
Abstract

In recent years, significant progress has been made towards
achieving autonomous roadway navigation using video im-
ages. However, none of the systems developed take full ad-
vantage of all the information in the 512x512 pixel, 30
frame/second color image sequence. This can be attributed
to the large amount of data which is present in the color vid-
eo image stream (22.5 Mbytes/sec.) as well as the limited
amount of computing resources available to the systems.
We have increased the available computing power to the
system by using a data parallel computer. The system pre-
sented in this paper uses substantially larger frames and
processes them at faster rates than other color road follow-
ing systems. This is achievable through the use of algo-
rithms specifically designed for a fine-grained parallel
machine as opposed to ones ported from existing systems
to parallel architectures. The algorithms presented here
were tested on 4K and 16K processor MasPar MP-1 and on
4K, 8K, and 16K processor MasPar MP-2 parallel ma-
chines and were used to drive Carnegie Mellon’s testbed
vehicle, the Navlab I, on paved roads near campus.

1.0  Introduction

In the past few years, the systems designed for autonomous
roadway navigation using video images have relied on a
wide variety of different techniques [Thorpe, 1991]. The
techniques range from neural network architectures that
learn the appropriate road features required for driving [Po-
merleau, 1991], to systems which find road lines and edges
based on predefined road models [Kluge, 1992]. Many of
these systems have been able to drive vehicles at high
speeds, in traffic, and on real highways. However, none of
these systems have been able to use all of the information
present in 512x512 pixel, 30 frame/second color input im-
age stream. This can be attributed to the limited computing
power available to the systems in the face of the sheer mag-

nitude of the data presented to them (22.5 Mbytes/sec.).

Several methods can be used to handle these large sets of
data which are present in road following tasks. One method
is to use gray-scale images instead of color images. Gray-
scale images reduce the amount of data which must be pro-
cessed by two-thirds. However, even at this lower data rate,
processing every pixel is still extremely difficult, and sub-
sampling [Crisman, 1990] and windowing techniques
[Turk, 1988] are frequently used to try to achieve frame
rate processing on the incoming color data. Another meth-
od is to preprocess the color image, projecting the 3D color
data into a single value at each pixel [Turk, 1988]. This
method, like windowing, has the desired effect of reducing
the amount of data which must be processed by the system.
Defining regions of interest and only processing the pixels
within them is another possibility and has been explored by
[Kluge, 1992] and [Dickmanns, 1992]. A final method, and
the one we chose to use, is to increase the available com-
puting power by using a massively parallel, single instruc-
tion, multiple data (SIMD) computer. The system
presented here uses substantially larger frames and pro-
cesses them at faster rates than other color road following
systems. The improved rates are achieved through the use
of algorithms specifically designed for a fine-grained paral-
lel machine. Although higher resolution does not directly
lead to increased driving accuracy, systems which can han-
dle these resolutions at faster rates have a clear advantage
in other domains were fine features are more important. It
is our hope that the rudimentary algorithms presented in
this paper can be extend to other such vision tasks.

2.0  Overview of System

As is the case in nearly all vision system, a number of as-
sumptions have been made about the environment which
simplify the problem. Two assumptions which our system
makes are the defining road model and the relationship be-
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tween the colors in each scene and their placement within
the color space.
The first assumption is that of a trapezoidal road model. In
this model, the road is described in the image as a region
bounded by four edges. Two of these edges are defined as
the location where road and non-road meet while the other
two are the top and bottom of the image itself. These four
edges constitute the trapezoid. The road center line is de-
fined to be the geometric line which bisects the trapezoid
vertically. For a graphic representation of this model see
Figure 1. In addition, our system assumes that the road re-
mains a constant width through all of the input images. This
constraint means that although the trapezoid of the road
may be skewed to the left or right, the top and bottom edges
remain a constant length.
Color clusters play an important role in our system. A color
cluster is defined as the group of pixels in the 3D (red,
green, blue) color space which are closest to a particular
central, or mean, pixel value. In our representation, close-
ness is defined by the sum of squared difference between a
pixel’s red, green, and blue values and a central pixel’s red,
green, and blue values.
An assumption, based on this concept, is that the colors in
the image can be adequately represented, or classified, by a
small (between 5 and 30) number of clusters. In our system,
the ability of a set of clusters to classify an image is mea-
sured by how well the mean values of the clusters of the set
can reconstruct the original input image. This will be dis-
cussed further in Section 3.3.
A third assumption is that any particular cluster can only
correctly classify pixels in the road or the non-road portions
of the image; it cannot correctly classify pixels in both. Be-
cause the road and non-road pixels of typical road images,
when plotted in color space, form largely disjoint sets, and
because of the nature of the algorithm which partitions col-
or space into clusters, this has proven to be a reasonable as-
sumption. See Figure 3.
The system we have developed is an iterative, three step
procedure in which every pixel in the input image is first

