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Abstract. This paper presents a method for extending upright, frontal,

template-based face detection systems to e�ciently handle all in-plane

rotations. Detecting rotated faces is a two step procedure. First a \De-

Rotation" network is used to process each input window. If there is a

face in the window, this network determines its angle of rotation. Based

upon this estimated angle of rotation, the window is then rotated to an

upright position. Second, a \Detection" network, or multiple detection

networks, are used to determine whether the rotated window contained

an upright face. The training methods for both networks are presented.

Preliminary empirical results are also provided.

1 Introduction

This paper presents a general method to extend many template-based frontal,

upright, face detection systems to handle in-plane rotations of the face. There

have been many template-based face detection systems developed, for example,

see [2, 3, 6{8, 11{13, 15]. Other systems, such as [5], can also achieve rotation

invariance by extracting smaller features of the face and using graph-matching

algorithms. In this paper, we concentrate on template-based methods, in partic-

ular the one presented by Rowley, Baluja & Kanade in [11].

The simplest method for creating a system which is invariant to rotations

within the image-plane is to employ an existing frontal, upright, face detection

system. Systems such as [11] use a neural-network based �lter that receives

as input a small, constant-sized window of the image, and generates an output

signifying the presence or absence of a face. To detect faces anywhere in the input,

the �lter is applied at every location in the image. To detect faces larger than

the window size, the input image is repeatedly sub-sampled to reduce its size,

and the �lter is applied at each scale. To extend this framework to capture faces



which are rotated, the entire image can be repeatedly rotated by small increments

and the detection system can be applied to each rotated image. However, this

is an extremely computationally expensive procedure. For example, the system

reported in [11] was invariant to approximately 10

�

of rotation from upright

(both clockwise and counterclockwise). Therefore, the entire detection procedure

would need to be applied at least 18 times to each image, with the image rotated

in increments of 20

�

.

The procedure presented in this paper is signi�cantly faster than the one

described above. This procedure uses two networks to perform the detection.

The �rst network, termed a \De-Rotation" network, analyzes the input window

before it is given to the \Detection" network. The De-Rotation network's input

is the same region that the detection network will receive as input. If the input

contains a face, the De-Rotation network returns the angle of the face. The

window can then be rotated by the negative of that angle to make the face

upright. Note that the De-Rotation network does not require a face as input. If

a non-face image is encountered, the router will return a meaningless rotation.

However, since a rotation of a non-face image will yield another non-face image,

the detection network will still not detect a face. On the other hand, a rotated

face, which would not have been detected by the detection network alone, will

be rotated to an upright position, and subsequently detected as a face. Before

giving the details of this system, the next section gives a review of the face

detection system described in [10, 11].

2 Frontal, Upright, Face Detection using the

Rowley, Baluja & Kanade System [11]

This section was largely taken from [11]; it is provided to give the reader the

necessary background for the next section.

The \Detection" networks used in this study are taken from [11]. The detec-

tion network operates as a �lter that receives as input a 20x20 pixel region of the

image, and generates an output ranging from 1 to -1, signifying the presence or

absence of a face, respectively. To detect faces anywhere in the input, the �lter

is applied at every location in the image. To detect faces larger than the window

size, the input image is repeatedly reduced in size (by sub-sampling), and the

�lter is applied at each size. For the work presented here, the �lter is applied at

every pixel position in the image, and the image is scaled down by a factor of

1.2 for each step in the pyramid.

The �ltering algorithm is shown in Figure 1. First, a preprocessing step,

adapted from [12], is applied to a window of the image. The window is then

passed through a neural network, which decides whether the window contains a

face. The preprocessing �rst attempts to equalize the intensity values in across

the window. We �t a function which varies linearly across the window to the



intensity values in an oval region inside the window, see [11]. The linear function

will approximate the overall brightness of each part of the window, and can be

subtracted from the window to compensate for a variety of lighting conditions.

Then histogram equalization is performed, which non-linearly maps the inten-

sity values to expand the range of intensities in the window. The histogram is

computed for pixels inside an oval region in the window.
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Fig. 1. Overview of algorithm for frontal, upright, face detection. Taken from [10].

