
Beyond “Near-Duplicates”:
Learning Hash Codes for Efficient Similar-Image Retrieval

Shumeet Baluja and Michele Covell
Google Research, Google Inc., 1600 Amphitheatre Parkway, Mountain View CA 94043

shumeet@google.com covell@google.com

Abstract

Finding similar images in a large database is an
important, but often computationally expensive, task.
In this paper, we present a two-tier similar-image
retrieval system with the efficiency characteristics
found in simpler systems designed to recognize near-
duplicates. We compare the efficiency of lookups
based on random projections and learned hashes to
100-times-more-frequent exemplar sampling. Both
approaches significantly improve on the results from
exemplar sampling, despite having significantly lower
computational costs. Learned-hash keys provide the
best result, in terms of both recall and efficiency.

1. Introduction

The ability to efficiently retrieve similar images
from a large database can be useful in a wide variety of
applications, including search-by-example on large
image sets, example-based image compression and
enhancement, and texture synthesis. In all cases, we
want to retrieve the most similar image from a large,
distributed database of example images. Extensive
research has been conducted on nearest-neighbor
retrieval [1], with a large focus on tree-based space
carving, either spherical or rectilinear.

One simple, but expensive, type of space carving is
to use a fixed subset of exemplars from the image set
in a Voronoi tessellation. With this system, the
exemplar set must be large enough to provide good
matches across the full image space. This type of
space carving is attractive for its guaranteed limits on
the probe distance to the retrieved result, compared to
that of the actual nearest-neighbor, but it is impractical
for a production system due to the large number of
exemplar-probe distances that must be computed if a
suitable covering of the expected images is used.
However, because of the simplicity of the approach
and since this approach provides a set of retrieval
guarantees, it is used as a baseline.

We compare this baseline to two different two-tier
systems [2]. In a two-tier system, the first tier selects a

very small subset of the full database to request for
further examination. This small subset is then
retrieved from the distributed database and a second
tier of examination is done (on the smaller subset),
using the same, potentially expensive, thumbnail
comparisons as used in a fixed-exemplar system.

Unlike the fixed-exemplar approach, a two-tier
system has the opportunity to return any entry from the
full database. To permit this, however, the first-tier
decisions must be efficiently made, since they are on
the full database size. Additionally, for deployment in
real systems, the first-tier entry representation must be
compact and its subsequent pruning must be both quick
and accurate, since the number of examples examined
in the second tier must be minimal. These
requirements lead us to use compact signatures with
Locality Sensitive Hash (LSH) table entries as our only
representation for the full database in the first tier.

LSH tables are used extensively for near-duplicate
retrievals [2][3]. Each database entry (images, for this
application) is processed to obtain a compact and
robust signature vector. The signature vector is then
projected into multiple subspaces, with each projection
creating an LSH key. The subspace projections often
are simply disjoint subsets (or “subbands”) of the
signature dimensions. Retrieval uses the same banding
on the probe signature and collects the results across
bands. The collected result list is often long but is
guaranteed to contain “near” neighbors – all entries
with at least one matching signature subband.

For efficiency, we use LSH tables for similar-image
retrieval. However, because the task of finding similar
images – images visually similar to the probe image –
is more difficult than finding near-duplicates (in which
the goal is commonly to find the same image, with
small amounts of noise, scaling and encoding
artifacts), we use more subbands, each based on
smaller subband keys, and employ a learning approach
to create the hash keys. To avoid requesting too many
candidates from the distributed database, each
candidate is ranked by the number of matching LSH
subbands it shares with the probe. This provides a

Average retrieved list length
(per hash table)

15 bits 18 bits 20
bits

random projection 5279 2153 1247
Hungarian hash 2451 1038 611

Figure 1: Two-tier hash retrieval compared to 100× fixed-
exemplar retrieval. X-axis: number of hash sets. Y-axis: % of
retrievals with better (more similar) results than 100× sampling
using fixed exemplars. Table: average retrieved-lists length.

rapid approximation of the Hamming-distance rank of
the candidate list, without database image (or even
signature) examination, and is solely based on the hash
tables in the distributed first-tier.

