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Abstract 

 

Finding similar images in a large database is an 
important, but often computationally expensive, task.  
In this paper, we present a two-tier similar-image 
retrieval system with the efficiency characteristics 
found in simpler systems designed to recognize near-
duplicates.  We compare the efficiency of lookups 
based on random projections and learned hashes to 
100-times-more-frequent exemplar sampling.  Both 
approaches significantly improve on the results from 
exemplar sampling, despite having significantly lower 
computational costs.  Learned-hash keys provide the 
best result, in terms of both recall and efficiency.  
 

1. Introduction 
 

The ability to efficiently retrieve similar images 
from a large database can be useful in a wide variety of 
applications, including search-by-example on large 
image sets, example-based image compression and 
enhancement, and texture synthesis.  In all cases, we 
want to retrieve the most similar image from a large, 
distributed database of example images.  Extensive 
research has been conducted on nearest-neighbor 
retrieval [1], with a large focus on tree-based space 
carving, either spherical or rectilinear.  

One simple, but expensive, type of space carving is 
to use a fixed subset of exemplars from the image set 
in a Voronoi tessellation.  With this system, the 
exemplar set must be large enough to provide good 
matches across the full image space.  This type of 
space carving is attractive for its guaranteed limits on 
the probe distance to the retrieved result, compared to 
that of the actual nearest-neighbor, but it is impractical 
for a production system due to the large number of 
exemplar-probe distances that must be computed if a 
suitable covering of the expected images is used.  
However, because of the simplicity of the approach 
and since this approach provides a set of retrieval 
guarantees, it is used as a baseline. 

We compare this baseline to two different two-tier 
systems [2].  In a two-tier system, the first tier selects a 

very small subset of the full database to request for 
further examination.  This small subset is then 
retrieved from the distributed database and a second 
tier of examination is done (on the smaller subset), 
using the same, potentially expensive, thumbnail 
comparisons as used in a fixed-exemplar system. 

Unlike the fixed-exemplar approach, a two-tier 
system has the opportunity to return any entry from the 
full database.  To permit this, however, the first-tier 
decisions must be efficiently made, since they are on 
the full database size.  Additionally, for deployment in 
real systems, the first-tier entry representation must be 
compact and its subsequent pruning must be both quick 
and accurate, since the number of examples examined 
in the second tier must be minimal.  These 
requirements lead us to use compact signatures with 
Locality Sensitive Hash (LSH) table entries as our only 
representation for the full database in the first tier. 

LSH tables are used extensively for near-duplicate 
retrievals [2][3].  Each database entry (images, for this 
application) is processed to obtain a compact and 
robust signature vector. The signature vector is then 
projected into multiple subspaces, with each projection 
creating an LSH key. The subspace projections often 
are simply disjoint subsets (or “subbands”) of the 
signature dimensions.  Retrieval uses the same banding 
on the probe signature and collects the results across 
bands.  The collected result list is often long but is 
guaranteed to contain “near” neighbors – all entries 
with at least one matching signature subband.  

For efficiency, we use LSH tables for similar-image 
retrieval.  However, because the task of finding similar 
images – images visually similar to the probe image – 
is more difficult than finding near-duplicates (in which 
the goal is commonly to find the same image, with 
small amounts of noise, scaling and encoding 
artifacts), we use more subbands, each based on 
smaller subband keys, and employ a learning approach 
to create the hash keys.  To avoid requesting too many 
candidates from the distributed database, each 
candidate is ranked by the number of matching LSH 
subbands it shares with the probe. This provides a 



Average retrieved list length 
(per hash table) 

15 bits 18 bits 20 
bits 

random projection 5279 2153 1247 
Hungarian hash 2451 1038 611 

Figure 1:  Two-tier hash retrieval compared to 100× fixed-
exemplar retrieval.  X-axis: number of hash sets.  Y-axis: % of 
retrievals with better (more similar) results than 100× sampling 
using fixed exemplars.  Table: average retrieved-lists length.  
 

rapid approximation of the Hamming-distance rank of 
the candidate list, without database image (or even 
signature) examination, and is solely based on the hash 
tables in the distributed first-tier. 

