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Abstract

Recent studies have examined the effectiveness of using probabilistic models
to guide the sample generation process for searching high dimensional spaces.
Although the simplest models, which do not account for parameter interdepen-
dencies, often perform well on many problems, they may perform poorly when
used on problems that have a high degree of interdependence between parame-
ters. More complex dependency networks that can account for the interactions
between parameters are required. However, building these networks may
necessitate enormous amounts of sampling. In this paper, we demonstrate how
a priori knowledge of parameter dependencies, even incomplete knowledge,
can be incorporated to efficiently obtain accurate models that account for
parameter interdependencies. This is achieved by effectively putting priors on
the network structures that are created. These more accurate models yield
improved results when used to guide the sample generation process for search
and also when used to initialize the starting points of other search algorithms. 

1   Introduction

Within the past few years, there has been increased interest in using probabilistic model-
ing for combinatorial optimization. Unlike hillclimbing methods, which operate by sam-
pling solutions neighboring the current solution, probabilistic methods explicitly maintain
statistics about the search space by creating models of the good solutions found so far.
These models are sampled to generate the next query points to be evaluated. The high-per-
forming sampled solutions are then used to update the model, and the cycle is continued.
Comprehensive survey papers of this literature are available [28][31][39][40][41].

A closely related optimization procedure is the genetic algorithm (GA). By maintaining a
population of points, GAs can be viewed as creating implicit probabilistic models of the
solutions seen in the search. In many standard GAs, new sampling points are generated by
applying randomized recombination operators to two or more of the high-performance
members of a population [10][15][23]. These recombination operators, such as one-point,
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two-point or uniform crossover, randomly select non-overlapping subsets of two “parent”
solutions to place into “children” solution. By using a crossover operator that preserves
groups of parameters from parent to children strings, GAs attempt to implicitly capture
dependencies between the parameters. The randomization of crossover is necessary
because no information about which parameter interdependencies are important is explic-
itly maintained. Therefore, when combining two very different solutions, numerous cross-
over operations may be required before a useful child solution is produced. 

One of the first steps towards making the GA’s probabilistic model more explicit was the
“Bit-Based Simulated Crossover (BSC)” operator [44]. Instead of combining pairs of
solutions, population-level statistics were used to generate new solutions. The BSC opera-
tor works as follows: for each bit position2, the number of members that contain a one in
that bit position is counted. Each member’s contribution is weighted by its fitness with
respect to the target optimization function. The same process is used to count the number
of zeros. Instead of using pair-wise crossover operators to generate new solutions, BSC
generates new query points by stochastically assigning each bit’s value with the probabil-
ity of having seen that value in the previous population (the value specified by the
weighted count). 

The ideas incorporated into Population-Based Incremental Learning (PBIL) [1] were sim-
ilar to those used in BSC. While BSC used a population of solutions from which the sam-
pling statistics were entirely rederived after each generation, PBIL incrementally adjusts
its sampling statistics after each generation. PBIL is similar to a cooperative system of dis-
crete learning automata in which the automata choose their actions independently, but all
automata receive a common reinforcement dependent upon all their actions [45]. Unlike
most previous studies of learning automata, which have commonly addressed optimiza-
tion in noisy but very small environments, PBIL was used to explore large deterministic
spaces. The algorithm maintains a real-valued probability vector from which solutions are
generated. As search progresses, the values in the probability vector are gradually shifted
to represent high-evaluation solution vectors. 

Note that the probabilistic model created in PBIL and BSC is extremely simple: there are
no inter-parameter dependencies modeled; each bit is generated independently. Although
this simple probabilistic model was used, PBIL was successful when compared to a vari-
ety of standard genetic algorithms and hillclimbing algorithms on numerous benchmark
and real-world problems [2][3][18]. A more theoretical analysis of PBIL can be found in
[16][17][22][25][27]. An analysis of PBIL in the Univariate Marginal Distribution frame-
work is given in [33]. Limitations to the PBIL algorithm were described in [12]: PBIL and
BSC may not perform as well as pair-wise operators when tested on problems explicitly
designed with a high degree of interdependence between parameters. 

More complex models in the form of probabilistic networks were introduced to overcome
the limitations of models that assumed each parameter was independent. Although these
models provided a more accurate representation of the high evaluation solutions, they also
required more samples to be used effectively. To reduce the amount of required data, stud-
ies were conducted with networks that modeled only a subset of the possible dependencies

2. Note that in this paper, we will discuss optimization with the solutions represented as binary vectors. However, the 
use of probabilistic models for optimization has been extended to continuous search spaces, for examples see 
[7][14][29][42].
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[4][5][11]. 

In this paper, we show how a priori knowledge of the problem or of the search space can
be used to direct the creation of the probabilistic networks. The interactions of variables in
the objective function can be more accurately ascertained from the sampled points if
knowledge of the problem is used. This helps to overcome the drawbacks of limited sam-
ple sizes by ensuring that the modeled dependencies are reflective of real dependencies in
the problem and not merely spurious correlations in the sampled solutions. We demon-
strate empirically that by creating more accurate models, we improve the quality of the
final solutions found through the search.

In the next section, we review the PBIL algorithm. We also show how a simple probabilis-
tic model can be extended to capture dependencies; this work was originally presented in
[4]. Section 3 gives an introduction to how a priori knowledge can be incorporated into
model creation. Section 4 empirically demonstrates the effectiveness on a set of four prob-
lems. Section 4 also shows the effectiveness of incorporating knowledge into the networks
that are used as “wrappers” to initialize the starting points of faster search algorithms.
Finally, Section 5 closes the paper with conclusions and suggestions for future work. 

2   Probabilistic Models

In this section, we review the basic PBIL algorithm and show how it can be extended to
incorporate models to capture parameter interdependencies.

2.1 Basic PBIL Framework

PBIL employs a simple probabilistic model to independently track the distributions of the
bits in the high evaluation solutions. In each generation, only the samples with the best
evaluations contribute to the next generation’s population; the remaining members are dis-
carded [1][2]. This is akin to truncation selection in genetic algorithms.