Section 2 provides details about our experimental
set up, including the evaluation methods. Sections 3
and 4 present alternative approaches to generating the
image signatures, for use in the first tier of the two-tier
system. In Section 3, we consider random-projection-
based signatures and, in Section 4, we describe
learned-category-based signatures. In Section 5, we
introduce two improvements, the first improves recall
and the second controls the LSH retrieval size.

2. Experimental Setup

 Throughout this paper, similar image retrieval is
tested using a database of 2,400,000 images and
collecting statistics across 1000 probe images. The
database images are collected from product searches
(800,000) and randomly from Google’s image search
(1,600,000). For those experiments that require
training data, we use training images that are disjoint
from our testing sets. For unlabeled training data, we
simply use 450,000 image-search results. For training
data with similar-image labels, we use 20,000 from
that training set as “probe images” and mark the 10
nearest neighbors to each of these probe images
accordingly (allowing overlaps in the labels).

For evaluation, similarity is based on the distance
between the closest retrieved image and the probe
image. We measure this distance by combining
distances across RGB low-resolution (24x24 pixel)
space and (grayscale) wavelet space. Our distance is
the L2 difference between these 24x24x4 thumbnails
(R,G,B & maximally decimated Haar wavelet). Many
distance metrics could be used; here, we employ a
simple, easily reproducible one. The quality of the
returned result is based on the single closest image
returned by each method. For our use, this is an
important measurement since often only the first search
result is used for image modeling or is examined by
users of web-based image search. For recall, we report
how often, across our 1000 probe set, the two-tier
approach returned a closer image result than an
approach based on fixed exemplars. We allow 100×
more sampling of the fixed exemplars (10,000
exemplars total) than with the two learning approaches
(100 retrieved exemplars). The restriction that the
second tier of the two-tier system considers only 1% of
the number allowed for the fixed exemplar images,
makes this a difficult test, and easily compensates for
the overhead of hash-signature computation.

3. Random-projection-based Hash Keys

The first approach is projection onto randomly
oriented planes. This method is widely used in
nearest-neighbor retrieval due to its average-case
retrieval complexity. Each projection is taken onto an
independent 24x24x4 random vector, where each
vector coefficient is independently sampled from a
zero-mean, unit-variance Gaussian distribution. The
median of each projection is found on our training set.
That median value is used as a threshold, giving a
balanced bit per projection. This process is repeated to
give a signature for each image. The results are shown
in Figure 1 as “random projection.” The signature is
then divided into sub-bands, and LSH used for
retrieval. The results are better than the fixed-
exemplar approach for 81% to 87% of the probe tests,
depending on the key length. As the number of bits
increases, the performance decreases: with more bits,
too close a match is required and “similar” (but non-
duplicate) images do not match enough bits/subbands.
However, with a smaller number of bits, note that the
number of candidates before tier-2 examination is
much larger because many entries share short sections
of the image signature with the probe.

Using a two-tier system with hash-keys created
from random projections does significantly better than
the fixed-exemplar approach. This result is a
significant achievement, since the total computation
used to find the random-projection result is less than
10% of that used for the fixed-exemplar approach,

even with the first-stage probe-image signature
computation. In the fixed exemplar case, each of the
10,000 fixed exemplars requires an L2 distance
computation across (24x24x4)=2304 dimensions.
Even with the first-stage overhead of the signature
generation (600-800 projections * 2304 dimensions),
the reduced number of L2 distance computations in the
second-stage from 10,000 to 100 (# of examples fully
examined in the second tier) is significant. This
savings, combined with better retrieval results,
provides strong support for these two-tier methods.

4. Learned-category Hash Keys

Our second two-tier retrieval system builds on
previous work in learning hash keys, termed Forgiving
Hashing [4]. The approach approximates an
underlying data/label-manifold using a combination of
balanced decision boundaries where each boundary is
placed according to a subset of the total training data.
We learn binary decision boundaries to separate
images into nearest-neighbor categories, while
maintaining the entropy properties described below.