Section 2 provides details about our experimental 
set up, including the evaluation methods.  Sections 3 
and 4 present alternative approaches to generating the 
image signatures, for use in the first tier of the two-tier 
system. In Section 3, we consider random-projection-
based signatures and, in Section 4, we describe 
learned-category-based signatures.  In Section 5, we 
introduce two improvements, the first improves recall 
and the second controls the LSH retrieval size. 
 

2. Experimental Setup 
 

 Throughout this paper, similar image retrieval is 
tested using a database of 2,400,000 images and 
collecting statistics across 1000 probe images.  The 
database images are collected from product searches 
(800,000) and randomly from Google’s image search 
(1,600,000).  For those experiments that require 
training data, we use training images that are disjoint 
from our testing sets.  For unlabeled training data, we 
simply use 450,000 image-search results.  For training 
data with similar-image labels, we use 20,000 from 
that training set as “probe images” and mark the 10 
nearest neighbors to each of these probe images 
accordingly (allowing overlaps in the labels). 

For evaluation, similarity is based on the distance 
between the closest retrieved image and the probe 
image.  We measure this distance by combining 
distances across RGB low-resolution (24x24 pixel) 
space and (grayscale) wavelet space.  Our distance is 
the L2 difference between these 24x24x4 thumbnails 
(R,G,B & maximally decimated Haar wavelet).  Many 
distance metrics could be used; here, we employ a 
simple, easily reproducible one.  The quality of the 
returned result is based on the single closest image 
returned by each method.  For our use, this is an 
important measurement since often only the first search 
result is used for image modeling or is examined by 
users of web-based image search.  For recall, we report 
how often, across our 1000 probe set, the two-tier 
approach returned a closer image result than an 
approach based on fixed exemplars.  We allow 100× 
more sampling of the fixed exemplars (10,000 
exemplars total) than with the two learning approaches 
(100 retrieved exemplars).  The restriction that the 
second tier of the two-tier system considers only 1% of 
the number allowed for the fixed exemplar images, 
makes this a difficult test, and easily compensates for 
the overhead of hash-signature computation. 

 

3. Random-projection-based Hash Keys 
 

The first approach is projection onto randomly 
oriented planes.  This method is widely used in 
nearest-neighbor retrieval due to its average-case 
retrieval complexity.  Each projection is taken onto an 
independent 24x24x4 random vector, where each 
vector coefficient is independently sampled from a 
zero-mean, unit-variance Gaussian distribution.  The 
median of each projection is found on our training set.  
That median value is used as a threshold, giving a 
balanced bit per projection. This process is repeated to 
give a signature for each image. The results are shown 
in Figure 1 as “random projection.”  The signature is 
then divided into sub-bands, and LSH used for 
retrieval.  The results are better than the fixed-
exemplar approach for 81% to 87% of the probe tests, 
depending on the key length.  As the number of bits 
increases, the performance decreases: with more bits, 
too close a match is required and “similar” (but non-
duplicate) images do not match enough bits/subbands.  
However, with a smaller number of bits, note that the 
number of candidates before tier-2 examination is 
much larger because many entries share short sections 
of the image signature with the probe.  

Using a two-tier system with hash-keys created 
from random projections does significantly better than 
the fixed-exemplar approach.  This result is a 
significant achievement, since the total computation 
used to find the random-projection result is less than 
10% of that used for the fixed-exemplar approach, 



even with the first-stage probe-image signature 
computation.   In the fixed exemplar case, each of the 
10,000 fixed exemplars requires an L2 distance 
computation across (24x24x4)=2304 dimensions.  
Even with the first-stage overhead of the signature 
generation (600-800 projections * 2304 dimensions), 
the reduced number of L2 distance computations in the 
second-stage from 10,000 to 100 (# of examples fully 
examined in the second tier) is significant.  This 
savings, combined with better retrieval results, 
provides strong support for these two-tier methods. 
 