The algorithm works as follows: candidate solutions are generated by sampling a real-val-
ued vector, P. P specifies the probability of generating a 1 in each bit position. A number
of solution vectors are generated by stochastically sampling P; each bit is sampled inde-
pendently. The probability vector is then moved towards the solution vectors for which the
evaluation function returns the best values, according to Equation 1. The update rule is
similar to those used in unsupervised competitive learning [21]. 

(1)

Pt,i is the value of the probability vector at time t, for parameter i. BestSolutionVectori is
the value of parameter i in the vector being used to update the probability vector. α is a
learning rate parameter that determines how much each new datapoint changes the value
of the probability vector. The basic version of the PBIL algorithm is shown in Figure 1.
The final result of the PBIL algorithm is the best solution generated throughout the search.
Numerous extensions, such as those commonly used with genetic algorithms, are possible. 

To visually demonstrate how the PBIL algorithm works, we examine the values in the

Pt 1 i,+ 1 α–( ) Pt i, α+ BestSolutionVectori⋅ ⋅=
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probability vector through multiple generations. Consider the following maximization
problem: 1.0/|(366503875925-X)|, where 0≤X< 240. Note that 366503875925 is repre-
sented in binary as a string of 20 pairs of alternating ‘01’. The values in the probability
vector over time are shown in Figure 2. Note that the most significant bits are pinned to
either 0 or 1 very quickly, while the least significant bits are pinned last. This is because
during the early portions of the search, the most significant bits yield more information
about high-evaluation regions of the search space than the least significant bits. 

2.2 Modeling Dependencies 

In genetic algorithms, the crossover operator is used as an attempt to combine “building
blocks” from two different solutions into a new “child” solution. It is clear, however, that

for i :=1 to LENGTH do P[i] := 0.5;

while (NOT termination condition) 
for i :=1 to K do 

solution_vectors[i] := generate_vector_with_probabilities (P);
evaluations[i] :=Evaluate_Solution (solution_vectors[i]);

best_solution_vectors = 
sort_solutions_from_best_to_worst (solution_vectors,evaluations);

for i := M downto 1 do
for j :=1 to LENGTH do 

P[j] := P[j] * (1.0 - α) + best_solution_vectors[i][j]* (α);

Return the best solution generated throughout the entire search.

PBIL CONSTANTS:
K: # of vectors generated before update of the probability vector (200).
α: the learning rate, how fast to exploit the search performed (0.95).
M: number of vectors in the population that are used to update P (1-2).
LENGTH: # of bits in the solution encoding (problem dependent).

Figure 1: Basic PBIL algorithm for a binary alphabet. Values in 
parentheses are typical settings for the parameters.

Initialization.

Generate Samples.

Update Towards Best

Terminate Search - return
best ever found

vectors.

Sort Vectors according
to evaluations.

Figure 2: The evolution of the probability vector, P, in the PBIL algorithm. The X-axis is the generation number, 
the Y-axis is the bit position. White represents a high probability of generating a 1, black represents a high 
probability of generating a 0. Intermediate grey represents probabilities close to 0.5 - equal chances of generating a 
0 or 1. Bit 0 is the most significant, bit 40 the least.
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neither PBIL nor BSC propagate building blocks in a manner similar to standard GAs,
since all parameters are examined independently. Probabilistic models attempt to capture
dependencies, or more specifically mutual information, between the parameters to deter-
mine which parameters are dependent upon each other. These dependencies are used to
generate the new candidate solutions. In the remainder of this section, we will look at how
probabilistic models can be automatically created from the sampled points and then used
for candidate generation. In Section 3, we examine how a priori information about the
parameters can be incorporated into the models. The reader is referred to texts by Pearl
[38] and Jensen [24] for an introduction to probabilistic modeling and Bayesian networks.

2.2.1. Algorithm Basics

The overall structure of the algorithm is similar to PBIL. After evaluating each member of
the current generation, the best members of that population are used to update a probabi-
listic model from which the next generation’s population will be generated. 

From the set of solutions evaluated in each generation, the best samples are added into a
dataset, termed S. Rather than recording the individual members of S, our algorithm main-
tains a sufficient set of statistics in an array A. For models that use pair-wise interactions,
this contains a number A[Xi=a, Xj=b] for every pair of variables Xi and Xj and every com-
bination of binary assignments to a and b. A[Xi=a, Xj=b] is as an estimate of how many
recently generated “good” bit strings (from S) have bit Xi=a and bit Xj=b. To give more
weight to recently generated bit-strings, the contributions of bitstrings that were previ-
ously added to the dataset are decayed. All A[Xi=a, Xj=b] are initialized to some constant
Cinit before the first iteration of the algorithm; this causes the algorithm's first set of bit-
strings to be generated from the uniform distribution. See Figure 3. 

The values of A[Xi=a, Xj=b] at the beginning of an iteration may be thought of as specify-
ing a prior probability distribution over “good” bit-strings: the ratios of the values within

 For all bits i and j and all binary assignments to a and b, initialize A[Xi=a, Xj=b] to Cinit.

Repeat until Termination Condition is Met
      1. Generate probabilistic model based on A. See Figure 4. 
      2. Stochastically generate K bit-strings based on the probabilistic model. Evaluate these bit-strings.
      3. Multiply all of the entries in A by a decay factor α between 0 and 1.
      4. Choose the best M of the K bit-strings generated in step 2.   
          For each bit-string V of these M, add 1.0 to every A[Xi=a, Xj=b] such that V has Xi=a and Xj =b.

CONSTANTS (Values used in this study)
Cinit: Constant used to initialize matrix A - Number of examples “seen” at initialization (1000).
K: Number of samples generated in each iteration. This is the population size (200).
M: Number of best samples (from the K generated) that are used to update the statistics (4).
α: How much to decay the effect of older examples (0.99).

Figure 3: Outline for using a probabilistic model. The values in parenthesis are those that will be used in the 
experiments presented later in this paper. 
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A[Xi=a, Xj=b] specify the distribution, while the magnitudes of these values, multiplied
by α, specify an “equivalent sample size” reflecting how confident we are that this prior
probability distribution is accurate. 

Like PBIL, we only select the top members of the population to contribute to the probabi-
listic model. Although arbitrarily complex probabilistic models can be used, we use a sim-
ple one that is capable of capturing pair-wise dependencies: optimal dependency trees. 