To train the neural network used for detection, a large number of face and

non-face images are needed. Approximately 1050 face examples were used. For

each of these faces, �fteen face examples are generated by randomly rotating the

images (about their center points) up to 10

�

, scaling between 90% and 110%,

translating up to half a pixel, and mirroring. Each 20x20 window in the set is

then preprocessed (by applying lighting correction and histogram equalization).

The randomization gives the �lter invariance to translations of less than a pixel

and scalings of 20%.

3

Larger changes in translation and scale are dealt with by

applying the �lter at every pixel position in an image pyramid, in which the

images are scaled by factors of 1.2.

As pointed out in [10], training the detector to recognize non-face images

is a di�cult problem because the space of non-face images is much larger than

the space of face images. Collecting a representative set of non-faces is di�cult.

Instead of collecting the images before training is started, the images are collected

during training, in the following manner, adapted from [12]:

3

The reader may question why it is not possible to simply train a network with images

which have been rotated by larger amounts, and avoid this rotation problem alto-

gether. Unfortunately, in the experiments conducted, training with larger amounts

of rotation adversely a�ected performance. This is because the larger the amount

of variability in the training set, the harder it is to train a network which is able

to maintain an acceptably low number of false-positives. However, this may be an

interesting avenue for future exploration.



1. Create an initial set of non-face images by generating 1000 random images.

Apply the preprocessing steps to each of these images.

2. Train a neural network to produce an output of 1 for the face examples,

and -1 for the non-face examples. The training algorithm is standard error

backpropagation with momentum [4]. On the �rst iteration of this loop, the

network's weights are initialized randomly. After the �rst iteration, we use

the weights computed by training in the previous iteration as the starting

point.

3. Run the system on an image of scenery which contains no faces. Collect

sub-images in which the network incorrectly identi�es a face (an output

activation > 0).

4. Select up to 250 of these sub-images at random, apply the preprocessing

steps, and add them into the training set as negative examples. Go to step 2.

[11] used 120 images of scenery for collecting negative examples in the bootstrap

manner described above. Further, several networks were trained in this manner.

Various arbitration heuristics were used to combine the results of the multiple

networks. More details about the training procedure can be found in [11].

3 The De-Rotation Network

The De-Rotation network is trained to output the rotation of a face given in the

20x20 pixel inputs. The training examples consist of a set of images which contain

faces each rotated a random amount within the image-plane. These examples are

generated from the positive training examples used for training the detection

network. 25 examples are generated from each of the original positive examples;

each of these examples is rotated to a random amount between 0

�

- 360

�

. The

types of examples used for training are shown in Figure 2.

The network must output a value which can be interpreted as a value between

0

�

- 360

�

. There are many possibilities for representing the output of the network.

Pomerleau has explored many of these for the design of a neural-network con-

troller for the autonomous navigation of a vehicle [9]. In Pomerleau's application,

the output of the network was interpreted to be the steering angle of the vehicle

to ensure that the vehicle stayed on the road. Several output representations

were explored:

1. Single Unit: The activation amount of a single output unit (usually either

between 0-1 or -1 and +1) is mapped linearly between the range of 0

�

- 360

�

to determine the angle of rotation.

2. 1-of-N Encoding: N units are used to represent the output. Each unit rep-

resents 360=N

�

. For example, if there were 180 units, and if unit 30 had the

highest activation, this would indicate a rotation of 60

�

.

3. Gaussian Output Encoding: Similar to the 1-of-N encoding; N units are used

to represent the output. However, instead of only training the network to

turn on a single output, outputs close to the desired output are also turned on



Fig. 2. 100 input/output training examples shown. The thin line below each face rep-

resents the target outputs for the network (72 output units total). In this �gure, the

same face is rotated in increments of 3:6

�

. Note that the Gaussian output vector wraps

around the boundaries, ensuring that rotations close to 0

�

, such as 359

�

and 1

�

, are

treated similarly.

in proportion to the distance from the desired output. For example, in train-

ing to indicate a rotation of 60

�

in 180 units, unit 30 would have maximum

activation, units 29 and 31 less activation, 28 and 32 even less, etc. This rep-

resentation avoids the imposed discontinuities of the strict 1-of-N encoding

for images which are similar, but which have slight di�erences in rotations.

Pomerleau found this representation to work the best of the three [9].



For this study, 72 output units were used with the Gaussian output encoding.