We employ a large number of nearest-neighbor
categories (20,000) and small amount of images per
category (10). The small number of examples in each
class could lead to poor decision boundaries. To avoid
this, we use the approach outlined in Figure 2. We
repeatedly (M=250) take a random subset of 2N
training categories (N=8), so that the decision

boundaries across this training subset is specified by N
binary classifiers. To start, we make a random
assignment of the 2N training groups to the 2N N-bit
codewords. Since we learn our decision boundaries at
a single bit level, this yields 10*2N-1 training examples
per binary category.

To learn the codewords, each single-bit of the
codeword is a separate ‘strong’ Adaboost classifier.
Each strong classifier is comprised of 1024 weak
classifiers. The population of weak classifiers
considered for inclusion into the set of 1024 is based
on a pair of averages taken from distinct rectangular
regions within the 24x24x4 thumbnail data. Each
weak classifier is defined by the corner locations for
these two rectangles, by an operator used to combine
these average values, and by a threshold value for
changing the combined value into a single bit. The
Adaboost approach of [7] is used to set these
thresholds to minimize that weighted error distribution
at the time of evaluation. We consider 3 combination
operators: ratio, sum, and absolute difference.
Together this provides a pool of more than a million
possible weak classifiers. Since this pool is too large
to evaluate at each of the 1024*N*M Adaboost steps,
we evaluate only a tiny fraction of them: 500 randomly
selected weak classifiers, with new random selection at
each stage. In each iteration, out of the 500 evaluated,
the weak classifier that best reduces the residual error
is selected for the strong classifier being trained. This
sparse sampling approach has been shown to work
effectively in vision-based classification problems [5].

Even though the actual learning occurs at a single-
bit level, our requirement that the selected training
categories be evenly split across 2N codewords means
the assignment of targets occurs within an N-bit
context (and is repeated M=250 times, using different
category combinations). We start to learn a specific
(initially random) assignment of 2N categories to 2N N-
bit codewords. Since we have no a priori way to
create an assignment learnable in N binary decision
boundaries, we allow the reassignment of labels.

Reassignment is shown in the learn-reassign loop in
the LearnGrouping subroutine in Figure 2. In this
loop, we first try to learn our current assignment. After
training, we measure the error for each category.
Specifically, we evaluate how well each of the 2N
categories associate with the 2N N-bit codewords, using
the similarity between the N learned outputs and the
current N-bit codeword, averaged over the 10 training
examples and over the N bits and weighted by the
decision margin for each of the example output bit.
We then create a new set of 2N category-codeword
assignments, based on this “affinity” between the
selected categories and the codewords. In the
reassignment, all labels are again used and each

Figure 2: Forgiving-hash learning

SUBROUTINE LearnGrouping
 ASSIGN 28 categories to 28 unique labels, at random
LOOP until iteration limit:
 FOREACH bit in 8-bit label code
 LEARN assigned bit value on training data, selecting 1024

boosted weak classifiers using Adaboost
 END foreach bit
 EVALUATE the association strength of each 28 categories

with all 28 labels, using weighted average bitwise Hamming
similarity between 8 strong-Adaboost classifier outputs and 8-
bit codes, weighted by classifier margin

 REASSIGN all 28 categories to 28 labels, using Hungarian
(stable bi-partite) matching

END loop
END subroutine

FOR 250 iterations:
 COLLECT 8 1-bit classifiers from LearnGrouping
END for 250 iterations
FOR number of bits needed
 MOVE 1 bit from available pool to hash key, based on

current bit sampling criteria
END for number of bits

category is assigned a unique label. This ensures
maximal entropy of each bit (1.0), in the target labels,
across the 2N categories. Since each example within a
category is assigned the same label, the target within-
class entropy is minimal (0.0).

In previous work [4], a greedy approach was used
for reassignment. We improve on that approach by
using a stable-matching algorithm for bi-partite graph
labeling, also known as the Hungarian algorithm [6], to
find the best match in (at most) m2 proposed category-
codeword pairings, where m=2N. In the Hungarian
algorithm, at each step, an un-coded category proposes
itself to the codeword to which it has the strongest
affinity and has not yet proposed. If that codeword is
already used for another category, to which its affinity
is stronger, the codeword refuses the new proposal.
Otherwise, the codeword breaks off any previous
assignment (with the jilted category returning to the
un-coded state) and the codeword re-associates itself
with the current proposing category.