2.2.2. Dependency Trees 

Given a dataset, S, of previously generated good bitstrings, we try to model a probability
distribution P(X) = P(X1, ..., Xn) of bit-strings of length n, where X1, ..., Xn are variables
corresponding to the values of the bits. We try to learn a simplified model P’(X1, ..., Xn) of
the empirical probability distribution P(X1, ..., Xn) entailed by the bitstrings in S. We
restrict our model P′(X1, ..., Xn) to the following form: 

(2)

where  is Xi’s single “parent” variable (the variable on which Xi will be condi-

tioned). We require that there be no cycles in these “parent-of” relationships: formally,
there must exist some permutation m = (m1, ..., mn) of (1, ..., n) such that

 for all i. (The “root” node, XR, will not have a parent

node; however, this case can be handled with a “dummy” node X0 such that P(XR | X0) is
by definition equal to P(XR).) In other words, we restrict P′ to factorizations representable
by Bayesian networks in which each node (except XR) has one parent, i.e., tree-shaped
graphs. 

A method for finding the optimal model within these restrictions is given in [9]. A com-
plete weighted graph G is created in which every variable Xi is represented by a corre-
sponding vertex Vi, and in which the weight Wij for the edge between vertices Vi and Vj is
set to the mutual information I(Xi,Xj) between Xi and Xj: 

(3)

The empirical probabilities of the form P(Xi = a) and P(Xi = a, Xj = b) are computed
directly from S for all combinations of i, j, a, and b (a & b are binary assignments to Xi &
Xj). Once these edge weights are computed, the maximum spanning tree of G is calcu-
lated, and this tree determines the structure of the network used to model the original prob-
ability distribution. Since the edges in G are undirected, a decision must be made about the
directionality of the dependencies with which to construct P′; however, all such orderings
conforming to the restrictions described earlier model identical distributions. Among all
trees, this algorithm produces a tree that maximizes:

P ′ X1…Xn( ) P Xi ParentXi 
 

i 1=

n

∏=

ParentXi

ParentXi
Xj=( ) m i( ) m j( )<⇒

I Xi Xj,( ) P Xi a Xj b=,=( )
P Xi a Xj b=,=( )

P Xi a=( ) P Xj b=( )⋅
-----------------------------------------------------log⋅

a b,
∑=
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(4)

which in turn minimizes the Kullback-Leibler divergence, D(P||P′), between P (the true
empirical distributions exhibited by S) and P′ (the distribution modeled by the network):

(5)

As shown in [9], this produces the tree-shaped network that maximizes the likelihood of S
(this means that of all the tree shaped networks, this is the most likely to have generated
S). This tree generation algorithm, summarized in Figure 4, runs in time O(n2), where n is
the number of bits in the solution encoding. 

The arcs which remain in the maximum spanning tree represent the dependencies to be
modeled. Since it is a tree, each variable will be conditioned on exactly one other variable
(its parent). The exception to this is the root of the tree, which is set according to its
unconditional probabilities. Once we have generated a dependency tree modeling
P(X1, ..., Xn), we use it to generate K new bitstrings. Each bitstring is generated in O(n)
time during a depth-first traversal of the tree. Each bitstring is then evaluated. The best M
of these bitstrings are selected and effectively added to S by updating the counts in A.
Based on the updated A, a new dependency tree is created, and the cycle is continued. 

2.3 Discussion of Related Models

Another extension to PBIL that captured pair-wise dependencies was termed Mutual
Information Maximization for Input Clustering (MIMIC) [11]. MIMIC used a greedy
search to generate a chain in which each variable is conditioned on the previous variable.
The first variable in the chain, X1, is chosen to be the variable with the lowest uncondi-
tional entropy H(X1). When deciding which subsequent variable Xi+1 to add to the chain,
MIMIC selects the variable with the lowest conditional entropy H(Xi+1 | Xi). While
MIMIC was restricted to a greedy heuristic for finding chain-based models, the algorithm

I Xm i( ) Xm p i( )( ),( )
i 1=

n

∑

D P P ′||( ) P X( ) P X( )
P ′ X( )
--------------log

X
∑=

Figure 4: Detailed procedure for generating the dependency tree.

Generate an optimal dependency tree:
• Set the root to an arbitrary bit Xroot
• For all other bits Xi, set bestMatchingBitInTree[Xi] to Xroot.
• While not all bits have been added to the tree:

• Of all the bits not yet in the tree, pick bit Xadd with the maximum
mutual information I(Xadd, bestMatchingBitInTree[Xadd]), 

using A (which contain sufficient statistics for S) to 
estimate the relevant probability distributions.               

• Add Xadd to tree, with bestMatchingBitInTree[Xadd] as parent.
• For each bit Xout not in the tree, 

if I(Xout, bestMatchingBitInTree[Xout]) < I(Xout, Xadd).
   then set bestMatchingBitInTree[Xout]=Xadd.
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described in this paper uses a broader class of models, trees, and finds the optimal model
in the class. 

Example dependency graphs shown in Figure 5 illustrate the types of probability models
learned by PBIL, a dependency-chain algorithm similar to MIMIC, and our dependency
tree algorithm. We use Bayesian network notation for our graphs: an arrow from node Xp
to node Xc indicates that Xc’s probability distribution is conditionally dependent on the
value of Xp. These models were learned while optimizing a noisy version of a two-color
graph coloring problem (shown in Figure 5a) in which there is a 0.5 probability of adding
1 to the evaluation function for every edge constraint satisfied by the candidate solution.
Note that the dependency tree algorithm is able to discover the underlying structure of the
graph, in terms of which bits are dependent on each other (as shown in Figure 5D).