At runtime, after the forward-propagation pass is done through the network, a

Gaussian is �t to the outputs, and the estimated peak of the Gaussian is used

to determine the network's estimate of the rotation of the face (similar to the

method proposed by [9]). This allows a �ner granularity than would be possible

if only the maximum activation of the output units was used (ie., it is possible

to get values other than multiples of 5

�

with 72 output units); see [9] for details.

Sample input and output pairs are shown in Figure 2.

The \De-Rotation" network has a single hidden layer consisting of a total

of 100 units. In this hidden layer, there are 4 sets of 25 units. Each unit in the

hidden layer has retinal connections to the input layer. The receptive �elds of

the hidden units are shown in Figure 3. Each unit connects to a 4x4 region of

the input. Each set of 25 units covers the entire input without overlap.

  ... Hidden Layer:
Retinally Connected to Input Layer
(4 sets of 25 units)

 

 ... Output Layer:
Fully Connected to Hidden Layer
72 units

20x20 inputs
Input Layer:

Fig. 3. Network architecture for the \De-Rotation" network. The network has 100

hidden units, each of which is connected to a 4x4 patch of the input.

The network is trained by the standard error backpropagation training method,

see [4] for details.

3.1 Performance of the De-Rotation Network

As described in the previous section, the face detector is trained to handle small

variations in rotation of approximately �10

�

- 10

�

. Therefore, the De-Rotation

network must be able to determine the angle of faces to within this tolerance.

Figures 4 & 5 show the distribution of errors in the estimation of rotation, as a

function of degrees. These histograms were generated by testing the network on

an image set which consisted of 12000 face images which were randomly rotated



between 0

�

- 360

�

(there were approximately 1000 original face images from

which 12 randomly rotated images were created). As can be seen, approximately

73% of errors were less than 5

�

, and approximately 93% of the errors were less

than 10

�

.
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Fig. 4. Histogram of the errors in the estimation of rotation.
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Fig. 5. Histogram of the errors in the estimation of rotation - enlarged.

4 Integrating the De-Rotation and Detection Networks

In this section, a small set of experiments are conducted to ascertain whether

the the De-Rotation network and the Detection network will work together. The

following steps are repeated for each 20x20 image which is given to the system:



1. The window is preprocessed to account for lighting variation. This step was

described earlier in Section 2, and is adapted from [12].

2. Histogram Equalization is performed on an oval region inside the window

[11,12].

3. The window is passed to the De-Rotation network. A Gaussian is �t to the

network's outputs, and the peak is interpreted as an angle between 0

�

- 360

�

.

4. The window is rotated by the angle returned in the previous step. Because

the rotation may cause un�lled pixels to enter the image, all un�lled pixels

are estimated from nearby pixels. Instead of performing this estimation pro-

cedure, this process can be improved by re-sampling the image from which

the 20x20 window was extracted.

5. The rotated-window is passed to the detection network. If the detection

network outputs a positive value, the window is labeled as a face, otherwise

the window is labeled as a non-face.

As suggested in [11], this process can be repeated for multiple networks. To

be used for face detection in arbitrary images, it can be repeated for every pixel

location in the original image, as well as in sub-sampled images, to account for

translation and scale variations.

4.1 Empirical Comparison

The �rst tests conducted are used to set a base-line for the performance that

we can expect to achieve with the De-Rotation network. First, we examine the

performance of one of the networks from the face detector (from [11]) on a set

of 4000 upright faces images of size 20x20. These images were synthesized by

randomly rotating a set of 1000 face images (about their center points) up to 10

�

,

scaling between 90% and 110%, translating up to half a pixel, and mirroring.

The face detector was trained to handle exactly this amount of variation. As can

be seen in Table 1, the face detector is able to detect approximately 86.5% of

these faces. For the second experiment, each of these 4000 images was rotated 10

times by a random amount, chosen uniformly from 0

�

- 360

�

(creating a total of

40000 images). As expected, since the network is not trained to handle rotations

greater than 10

�

, the network's performance drops dramatically, to only being

able to detect approximately 8% of the images as faces.

Table 1.Results of using the Original SystemDescribed in [11] without any adjustment

for rotations.