4. Learned-category Hash Keys 
 

Our second two-tier retrieval system builds on 
previous work in learning hash keys, termed Forgiving 
Hashing [4].  The approach approximates an 
underlying data/label-manifold using a combination of 
balanced decision boundaries where each boundary is 
placed according to a subset of the total training data.  
We learn binary decision boundaries to separate 
images into nearest-neighbor categories, while 
maintaining the entropy properties described below.  

We employ a large number of nearest-neighbor 
categories (20,000) and small amount of images per 
category (10).   The small number of examples in each 
class could lead to poor decision boundaries.  To avoid 
this, we use the approach outlined in Figure 2. We 
repeatedly (M=250) take a random subset of 2N 
training categories (N=8), so that the decision 

boundaries across this training subset is specified by N 
binary classifiers.  To start, we make a random 
assignment of the 2N training groups to the 2N N-bit 
codewords.  Since we learn our decision boundaries at 
a single bit level, this yields 10*2N-1 training examples 
per binary category.   

To learn the codewords, each single-bit of the 
codeword is a separate ‘strong’ Adaboost classifier.  
Each strong classifier is comprised of 1024 weak 
classifiers. The population of weak classifiers 
considered for inclusion into the set of 1024 is based 
on a pair of averages taken from distinct rectangular 
regions within the 24x24x4 thumbnail data.  Each 
weak classifier is defined by the corner locations for 
these two rectangles, by an operator used to combine 
these average values, and by a threshold value for 
changing the combined value into a single bit.  The 
Adaboost approach of [7] is used to set these 
thresholds to minimize that weighted error distribution 
at the time of evaluation.  We consider 3 combination 
operators: ratio, sum, and absolute difference.  
Together this provides a pool of more than a million 
possible weak classifiers.  Since this pool is too large 
to evaluate at each of the 1024*N*M Adaboost steps, 
we evaluate only a tiny fraction of them: 500 randomly 
selected weak classifiers, with new random selection at 
each stage.  In each iteration, out of the 500 evaluated, 
the weak classifier that best reduces the residual error 
is selected for the strong classifier being trained. This 
sparse sampling approach has been shown to work 
effectively in vision-based classification problems [5]. 

Even though the actual learning occurs at a single-
bit level, our requirement that the selected training 
categories be evenly split across 2N codewords means 
the assignment of targets occurs within an N-bit 
context (and is repeated M=250 times, using different 
category combinations). We start to learn a specific 
(initially random) assignment of 2N categories to 2N N-
bit codewords.  Since we have no a priori way to 
create an assignment learnable in N binary decision 
boundaries, we allow the reassignment of labels. 

Reassignment is shown in the learn-reassign loop in 
the LearnGrouping subroutine in Figure 2.  In this 
loop, we first try to learn our current assignment.  After 
training, we measure the error for each category.  
Specifically, we evaluate how well each of the 2N 
categories associate with the 2N N-bit codewords, using 
the similarity between the N learned outputs and the 
current N-bit codeword, averaged over the 10 training 
examples and over the N bits and weighted by the 
decision margin for each of the example output bit.  
We then create a new set of 2N category-codeword 
assignments, based on this “affinity” between the 
selected categories and the codewords.  In the 
reassignment, all labels are again used and each 

Figure 2: Forgiving-hash learning 

SUBROUTINE LearnGrouping 
 ASSIGN 28 categories to 28 unique labels, at random 
LOOP until iteration limit: 
 FOREACH bit in 8-bit label code 
  LEARN assigned bit value on training data, selecting 1024 

boosted weak classifiers using Adaboost 
 END foreach bit 
 EVALUATE the association strength of each 28 categories 

with all 28 labels, using weighted average bitwise Hamming 
similarity between 8 strong-Adaboost classifier outputs and 8-
bit codes, weighted by classifier margin 

 REASSIGN all 28 categories to 28 labels, using Hungarian 
(stable bi-partite) matching 

END loop 
END subroutine 
 
FOR 250 iterations: 
 COLLECT 8 1-bit classifiers from LearnGrouping 
END for 250 iterations 
FOR number of bits needed 
 MOVE 1 bit from available pool to hash key, based on 

current bit sampling criteria 
END for number of bits 



category is assigned a unique label.  This ensures 
maximal entropy of each bit (1.0), in the target labels, 
across the 2N categories.  Since each example within a 
category is assigned the same label, the target within-
class entropy is minimal (0.0). 