The clear next step after modeling pair-wise dependencies is modeling higher-order
dependencies. The need for this has been demonstrated in [6]. However, generating mod-
els which are capable of representing higher order dependencies may be computationally
expensive. The hope is that the expense of generating the models will be offset by the sav-
ings obtained by the smaller number of function evaluations that will be required due to
the more accurate modeling. A large amount of work has been done exploring different
models to use. The Factorized Distribution Algorithm (FDA) [32][33][34][35] uses a
fixed model throughout the search, with the model being specified by an expert. The FDA
algorithm is designed to work with problems that are decomposable into independent
parts. This work has been extended to incorporate learning with low complexity networks
and Junction-Trees [36][37]. The Bayesian Optimization Algorithm (BOA) and related
work [13][30][39][40] is the closest method to the optimization techniques presented here.
The model used in BOA is able to represent arbitrary dependencies. When general Baye-
sian Networks are used for modeling, the scoring function used to determine the quality of
the network plays a vital role in finding accurate networks. The quality of networks can be
assessed through a variety of measures. For example, both Minimum Description Length
and Bayesian Dirichlet metrics have been explored in [40]. The models that are found by

Figure 5: A: The underlying graph in a noisy two-color graph coloring problem. B: the empty 
dependency graph used by PBIL. C: the graph learned by our implementation of the dependency 
chain algorithm. D: the graph learned by our dependency tree algorithm.
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BOA are similar to those used in FDA; however, BOA is designed to learn the models as
the search progresses. Because the models used by BOA are general Bayesian Networks,
it is clear that a priori information can be incorporated [19][20]. This is the focus of the
next section. 

3   Incorporating a priori Knowledge

In this section, we describe how to incorporate information into the process of learning the
probabilistic model. The method is general and can be used in MIMIC [11], COMIT [5],
BOA [39] or any other algorithm which has a learning component in the model generation
process. Although the a priori information that is available for a problem is often high
level and specifies complex dependencies, we show how the knowledge can be used even
when simple probabilistic models, those that cannot represent high-order dependencies,
are employed. 

To this point, we have restricted the probabilistic models that we have examined to depen-
dency trees that only model pair-wise interactions. This was done to mitigate the need for
a large number of samples that arises when higher-order dependencies are modeled. None-
theless, in some cases more complex models are required. Additionally, even when simple
models such as trees are used, by using a priori information to constrain the number of
possible trees that are considered, the samples can be more effectively used since they
must only select trees from a reduced set. In this paper, we use a priori knowledge about
the function to be optimized to constrain the arcs that are modeled in the probabilistic
models. This technique is applicable to optimization procedures regardless of whether a
multiply connected Bayesian network is used or a simple dependency tree is employed.

As an introductory example, the potential for using a priori knowledge is clearly demon-
strated in problems in which the dependencies are evident, such as graph coloring. Con-
sider the graph coloring problem as shown in Figure 5A. In this simple problem, it is clear
that the color of node 5 should be dependent upon the color of node 1 and 10, and that the
color of node 10 should be dependent on the colors of nodes 4, 5, and 20. There are several
ways to incorporate this information into a probabilistic model. The first is to employ a
model that captures more than pair-wise dependencies. For example, if we allowed arbi-
trary dependencies, we could create models with more than a single parent; thereby mim-
icing the graph structure shown in Figure 5A. Although this would require maintaining
more than pair-wise statistics, only a subset of these higher-order statistics would be
required since we could specify the dependencies to be modeled from our knowledge of
the underlying graph structure. The second approach is to select the model from a family
of low complexity models (such as the set of all trees - as we have described in Section
2.2) but to allow the arcs to be selected only from the subset of those that exist in the
graph. Continuing with the same example, the allowed parents for node 5 would be either
node 10 or node 1, but not both (since that would violate the tree property). 

Throughout the remainder of this paper, we concentrate on the second approach described
above: constraining the tree structures that can be created. This approach has the benefit of
not requiring exact information of which dependencies must be modeled; although we do
not specify the specific parents of each of the nodes, we restrict the possibilities. This
method also has benefits as problem sizes increase. Modeling higher order dependencies,
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even when the structure of the network is known, requires a large number of samples. In
the graph coloring task, this problem becomes significant when the connectivity of the
graph increases. 

One of many ways to implement constraints on the dependency graph is to impose a prior
over network structures in which the prior likelihood of a network decreases exponentially
with the number of arcs in the network that do not correspond to edges in a pre-specified
set. With the optimal dependency trees, such a prior can be simply implemented. We need
only subtract a penalty term from the mutual information between any two variables that
are not connected by an edge (E) in the pre-specified preferred set (S) and run the maxi-
mum spanning tree algorithm on these modified weights instead. The modified mutual
information calculation is shown in Eq [6]. 

(6)

As shown above, the penalty, α, does not need to be constant, and can vary per depen-
dency arc. The severity of the penalty provides a means to convey confidence in the a pri-
ori information. The more confident we are that an arc should not be modeled, the larger
the penalty can be.

For simplicity, however, we do not use a complex penalty setting. Instead, the penalty
term is constant for every arc. In the experiments presented in this paper, a sufficiently
severe penalty term was used to ensure that arcs in the pre-specified set were always
favored over arcs not in the set. This simple penalty procedure was chosen to ensure that
the focus of the experiments remain on demonstrating that improvements in the final
search result were obtainable by incorporating a priori information into the probabilistic
models. Nonetheless, we do not suggest that this will work well on all problems; in prob-
lems in which the information should be regarded only as a preferred dependency instead
of one that must be enforced, a less severe penalty may yield improved results.

4   Empirical Results

This section is divided into two parts. In the first, Section 4.1, two problems sets are exam-
ined. The first is a simple numerical optimization problem, termed “Summation Cancella-
tion”, and the second is a set of graph coloring problems. For each of these problems, we
show that by incorporating knowledge of parameter dependencies, more accurate models
can be built and subsequently, better results obtained.

In Section 4.2, we show how a priori knowledge can be incorporated into optimization

I' Xi Xj,( )

i f Ei j, S∈( )

P Xi a Xj b=,=( )
P Xi a Xj b=,=( )

P Xi a=( ) P Xj b=( )⋅
-----------------------------------------------------log⋅

a b,
∑

i f Ei j, S∉( )

P Xi a Xj b=,=( )
P Xi a Xj b=,=( )

P Xi a=( ) P Xj b=( )⋅
-----------------------------------------------------log⋅

a b,
∑ 

  αi j,–

=
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procedures which use probabilistic modeling techniques to generate the initialization
points for specialized/faster search heuristics [4]. In this optimization architecture, the
points that are generated from the probabilistic model are used to initialize specialized
search heuristics. The best found solutions that are returned at the completion of the spe-
cialized search heuristics are then inserted into the data set used to generate the next prob-
abilistic model. The probabilistic models effectively “wrap-around” the specialized search
heuristics. This contrasts with the approach described to this point where the generated
points are fed directly back into the data set for the creation of the next probabilistic
model. As will be shown, in both approaches, the need and benefits of incorporating a pri-
ori information remains the same.