Number Detected Detection Rate

Original Face Images 3460/4000 86.5%

Rotated Face Images 3181/40000 8.0%

Next, we examine the ability of the full system; this system used the De-

Rotation network to determine the correct orientation of each input image. First,

we ensure that the network has not lost the ability to detect frontal, upright



faces. This could happen if the rotation network does not correctly estimate

rotations, and mistakenly suggests large rotations for face images which were

initially upright. However, this was not the case. As can be seen in the �rst line

of Table 2, there was only a very small decline in the ability to detect upright

faces. Next, we check the ability of the network to make rotated faces upright.

As can be seen in the second line of Table 2, the faces from the second image

set, which contained rotated faces, were correctly labeled almost as often as the

faces which were upright. Therefore, the De-Rotation network performed well in

determining the rotation of the face.

Table 2. Results of using the De-Rotation network to pre-process all of the examples.

Number Detected Detection Rate

Original Face Images 3429/4000 85.7%

Rotated Face Images 33971/40000 84.9%

Finally, we check the performance of the full system to correctly label non-

faces. Recall that during training the face-detector, false-positive images are

gathered by collecting the mistakes the network makes by labeling faces in im-

ages that are known to contain no faces. These false-positives are added to the

network's training set, and training is continued. At the end of training, this

false-positive set is fairly large, and is comprised of a set of images that were

di�cult for the network to correctly classify as face or non-face. In the face-

detector presented in [11], several networks were trained for face detection; each

was individually trained by the process described above. Here, we use the false-

positive training set of two of the networks trained in [11] to test the accuracy

of the detector (note that the network tested here was not trained on this set

of images). This set of images comprises a di�cult set of images to correctly

classify, and is not representative of the distribution of actual 20x20 images seen

in natural images, since it is chosen to be a set of images that were di�cult to

classify by a network.

Table 3. Comparative Results on Non-Faces

Number Mistakenly Detected False Positive Rate

Original System from [11] 2252/11150 19.6%

System with De-Rotation 2570/11150 22.3%

Note that the original system falsely detects approximately 2252 out of this

set of 11150 faces (a false detection rate of approximately 19.6%). When the

system with the De-Rotation network is used, the false detection rate increases,

see Table 3. This increase in error occurs because even images which do not

appear similar to upright faces in their original orientation are rotated so that

they look as much as possible like upright faces. This is because the De-Rotation



network does not have knowledge of whether the input image is a face or not;

it rotates the image to make it appear as an upright face. Therefore, the �nal,

rotated, images which are passed to the detector can be much more di�cult to

classify correctly . Some sample non-face images which were not detected as faces

by the original system, but were detected after rotation, are shown in Figure 6.

This problem is returned to in the next section.

Fig. 6. Misclassi�cation due to using rotation pre-processing. 20 pairs shown. Top of

each pair is unrotated version, which was not mislabeled as face. Bottom: rotated

version, which was mislabeled as a face.

In summary, the De-Rotation and Detection networks work well together.

There is little loss of accuracy in detecting upright faces, and a large increase in

accuracy in detecting rotated faces. There is a potential problem of mistakenly

classifying more non-faces as faces than if rotation had not been used. A method

for overcoming this problem is briey mentioned in the next section.



5 Summary and Future Directions

We have proposed a simple and e�ective technique for extending existing template-

based upright face-detection methods to e�ciently detect faces which are rotated

within the image-plane. Preliminary empirical results are promising.

There are three immediate directions for future work. The �rst is retraining

the detection networks. At run-time, the distribution of images which the de-

tection network is given is one which has been preprocessed by the De-Rotation

network. However, in training, this preprocessing was not done. As was shown

in Table 3, this can have an adverse a�ect on the ability to correctly classify

non-faces. To avoid this problem in the future, the detection network should be

trained with only examples which have been preprocessed with the De-Rotation

network.

This system is much faster than the alternative of rotating the image multiple

times, and applying the detector to each rotated image. However, the speed of

this system is not yet up to the same performance as the \fast" version of the

system presented in [11]. It is suspected that similar techniques which made that

system fast can be applied here. The gain in speed was achieved by using a fast,

but inaccurate, \candidate" detector network to eliminate regions which had no

faces, and using the accurate, but slower, detection networks only on the regions

which were not eliminated.

Finally, it would be interesting to extend this system to out-of-plane rota-

tions. By using knowledge of the shape and/or symmetry of the face, it should

be possible to convert semi-pro�le views of a face to frontal views. Related work

has been explored in [1, 14].
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