In previous work [4], a greedy approach was used 
for reassignment.  We improve on that approach by 
using a stable-matching algorithm for bi-partite graph 
labeling, also known as the Hungarian algorithm [6], to 
find the best match in (at most) m2 proposed category-
codeword pairings, where m=2N.  In the Hungarian 
algorithm, at each step, an un-coded category proposes 
itself to the codeword to which it has the strongest 
affinity and has not yet proposed.  If that codeword is 
already used for another category, to which its affinity 
is stronger, the codeword refuses the new proposal.  
Otherwise, the codeword breaks off any previous 
assignment (with the jilted category returning to the 
un-coded state) and the codeword re-associates itself 
with the current proposing category.   

After the bits are learned (in 250 groups of 8 bits 
each), we select from this combined pool of N*M 
(N=8, M=250) bits to create our hash keys. For the 
results reported in this section, we select the bits that 
will be used for the hash key randomly (without 
replacement).  The results from this approach are 
shown in Figure 1 as “Hungarian hash”. 

These results all significantly improve over the 
fixed-exemplar retrieval, with closer retrieval results 
for more than 90% of our probes, as long as at least 20 
hash tables are used.  The approach achieves these 
superior results at a much lower computational cost 
than the fixed-exemplar approach, since the weak 
classifiers can be computed efficiently, using a shared 
integral-image representation [7].  Furthermore, the 
results are all significantly better than those obtained 
through random projections (and at a lower cost).  We 
consistently match or exceed the performance of 
random projection, using 1/4th of the memory that was 
needed for that alternative: it takes ¼ the number of 
hash tables (and ¼ of the lookups) for Hungarian hash 
to achieve the performance of random projection.  Due 
to the performance improvements in memory and 
recall rates, the remainder of the discussion focuses on 
Hungarian hashes, although the same improvements 
are applicable to random-projection keys. 
 

5. Improvements to Two-Tier Retrieval 
 

To this point, we have demonstrated the strength of 
two-tier approaches, in particular the Hungarian hash 
learning procedure – strong retrieval result without the 
need for keeping an explicit signature for any of the 
database entries.  No signature is required since the 
evidence for each entry in the database is measured by 

the number of matching subbands in the first-tier.  In 
this section, we examine two improvements to the 
basic two-tier approach: first, to control the size of the 
hash retrievals and second, to improve the within-
category coherence within the hash tables. 
 

5.1 Soft limiting retrieval size 
 

When we examine our retrieval results, the 
sometimes long likely-candidate lists are due to a small 
number of table lookups in which the bins are 
disproportionately highly populated. This occurs 
because the image population clumps together within 
the individual hash tables.  That clumping occurs in 
different parts of the image population within the 
separate tables, so only a small number of the hash 
lookups for any one probe image will hit a clump.  We 
can take advantage of this incoherence to reduce the 
likely-candidate list length.  We first retrieve the bin 
sizes for all of the lookups needed for a probe.  We 
then test the bin occupancy against some threshold 
occupancy (e.g., 0.1% of the full database) and only 
count the below-threshold retrievals.  If too few of the 
bins are below our threshold (e.g., fewer than ten), then 
we dynamically adjust the threshold upward, until at 
least 10 bins are counted.  These results are shown for 

Average retrieved list 
length (per hash table) 

15 bits 18 bits 20 bits 

original Hungarian hash 2451 1038 611 
using coherent bits 7758 3460 2177 
0.1% Hungarian hash 550 424 325 
0.1 & using coherent bits 670 489 421 
Figure 3:  Retrieval limits and coherent-bit bias in Hungarian 
hash retrieval (compared to 100x random retrieval).  The x- and 
y-axes are as in Figure 1 (over different ranges).  Dashed lines: 
randomly selected hash keys with a 0.1% bin-size limit.  Solid 
lines: coherency-selected hash keys with the same bin-size limit.  
Dotted lines: original Hungarian hashing results from Figure 1.  
Random projection results are below shown range (not shown). 
 