Note that the results in the section are not intended to represent a comparison of different
optimization algorithms. For more comprehensive comparisons between optimization
methods, such as genetic algorithms, probabilistic optimization methods, and hillclimbing
methods, the reader is referred to [2][4][5][12][18]. For the experiments presented in this
section, we keep the probabilistic modeling algorithms as simple as possible to concen-
trate our examination on the effects of incorporating knowledge into the models. We have
not included operators such as mutation, local hillclimbing or any of the numerous heuris-
tics that can be used in conjunction with optimization techniques to create a general pur-
pose optimization tool [15][26]. 

4.1 Proof of Concept

For these tests, the parameters used were exactly as shown in Figure 3. The incorporation
of a priori knowledge is described with each problem.

4.1.1. Summation Cancellation

In this problem, the parameters (s1, ..., sN) in the beginning of the solution string have a
large influence on the quality of the solution. The goal is to minimize the magnitudes of
cumulative sums of the parameters. Small changes in the first parameters can cause large
changes in the evaluation. The evaluation function is defined as the maximization func-
tions shown below:

The solution was encoded in binary and each parameter was assigned 5 bits. There were a
total of 50 parameters; therefore, the search space size was 2250. 

If the tree-based model is used without any a priori knowledge, there are (250*249)/2
dependencies to model. The only dependencies that are not modeled are those from a bit to
itself. In terms of edges that may be added to the preferred set, these dependencies are rep-
resented by 250*249 edges. There are twice as many edges that may be in the preferred set
since we can introduce priors that limit the selection of trees to those that specify the
dependencies used for sample generation of variable a on variable b, but not vice-versa.

0.16– si 0.15≤ ≤

i 1…N=
y1 s1=

yi si yi 1–+=

i 2…N=
C 1

100000
------------------= f y1 … yN,,( ) 1.0

C yi
1

N

∑+

--------------------------=
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As can be seen by the function evaluation, each of the 50 parameters is directly dependent
on the parameter that precedes it. Therefore, a straightforward method of incorporating
knowledge is to ensure that each parameter can only be conditionally dependent on those
that come before it. 3 

We can further examine the effects of incorporating a priori knowledge by varying the
number of preceding parameters that the sample generation process can be based upon.
We examine the effects of letting a variable be conditionally dependent on 100% of the
previous parameters, as well as smaller percentages. The final experiment we perform is to
examine the effect of allowing dependencies on only the single preceding parameter. To
better illustrate the allowed dependencies, they are shown graphically in Figure 6.

3. Note that because each of the 50 parameters is actually represented with 5 bits, we allow the dependency tree 
to have bits in a single parameter be dependent on another bit in the same parameter. This is represented graphi-
cally in Figure 6, where the arrow above parameter 5 points to itself.

11111 22222 33333 44444 55555 66666

11111 22222 33333 44444 55555 66666

11111 22222 33333 44444 55555 66666

Standard Model -
all dependencies are
allowed.

100% of preceding
dependencies are
allowed.

50% of preceding
dependencies are
allowed.

Figure 6: The arcs show the sets of dependencies allowed for the bits in parameter 5. Each parameter is 
represented by 5 bits (e.g. 22222). Each arrow represents potential dependencies between any of the bits in the 
parameters pointed to. No single bit can be dependent upon itself, although a bit within a parameter can be 
dependent on another bit in the same parameter. Each solid line represents 25 edges, each dashed line 
represents 20 edges.



13

The results of the experiments are shown in Figure 7; there were 20 trials conducted per
dependency setting. From Figure 7, note that the trials conducted with no a priori informa-
tion (full dependencies allowed) achieved an average evaluation of 0.543. Models in
which only the preceding dependencies were allowed achieved scores of approximately
0.660-0.667. Using a standard t-test, the differences in results between using “Full Depen-
dencies” and all of the “Preceding Dependencies” experiments are statistically signifi-
cantly different to the p=0.01 level. There was no significant differences between allowing
100% and 20% of preceding parameters to be modeled. When only the single preceding
parameter was allowed, the results jumped to 0.696. The differences between the “Preced-
ing 100%” and “Single Preceding” trials are significant to the p=0.02 level. All of these
significance tests were repeated using a non-parametric equivalent to the standard t-test,
the Mann-Whitney test; the same results were obtained.

4.1.2. Graph Coloring

In each of these problems, there are 750 nodes in a partially connected graph to be
assigned one of two colors. The goal is to assign each of the connected nodes opposite col-
ors. In these problems, the graphs are not planar, and a solution in which all of the con-
straints are met is not guaranteed to exist. The evaluation, to be maximized, is the number
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Figure 7: Results for the Summation Cancellation problems. Larger numbers are better. Note that using any 
a priori knowledge (through using dependencies only with preceding parameters) statistically 
significantly improves the results over not incorporating a priori knowledge. The number in parentheses is 
the number of dependencies that do not have a penalty applied to them and are therefore in the preferred 
candidates set for edges in the dependency tree.
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of constraints (connected nodes that have the opposite color) that are met.

To examine the effects of problem complexity, three sets of problems are examined. In the
first set, each node is connected, on average, to 4 other nodes. In the second set, each node
is connected to 10 nodes. In the last set, the average connectivity is 20 nodes.

The results are shown in Table I. For each set of problems, we examine three cases. When
the amount of information used is 0.0, no penalties are given during the mutual informa-
tion calculation. For the experiments labeled “100% a priori information”, when the
mutual information is calculated for two nodes which are not connected by an edge in the
problem (in the pre-selected set of edges), a penalty is applied. For the experiments
labeled “50% a priori information”, rather than applying a penalty to all of the edges not
in the graph, a penalty is applied to a randomly selected 50% of them. This effectively
incorporates less information into the optimization process because it lessens the restric-
tions on the probabilistic models which can be created. This case is included to determine
whether providing hints to the network is beneficial, even if perfect information is
unavailable. 

