they should always recommend some
course of action, even in hopeless situations.

We encoded the above heuristics as an evaluation function:

Eval = (�10000� all-veto)(�1000� num-crashes)(�500� if-wrong-exit)

(�0:02� accum-speed-deviation)(�0:02� accum-lane-deviation)(+1:0� dist-traveled)

where:

� all-veto indicates that the PBIL vehicle has extreme objections to all possible actions. With good
parameters, this should only occur just before a serious crash.

� num-crashes is the number of collisions involving the PBIL vehicle.

� if-wrong-exit is a flag, which is true if and only if the PBIL vehicle exited prematurely, or
otherwise missed its designated exit.

� accum-speed-deviation is the difference between desired and actual velocities, integrated
over the entire run.

� accum-lane-deviation is the deviation from the center of a lane, integrated over the entire run.

� dist-traveled is the length of the run, in meters; this incremental reward for partial completion
helps learning.

While the evaluation function is a reasonable measure of performance, it is important to note that there
may be cases when a “good” driver is involved in unavoidable crashes; conversely, favorable circumstances
may enable “bad” vehicles to score well on an easy scenario. To minimize the effects of such cases, we
tested each PBIL string in the population on a set of four scenarios. In addition to normal traffic, these
scenarios also included some pathological cases with broken-down vehicles obstructing one or more lanes.

6. Results

We performed a series of experiments using a variety of population sizes, evaluation functions and initial
conditions. The evaluation of vehicles using the learned parameters in each case were found to be consistent.
This indicates that our algorithms are tolerant of small changes in evaluation function and environmental
conditions, and that PBIL is reliably able to optimize parameter sets in this domain. Figure 6 shows
the results of one such evolutionary experiment with a population size of 100. This 3-D histogram
displays the distribution of vehicles scoring a certain evaluation for each generation. It is clear that
as the parameters evolve in successive generations, the average performance of vehicles increases and the
variance of evaluations within a generation decreases. Good performance of some vehicles in the population
is achieved early (by generation 5) although consistently good evaluations are not observed until generation
15. The number of vehicles scoring poor evaluations drops rapidly until generation 10, after which there
are only occasional low scores. The PBIL strings converge to a stable set of parameters and by the last
generation, the majority of the PBIL vehicles are able to circle the track, take the proper exit, and avoid
crashes.

It should be noted, however, that even cars created in the final generation are not guaranteed to work
perfectly. This is because the parameters are generated by sampling the probability vector. Therefore, it
is possible, though unlikely in later generations, to create cars with bad sets of parameters. Furthermore,
not all accidents are avoidable: they may be caused by dangerous maneuvers made by the other vehicles in
response to the difficult traffic situations that often arise in tactical driving domains.
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Figure 6: 3-D Histogram showing increase of high-scoring PBIL strings over successive generations.
Population size is 100 cars in each generation.

7. Conclusion

Our experiments demonstrate the potential for intelligent behavior in the driving domain using a set of
distributed, adaptive, reasoning agents. The SAPIENT architecture allows vehicles to appropriately react to
changing driving conditions by activating specific reasoning objects. Using PBIL, we are able to painlessly
(for us, not the computer) prototype new reasoning objects in this architecture, and determine whether the
reasoning object configurations are suitable for the given traffic scenarios.

In the near future, we plan to extend the reasoning object paradigm to include aggregates of reasoning
objects (to allow integration of non-local knowledge). We also hope to explore the possibility of learning
altruistic behavior in a collection of PBIL vehicles optimizing a shared evaluation function. We are also
developing reasoning objects to tackle additional complications such as vehicle dynamics and noisy sensors.
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