After the bits are learned (in 250 groups of 8 bits
each), we select from this combined pool of N*M
(N=8, M=250) bits to create our hash keys. For the
results reported in this section, we select the bits that
will be used for the hash key randomly (without
replacement). The results from this approach are
shown in Figure 1 as “Hungarian hash”.

These results all significantly improve over the
fixed-exemplar retrieval, with closer retrieval results
for more than 90% of our probes, as long as at least 20
hash tables are used. The approach achieves these
superior results at a much lower computational cost
than the fixed-exemplar approach, since the weak
classifiers can be computed efficiently, using a shared
integral-image representation [7]. Furthermore, the
results are all significantly better than those obtained
through random projections (and at a lower cost). We
consistently match or exceed the performance of
random projection, using 1/4th of the memory that was
needed for that alternative: it takes ¼ the number of
hash tables (and ¼ of the lookups) for Hungarian hash
to achieve the performance of random projection. Due
to the performance improvements in memory and
recall rates, the remainder of the discussion focuses on
Hungarian hashes, although the same improvements
are applicable to random-projection keys.

5. Improvements to Two-Tier Retrieval

To this point, we have demonstrated the strength of
two-tier approaches, in particular the Hungarian hash
learning procedure – strong retrieval result without the
need for keeping an explicit signature for any of the
database entries. No signature is required since the
evidence for each entry in the database is measured by

the number of matching subbands in the first-tier. In
this section, we examine two improvements to the
basic two-tier approach: first, to control the size of the
hash retrievals and second, to improve the within-
category coherence within the hash tables.

5.1 Soft limiting retrieval size

When we examine our retrieval results, the
sometimes long likely-candidate lists are due to a small
number of table lookups in which the bins are
disproportionately highly populated. This occurs
because the image population clumps together within
the individual hash tables. That clumping occurs in
different parts of the image population within the
separate tables, so only a small number of the hash
lookups for any one probe image will hit a clump. We
can take advantage of this incoherence to reduce the
likely-candidate list length. We first retrieve the bin
sizes for all of the lookups needed for a probe. We
then test the bin occupancy against some threshold
occupancy (e.g., 0.1% of the full database) and only
count the below-threshold retrievals. If too few of the
bins are below our threshold (e.g., fewer than ten), then
we dynamically adjust the threshold upward, until at
least 10 bins are counted. These results are shown for

Average retrieved list
length (per hash table)

15 bits 18 bits 20 bits

original Hungarian hash 2451 1038 611
using coherent bits 7758 3460 2177
0.1% Hungarian hash 550 424 325
0.1 & using coherent bits 670 489 421
Figure 3: Retrieval limits and coherent-bit bias in Hungarian
hash retrieval (compared to 100x random retrieval). The x- and
y-axes are as in Figure 1 (over different ranges). Dashed lines:
randomly selected hash keys with a 0.1% bin-size limit. Solid
lines: coherency-selected hash keys with the same bin-size limit.
Dotted lines: original Hungarian hashing results from Figure 1.
Random projection results are below shown range (not shown).

15- and 20-bit hashes with dashed line plots in Figure 3
with the labels “0.1% X-bit Hungarian”.

Comparing these results to the original approach
(Figure 1 or dotted lines in Figure 3), we lose some
recall by limiting the retrieval size: the loss is largest
for the short hash keys and for the smaller numbers of
hash tables; this is where the limits have a greater
impact on the ranking the likely candidates.
Nonetheless, the advantage of employing a hash-bin
size limit is that it significantly reduces likely-
candidate list lengths, down by 50% to 75% of those
without using limits. This behavior (a small recall loss
for an extreme reduction in the number of likely
candidates listed for voting) suggests that the areas in
the hash tables where the worst clumping occurs are
providing little information about image similarity.