In every case, the results with the “100% a priori” information are statistically signifi-
cantly different than the “no-a priori” knowledge results to the p=0.01 confidence level.
The differences between the “50% a priori” results and the “no-a priori” information
results are not always significantly different, as can be seen by the relatively large stan-
dard deviations in the “50% a priori” results. The results are statistically different to the
p=0.01 confidence level between the “100% a priori” results and the “50% a priori”
results. The use of a priori information can significantly improve performance on these
problems. As suspected, the less specific the information, the less improvement is seen, on
average. 

It is important to note that in these experiments the connectivity of the graphs increased in

Table I:  Results for the Graph Coloring Problems

Mean Result
Standard 
Deviation

Graphs with 4 Connections

No a priori Information 1140 14.0

50% a priori Information 1160 9.1

100% a priori Information 1214 9.8

Graphs with 10 Connections

No a priori Information 2397 17.6

50% a priori Information 2406 39.6

100% a priori Information 2485 19.4

Graphs with 20 Connections

No a priori Information 4449 14.7

50% a priori Information 4416 28.3

100% a priori Information 4549 14.9
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each of the trials. In the cases in which the connectivity was on average 20 connections,
the predefined set of edges that were allowed to be in the dependency graph included on
average 20 parents for each node. Because the dependency model was a tree, from this set,
only a single node was chosen to be the parent. Note that we did not need to a priori spec-
ify the exact parent of each node; just by limiting the set of possible parents we improved
the performance of the search.

4.2 Using a priori Knowledge with “Wrapper” approaches to Optimization

If we are trying to solve a well studied optimization problem, for example Satisfiability,
Bin Packing, Jobshop, VLSI Layout, etc., there already exist a wide variety of specialized
stochastic heuristics to address these problems. We would like to be able to use the proba-
bilistic modeling techniques in conjunction with these specialized procedures. 

Instead of using the pure probabilistic modeling techniques as described earlier, we
employ the probabilistic models to generate points with which to initialize search with the
specialized heuristics. For example, once we make several runs with the specialized heu-
ristic, we can model the better points found during these runs with the probabilistic mod-
els. These probabilistic models can then be used to generate new initialization points. In
this manner, the probabilistic models “wrap-around” the specialized search heuristics4.
The probabilistic models are created based upon the good solutions that have been found
in the previous specialized-search runs. Similar to the manner in which a priori informa-
tion was incorporated into the probabilistic models in the Section 4.1, we can incorporate
any a priori information in the models created in this approach. The resulting algorithm is
shown in Figure 8.

Note that the wrapper approach may also be employed for computational benefits, irre-
spective of whether a specialized search algorithm is used. For example, as described in
[5], faster search algorithms such as PBIL, hillclimbing, etc. can be used to provide com-
putational benefits over the “standard” probabilistic modeling-based optimization tech-
niques described in Section 2. In comparison to the standard approach, when using the
wrapper approach, the probabilistic model is created much less frequently. This provides
enormous benefits in terms of speed since model creation is a computationally intensive
procedure (even for the trees, it is O(n2) where n is the number of bits in the parameter
encoding, for more complex networks the expense can be much greater [8]). Instead of
creating the model in every generation, the model is created only between runs of the
faster search heuristics.

In this section, we demonstrate the wrapper framework with a simple random mutation
stochastic hillclimbing (RMSH) as the faster search technique. The hillclimber is next-
ascent: whenever a new solution is found with a better or equal evaluation, the move is
accepted. The probabilistic model is used to combine the best solutions found by the hill-
climbing runs. The hillclimbing runs are restarted whenever M evaluations are encoun-

4. Note that sometimes the specialized search heuristics use specialized solution encodings. In these cases, we 
can convert between this representation and a low-cardinality representation which is more suitable for the prob-
abilistic modeling techniques described here (for example, this is the case for common search heuristics used 
with the TSP, Jobshop Scheduling, Satisfiability, Binpacking, Knapsack, etc. problems). 
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tered without improving on the current state. Three algorithms are compared:

1. RMSH-Model-Based-Restart: this initializes the hillclimbing runs by sam-
pling the probabilistic model that has been created by modeling the best
solutions found in previous RMSH runs. Prior to starting each RMSH run,
100 samples are generated from the model, and the best one is used to start
the next RMSH run.

2. RMSH-apriori-Model-Based-Restart: this initializes the hillclimbing runs
by sampling the probabilistic model that has been created by modeling the
best solutions found in previous RMSH runs. The probabilistic model also
uses the a priori information that is available. Prior to starting each RMSH
run, 100 samples are generated from the model, and the best one is used to
start the next RMSH run.

3. RMSH-Random-Restart: this initializes the hillclimbing runs by randomly
generating 100 samples and using the best one to start the next hillclimbing
run. 5

Rather than arbitrarily setting M, which could introduce confounding biases into the
results, M was set automatically. M was chosen by exploring 10 different settings for each
algorithm on each problem and selecting the best for each. The settings ranged from
(1 * Solution_Encoding_Length) to (10 * Solution_Encoding_Length). 

5. Note that in this algorithm 100 random samples are generated instead of a single random point to make this 
algorithm as parallel in structure to the other two algorithms that are compared.

Figure 8: Combining Probabilistic Modeling with Specialized Heuristics.

• Initialize dataset S with random solutions from uniform distribution

• While termination condition is not met:
 • Create a probabilistic network (in this study a tree) T that models S. 

 Use priors on the network structure to incorporate a priori information.
  • Use T to stochastically generate K solutions. Evaluate these K new solutions.
  • Start specialized heuristic run initialized with the single best of the K solutions.
 • Replace up to R bitstrings in S with unique, better bitstrings found during the 

specialized-heuristic’s run just executed.

USER DEFINED CONSTANTS (values used in this study)

|S|: Constant size of the dataset S (1000).

K: Number of solutions to generate from the probabilistic model (100).

R: max number of bitstrings to replace in S with better strings from a 
single specialized-search run (100). 
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4.2.1. Constrained Optimization

This problem is composed of N variables and C constraints on each variable. Each vari-
able can take on only a small set of values, V. Each constraint specifies the relationship
between two variables, a and b, i.e. whether a should be greater than b or b should be
greater than a. The objective is to maximize the number of constraints that are met. 