 



15- and 20-bit hashes with dashed line plots in Figure 3 
with the labels “0.1% X-bit Hungarian”. 

Comparing these results to the original approach 
(Figure 1 or dotted lines in Figure 3), we lose some 
recall by limiting the retrieval size: the loss is largest 
for the short hash keys and for the smaller numbers of 
hash tables; this is where the limits have a greater 
impact on the ranking the likely candidates.  
Nonetheless, the advantage of employing a hash-bin 
size limit is that it significantly reduces likely-
candidate list lengths, down by 50% to 75% of those 
without using limits. This behavior (a small recall loss 
for an extreme reduction in the number of likely 
candidates listed for voting) suggests that the areas in 
the hash tables where the worst clumping occurs are 
providing little information about image similarity.   

 

5.2 Selecting for within-category coherence 
 

The second improvement explicitly improves the 
stability of hash keys on similar images by using only 
those bits that best keep the within-category training 
images together.  Each bit has been trained to minimize 
within-class entropy while maintaining between-class 
entropy, but only for a small subset of the training set 
(just 256 classes out of 20,000).   With a total of 2000 
bits in the trained pool, none of our tests will use all of 
the available bits.   We can bias our selection of hash 
bits according to their performance over the full 
training set.  To do this, we evaluated the within-
category entropy of each bit across the full training set 
(not just the subset of examples it was trained on) and 
then selected bits for the hash keys according to this 
ranking.  Only bits with the lowest within-class 
entropy, averaged over all training classes, were used. 

When this heuristic was used without retrieval 
limits, this coherent-bit-selection bias resulted in 
improved recall: there was a consistent 1-2% absolute 
improvement in the recall across all of the approaches 
using 20 or more hash tables and 15- or more bits per 
hash key.  However, this improvement in recall 
incurred long likely-candidate lists: the list lengths 
grew by 200% to 300% from those shown in Figure 3.   

When the two modifications (retrieval-size limits 
and coherence-selected bits) are combined, we get our 
best results.  As shown by the “(coherent)” label 
modifiers in Figure 3, our recall performance for 18- 
and 20-bit Hungarian hash keys improves significantly, 
most obviously for the 40 hash table set up.  The most 
interesting effect is that recall does not degrade (and 
even slightly improves) for the longer hash keys, even 
though we have many fewer likely candidates under 
consideration. At 40 hash tables, the best results from 
this combined approach (using 20-bit hashes) achieves 
the same recall performance as the best results from the 

original approach (which used 15-bit hashes), while 
examining approximately 1/6th of the number of likely 
candidates needed for the original best approach 
(utilizing 15 bits). 
 

6. Larger Tests and Conclusions 
 

In this paper, we examined efficient techniques for 
similar-image retrieval over large, distributed 
databases.  Our approaches balanced bandwidth 
requirements, computational costs, and local-memory 
usage.  In these tests on a diverse 2.4-million image 
database, we improved on fixed-exemplar space 
carving in 95% of our probe tests, while using only 1% 
of the computational cost of that approach.  As a final 
test, to ensure that we did not over-engineer this 
system specifically for the set of 2.4 million images we 
used for the experiments presented, we repeated the 
tests by increasing our database size to 5.8 million 
images.  This strengthened our findings: the learned-
hash key approach is even more effective (improving 
on fixed exemplars in 97% of our probes), as well as 
computationally efficient (maintaining the same 1% 
computational ratio). 

Our future investigations will first focus on 
reducing the local memory usage for the learned-hash 
approach.  We currently keep the fully populated hash 
tables, even when using retrieval limits, due to our 
requirement to retrieve a fixed minimum number of 
bins.  We would like to reduce the retained size of 
these over-full bins.  One interesting approach to this is 
to use within-bin clustering, based on the full 
signatures of the referred-to elements.  Further work is 
needed to be able to do this clustering without adding 
significant memory overhead.  Second, for these 
experiments, an L2-based measure of similarity was 
chosen for reproducibility and simplicity.  It is just one 
of many similarity measures that can be incorporated 
into the learning approaches; the use of higher-level 
features, such as local features, as inputs into the 
learning procedures is currently under investigation. 
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