5.2 Selecting for within-category coherence

The second improvement explicitly improves the
stability of hash keys on similar images by using only
those bits that best keep the within-category training
images together. Each bit has been trained to minimize
within-class entropy while maintaining between-class
entropy, but only for a small subset of the training set
(just 256 classes out of 20,000). With a total of 2000
bits in the trained pool, none of our tests will use all of
the available bits. We can bias our selection of hash
bits according to their performance over the full
training set. To do this, we evaluated the within-
category entropy of each bit across the full training set
(not just the subset of examples it was trained on) and
then selected bits for the hash keys according to this
ranking. Only bits with the lowest within-class
entropy, averaged over all training classes, were used.

When this heuristic was used without retrieval
limits, this coherent-bit-selection bias resulted in
improved recall: there was a consistent 1-2% absolute
improvement in the recall across all of the approaches
using 20 or more hash tables and 15- or more bits per
hash key. However, this improvement in recall
incurred long likely-candidate lists: the list lengths
grew by 200% to 300% from those shown in Figure 3.

When the two modifications (retrieval-size limits
and coherence-selected bits) are combined, we get our
best results. As shown by the “(coherent)” label
modifiers in Figure 3, our recall performance for 18-
and 20-bit Hungarian hash keys improves significantly,
most obviously for the 40 hash table set up. The most
interesting effect is that recall does not degrade (and
even slightly improves) for the longer hash keys, even
though we have many fewer likely candidates under
consideration. At 40 hash tables, the best results from
this combined approach (using 20-bit hashes) achieves
the same recall performance as the best results from the

original approach (which used 15-bit hashes), while
examining approximately 1/6th of the number of likely
candidates needed for the original best approach
(utilizing 15 bits).

6. Larger Tests and Conclusions

In this paper, we examined efficient techniques for
similar-image retrieval over large, distributed
databases. Our approaches balanced bandwidth
requirements, computational costs, and local-memory
usage. In these tests on a diverse 2.4-million image
database, we improved on fixed-exemplar space
carving in 95% of our probe tests, while using only 1%
of the computational cost of that approach. As a final
test, to ensure that we did not over-engineer this
system specifically for the set of 2.4 million images we
used for the experiments presented, we repeated the
tests by increasing our database size to 5.8 million
images. This strengthened our findings: the learned-
hash key approach is even more effective (improving
on fixed exemplars in 97% of our probes), as well as
computationally efficient (maintaining the same 1%
computational ratio).

Our future investigations will first focus on
reducing the local memory usage for the learned-hash
approach. We currently keep the fully populated hash
tables, even when using retrieval limits, due to our
requirement to retrieve a fixed minimum number of
bins. We would like to reduce the retained size of
these over-full bins. One interesting approach to this is
to use within-bin clustering, based on the full
signatures of the referred-to elements. Further work is
needed to be able to do this clustering without adding
significant memory overhead. Second, for these
experiments, an L2-based measure of similarity was
chosen for reproducibility and simplicity. It is just one
of many similarity measures that can be incorporated
into the learning approaches; the use of higher-level
features, such as local features, as inputs into the
learning procedures is currently under investigation.

References

[1] P. Yianilos. “Data structures and alg. for nearest-neighbor search
in general metric spaces” ACM-SIAM Symp. Disc. Alg. 1993.

[2] M. Covell, S. Baluja. “Known-Audio Detection using Waveprint:
Spectrogram Fingerprinting by Wavelet Hashing”, ICASSP, 2007.

[3] Y. Ke, R. Sukthankar, L. Hustonet “Efficient Near-duplicate
Detection and Sub-Image Retrieval”, ACM Int. Conf. on
Multimedia, 2004.

[4] S. Baluja, M. Covell. “Learning to Hash: Forgiving Hash
Applications”, Data Mining and Knowledge Discovery, 2008.

[5] S. Baluja, M. Covell. “Finding Images and Line Drawings in
Document-Scanning Systems”, ICDAR, 2009.

[6] H.W. Kuhn, "Variants of the Hungarian method for assignment
problems", Naval Research Logistics Quarterly, 3: 253–258, 1956.

[7] P. Viola, M. Jones. “Robust real-time object detection”,
Workshop of Statistical & Computational Theories of Vision, 2001.