This problem is formulated as a minimization problem. For each constraint that is not met,
a penalty is applied. The sum of the penalties is the evaluation. The penalty applied for
each constraint connecting nodes a and b is |a - b|. The penalty is only applied for con-
straints that are not satisfied; if the constraint is satisfied it does not contribute to the eval-
uation. This evaluation gives more information to the search algorithm than only giving
only a binary value specifying whether the constraint has been satisfied. In the representa-
tion used, the value of each parameter is represented in binary. Each parameter is repre-
sented with log2V bits. The total length of the encoding is Nlog2V bits. 

A priori knowledge of the problem was incorporated by examining the graph of the con-
straints. In this graph, each variable was represented as a vertex and each constraint was a
edge that connected two of the vertices. In the case where no a priori knowledge was used
in the model creation process, every parameter could be dependent on every other param-
eter; therefore all (Nlog2V)2 dependencies were modeled (all dependencies were in the
preferred set). To incorporate knowledge, we limited the dependencies of each parameter
to those parameters that could be reached in L steps by traversing edges in the graph. We
expect the maximum effect on parameters to come from other parameters that are close (in
terms of edges in the graph). For small L, this dramatically reduces the number of depen-
dencies that were placed in the preferred set when the average connectivity of the graph is
low. For simplicity, we kept L constant, L=1.

Three problems sets are attempted. For each problem set, we examine 20 problem
instances which are randomly generated given the problem parameters shown in Table II.
The generated problems may not have constraints that are all simultaneously satisfiable.
Rather than presenting the average score of the results we give the ranks of each of the
algorithms, as well as the average rank. The algorithm with the least summed penalties has
the highest rank, and is therefore the best. Ranks are given to avoid misrepresentations that
may arise from averaging the widely differing scores possible with each problem instanti-
ation. For ties, each tied algorithm is given the better of the tie scores. The results are
shown in Table II.

In the vast majority of the trials, the RMSH-apriori-Model-Based-Restart algorithm per-
formed best. The significance of difference in the ranks was measured by the non-para-
metric Wilcoxon Matched Pairs Signed-Ranks test. The differences in all the results are
statistically significant to p=0.01 level. Note that the number of edges in the preferred set
in the RMSH-apriori-Model-Based-Restart algorithm were less than 3% of the total.

The edges that were members of the preferred set in the above tests were asymmetric
between vertices. The edge that was added depended on on how the edge was specified in
the problem definition. For example, if a constraint existed that a < b, then the dependency
between the bits representing the value of a on the bits representing the value of b were
added to the preferred set. Had the edge been specified as b > a, the dependency between
the bits representing the value of b on the bits representing the value of a would have been
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added to the preferred set. For completeness, preliminary experiments were conducted
with adding both sets of dependencies. With both sets of dependencies, performance suf-
fered over using only an asymmetric set, although the performance remained improved
over using no a priori information. Although exploring the detailed use of a priori infor-
mation on this particular problem is beyond the scope of this paper, this underscores the
importance of using a priori information that works in conjunction with the underlying
search technique employed and also emphasizes the sensitivity of using a priori informa-
tion. This presents an interesting avenue for future research.

4.2.2. Traveling Salesman Problem

The encoding used in this study requires a bit string of size Nlog2N bits, where N is the
number of cities in the problem. Each city is assigned a substring of length log2N bits; the
value of these bits determines the order in which the city is visited. See [43] for details.
Three problem were attempted: a 100 city problem, and two 150 city problems. The
encoding length for the first problem was 700 bits. For the second two problems, the
encoding length was 1200 bits.

For the RMSH-apriori-Model-Based-Restart trials, a priori information was used as fol-
lows. In many TSP problems, we may suspect that it is reasonable to assume that the order
in which a city appears in a tour will be most dependent upon the nearest C% of the cities
(where C < 100). Therefore, dependencies should only be modeled between these cities,
and not ones that are further away. For the a priori knowledge, we simply put high priors
on network structures that have dependency arcs between bits that represent cities that are
close. In this way, the allowed dependencies are those that are between cities that are
close. Note that this does not require us to know exactly which cities will be used for mod-
eling the dependencies; instead, we are able to provide a set of cities that we think are
likely good candidates for modeling. 

Table II:  Numerical Constraint Results: Ranks of RMSH Algorithms on 3 Problem Sets
(Lower rank is better)

Problem Set Parameters Search Heuristic
Average #

dependencies in 
preferred set.

# of trials in 
which rank = 1

# of trials in 
which rank = 2

# of trials in 
which rank = 3

average 
rank

N = 200 Variables
|V| = 16 Values

C = 5 Constraints / Variable 
(1000 Total Constraints)

Encoding Length = 200 * log216 = 800 bits.

RMSH-apriori 18,208 19 1 0 1.05

RMSH-Model 640,000 1 18 1 2.00

RMSH-random n/a 0 1 19 2.95

N = 200 Variables
|V| = 64 Values

C = 5 Constraints / Variable
(1000 Total Constraints)

Encoding Length = 200 * log264 = 1200 bits.

RMSH-apriori 41,528 18 2 0 1.10

RMSH-Model 1,440,000 2 18 0 1.90

RMSH-random n/a 0 0 20 3.00

N = 400 Variables
|V| = 16 Values

C = 10 Constraints / Variable
(4000 Total Constraints)

Encoding Length = 400 * log216 = 1600 bits.

RMSH-apriori 68,010 19 1 0 1.05

RMSH-Model 2,560,000 1 19 0 1.95

RMSH-random n/a 0 0 20 3.00
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As in the previous problems, for simplicity, we use sufficiently severe penalties for arcs
that we wish to exclude from being in the tree that any arc in the selected set is guaranteed
to be selected before those not in the set. In the future, this problem may be a good candi-
date to examine the effects of more graded penalties - for example, by making the magni-
tude of the penalty in the arc proportional to the distance of the cities.

The results are shown in Figure 9. In all three of the problems, there was a dramatic
decrease in tour size when a probabilistic model was employed; the differences between
the searches that did not employ a probabilistic model and those that did were significant
to the p=0.01 level. The setting of C at 60% provided, on average, improved performance
in all three problems over using models without a priori information. However, the differ-
ences were determined not to be statistically significant to the p=0.01 level over using
models with no a priori information. 

Only in problem 3 are the differences between the searches that use a priori information
and those that do not significant to the p=0.05 level (for C=40%). There is no statistical
difference between the different values for C where C is set to 20%, 40%, 60% or 80%. It
is suspected that the effectiveness of the setting of C depends on the clustering and layout
of the cities; it will be interesting in the future to examine how to account for clustering in
setting the C parameter. As suggested above, it may be possible to avoid this problem alto-
gether by using proportional penalties, or by using other heuristics as the basis of the a pri-
ori information. 

The use of a probabilistic model to select restart points on the TSP problem leads to signif-
icant improvements in solution quality in comparison to using simple random restarts.
This has also been empirically shown in a variety of other problems [5]. The incorporation
of the a priori knowledge used here improves the results in some cases and has no effect
on others. This is discussed in Section 4.3. 

4.3 Discussion of Empirical Results 

In almost every instance of problems examined, we have demonstrated that it is possible
to achieve benefits in the final results obtained through the use of a priori knowledge to
create the probabilistic models. With respect to using the “wrapper” approach, an impor-
tant point to note is that the methodology of restarting faster search algorithms with the
probabilistic models is applicable to more than RMSH heuristics; any search algorithm
can be used within the “wrapper”, such as PBIL, TABU search, standard genetic algo-
rithms or specialized search heuristics.

A necessary step for using the methods presented in this paper is determining what a pri-
ori information is suitable. In this paper, we selected problems to demonstrate the tech-
niques; all of the problems had straight-forward knowledge that could be incorporated.
However, in other problems, it may be difficult for a non-expert to generate appropriate
knowledge (i.e. bin packing, knapsack, etc.). There are also sets of problems in which it
may be impossible to a priori narrow down the set of dependencies. For example, consider
solving a set of linear equations in which each variable is used in each equation; without
more information, it is impossible to tell which parameters are most likely to be dependent
on each other. Because of the simplicity of the probabilistic model used, dependency-
trees, there also exist problems that the model will not be able to accurately represent
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Figure 9: Average tour length. Results of incorporating a priori knowledge into the TSP problem. 
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despite the model’s incorporation of a priori knowledge. For example, in the numerical
constraint problems discussed in Section 4.2, when the number of dependencies per node
became large, the limitation of one parent per node in the dependency tree will prevent the
tree from learning a sufficient number of dependencies to impact the final result. This can
be the case regardless of whether or not the set of possible parents was limited to con-
nected nodes through the use of a priori knowledge. In these cases, optimization proce-
dures that model higher order dependencies will be useful [34][35][39][40].

The purpose of this paper is to demonstrate the potential for a priori knowledge and give
examples of how the knowledge may be incorporated. To empirically demonstrate the
potential, the problem sizes were chosen to be large enough so that incorporating knowl-
edge had an effect. When the search spaces were too small or too easy, a priori informa-
tion had no effect, beneficial or detrimental, on the search results. In these cases, the
dependencies found by the tree even without a priori information performed as well as
with hints provided by experts. Only as the problems became either complex or large did
the a priori information become useful. It is also important to recognize the possibility of
incorrect hints being detrimental to search. If not enough dependencies are allowed, or if
the wrong ones are emphasized, the models created may not be able to overcome the hints.
This paper has presented a method for incorporating a priori information into models such
as trees; however, finding the a priori information that is most useful is a necessary step
that must be conducted for each individual type of problem that is examined.

5   Conclusions & Future Work

This paper has demonstrated the effectiveness of incorporating a priori knowledge into
the probabilistic models that are used to guide search. The knowledge was used to direct
the arcs that were included in the optimal dependency trees. We have also demonstrated
that the knowledge that is included does not need to be exact. In all of the experiments
conducted, we limited the set of edges that could be included in the tree; however, the
exact tree was never specified - and was automatically generated during the search.

Two broad optimization methods were discussed in this paper. A “standard” approach to
using probabilistic models was explored first. In this model, the probabilistic model is
sampled and the best of the samples is immediately introduced into the population of
points from which the next probabilistic models is generated; the cycle is then continued.
In the second method, “the wrapper” approach, after the probabilistic models are sampled,
the best samples are used to initialize faster or specialized search algorithms. Upon com-
pletion of the specialized search algorithm, the best result obtained is put into the popula-
tion of points from which the next model is generated. From this model, the next set of
points are generated and the cycle is continued. In this paper, we have demonstrated that it
is possible to incorporate information into either of these methods; the need for accurate
models remains the same.

Although we have not attempted to propose a complete optimization “system” in this
paper, there is a vast amount of literature available on heuristics that can be used in con-
junction with the algorithms proposed here. Extensions to the algorithms proposed here
will include such heuristics as elitist selection, mutation operators, adaptive operator prob-
abilities, and domain-dependent operators. Future research should also examine the effects
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of using non-uniform penalty settings. The magnitude of the penalty can be used as a
means to convey the confidence in the a priori information including whether the informa-
tion is mandatory or a suggestion. Another direction for future research is to examine the
convergence properties of probabilistic optimization techniques with a priori knowledge.
Convergence studies have been conducted with optimization with fixed networks, which
may be viewed as an extreme form of the knowledge incorporated in this paper [46].

In previous papers, we have shown that the performance of optimization algorithms con-
sistently improves as the accuracy of their statistical models increases. In [4] we showed
that trees generally performed better than chains, and chains generally performed better
than models which assumed all variables were independent, such as those used in PBIL.
The accuracy of the models can be improved through either using more complex models
or by ensuring that the models that are created are more representative of the structure of
the underlying search space. Unfortunately, when we move toward models in which vari-
ables can have more than one parent variable, the problem of finding an optimal network
with which to model a set of data becomes NP-complete [8]. The methods presented in
this paper provide a means to reduce the set of probabilistic models that must be consid-
ered – whether pair-wise or higher order dependencies are included. The incorporation of
a priori information improves the accuracy of the models that are created given a limited
number of samples. As shown, improved accuracy in the models leads to improved search
results. 
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