classified by a color cluster, then labeled as road or non-
road, and finally used to find the center line of the road. The
world coordinates of this line are passed to the vehicle con-
troller which guides the vehicle on the specified path. This
process is supplemented by an initialization phase which
occurs only once on the first image the system processes. A
high level view of the system architecture is shown in Fig-
ure 2.

This system is pixel driven; thus all computation can be
done very efficiently on a massively parallel processor ar-
ray. Instead of mapping existing road following algorithms
to the processor array, we integrated algorithms which
could exploit the tightly coupled processor array and take
advantage of the limited capabilities of the individual pro-
cessors. The resulting system is fully parallelized, and per-
forms comparably to the state-of-the-art.

Our system is composed of three main algorithms, all of
which are parallelized on the processor array. The three
parts are aclustering algorithm, acombining algorithm,
and aroad finding algorithm . The clustering algorithm is
an iterative procedure which uses a parallel competitive
learning implementation of the isodata clustering algorithm
[Ball, 1967] to find the mean red, green, and blue values for
each color cluster in the first input image. This will be de-
scribed in greater detail in the next section.

The combining algorithm uses a single perceptron which is
trained to correctly determine whether a pixel in the input
image is a road pixel or a non-road pixel. This is accom-
plished by using information derived from classification of
the pixel using the means developed in the clustering algo-
rithm. The clustering and combining network representa-
tions will be described later.

Finally, after the road has been cohesively segmented from
the input image, a technique which extracts the center line
of the road (or any safe path) from the input image is need-
ed. In our system, a parallelized Hough transform is applied
in which the topology of the processor array is used to de-
termine the location of the center line of the road.

Figure 1. Trapezoidal road model.
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3.0  The Clustering Algorithm

If every pixel in the input road image is plotted in a three
dimensional space with red, green, and blue being the axes
(the color space), clustering of pixels occurs. These clusters
often correspond to regions in the image. For example, in
an image of a road through a grassy field, two clusters
would be expected in the color space, one cluster for the
road and one cluster for the grass. See Figure 3. If the mean
color value of each cluster were computed, the cluster cen-
tered around the road pixels would be gray while the one
centered around the grass would be green. By assigning all
pixels in the input image which are ‘closest’ to the road
mean as ‘road’ and all those that are ‘closest’ to the grass
mean as ‘non-road,’ it is possible to segment the image so
that the road can be easily discriminated from the grass.
The clustering algorithm implemented for this system is
more formally known ascompetitive learning, and is de-
scribed with more mathematical rigor in the next section.
The implementation of this learning algorithm in our sys-
tem is detailed in Section 3.2.

3.1  Competitive Learning

Competitive learning is an unsupervised connectionist
learning technique which attempts to classify unlabeled
training data into significant clusters or classes in a feature
space. In this framework, many units compete to become
active, or turn on, when presented with input training data.
The single unit which wins is allowed to ‘learn.’ Because
this technique is unsupervised, it requires no teaching sig-
nal to tell the units what to learn. The units find relevant
features based on the correlation present in the unlabeled
training data.
A typical competitive learning network is composed of
several output units,Oi, which are fully connected to each
input through a connection weight. To find the activation of
the unit, the input activations,ξj, are multiplied by the cor-
responding connection weights,wi,j, and summed to pro-

duce an output activation. Mathematically,

Note thatwiξ is the vector notation representation of the
sum. The output unit which has the largest activation is de-
clared the winner. If weights for each unit are normalized,
then the winning unit, denoted with byi* , can be defined as
the unit whose inputs most closely match its weights. This
can be expressed as:

Because the weights in each unit start out as random values,
a method is needed to train them. The intuitive idea is to
learn weights which will allow the unit to correctly classify
some portion of the feature space. The technique that is typ-
ically used, and the one used in our system, is to move the
weights of the winning unit directly towards the input pat-
tern. This method is known as thestandard competitive
learning rule. This rule can be expressed as:

where η is the learning rate andk is the training pattern
[Hertz, 1991]. We have adapted the standard competitive
learning rule to the parallel paradigm and have developed
the parallelized standard competitive learning rule.
Mathematically speaking, this rule can be expressed as:

whereu represents the total number of training patterns
classified by uniti. An important feature to notice about the
parallelized standard competitive learning rule is that the
contribution of each training pattern to the overall weight
change can be computed independently. This means that
the contribution can be calculated concurrently for many
training patterns at once. It is this type of algorithm which
can take advantage of a fine-grained parallel machine.
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Figure 2. Block diagram of system architecture. Steps located inside the large black box are computed in parallel on the processor
array.
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3.2  Pixel Clustering

Our system typically uses five color clusters. These clusters
are global structures which any of the processors can ac-
cess. We have also experimented with up to 30 clusters;
however, we have found that using only five provides a
good balance between effectiveness and computational
load. The first step of the algorithm is to randomly initialize
each color cluster’s mean red, green, and blue values to a
number between 0 and 255. Next, the first image of the col-
or video stream is mapped, using a two dimensional hierar-
chical mapping scheme, shown in Figure 4., onto the
processor array. With each processor containing a small
block of the image, the clustering algorithm can be started.
The clustering algorithm is a two stage iterative process
consisting of clustering and evaluation steps.In this algo-
rithm, clustering is done with respect to a pixel’s location
in color space,not it in regard to whether the pixel repre-
sents road or non-road.

For every pixel on each processor, the cluster to which it is
closest is determined. ‘Closeness’ is computed as the sum
of squared difference between the current pixel’s red,
green, and blue values and the mean red, green, and blue
values of the cluster to which it is being compared. The
cluster for which the sum of squared difference is smallest
is the ‘closest’ cluster and we say that the cluster classifies
that pixel. Each processor has five winning cluster
counters, one corresponding to each cluster. The value of
each winning cluster counter represents the number of pix-
els which are classified by the respective cluster. Because
the clustering algorithm is based on competitive learning,
the red, green, and blue mean values of each cluster are rep-
resented as weights on input connections to units in the
competitive learning network and each unit represents a
color space cluster. (From this point, the term cluster will
be used to identify the corresponding unit in the competi-
tive learning network.) Learning takes place by adjusting
these weights to more accurately reflect the actual mean
red, green, and blue values of the cluster in color space.

This is accomplished by adjusting the cluster weights to-
ward the mean value of all pixels which the cluster has clas-
sified. To do this we must compute the difference between
the current pixel value and the cluster mean pixel value and
then adjust the cluster mean by some proportion of the
computed difference. This is essentially the parallelized
standard competitive learning rule.
In our system, there can be many pixels on a processor that
are classified by each cluster. For every pixel that a cluster
classifies, the difference described above is computed and
added to a local (processor based) difference accumulator
for the cluster. In addition, the local winning cluster accu-
mulator that corresponds to the cluster is incremented. The
difference accumulator consists of three sums, each corre-
sponding to the red, green and blue differences. Once every
pixel has been classified and its difference computed and
stored, the values from all local winning cluster counters
and difference accumulators are summed using a global in-
teger addition operator and stored in global accumulators.
Now, the appropriate adjustments to the cluster weights are
calculated. This is done by dividing each weight’s differ-
ence value stored in the global difference accumulator for
a particular cluster by the number of pixels that were clas-
sified by the cluster, given by the value in the global win-
ning cluster counter. This value is essentially the average
difference between this cluster’s current weights and all
pixels that it classified.
The only problem left to overcome is handling clusters
which did not classify any pixels. This is a common occur-
rence in the first clustering iteration, as the weights are ran-
domly initialized and can be set to values in the remote
corners of the color space. To rectify this, instead of finding
the cluster which is closest to a pixel value, we find the
cluster which is closest to the one that did not classify any
pixels. The sum of the squared difference between the
weight (mean) values of these two clusters’ is computed as
described above. This difference is used to adjust the clus-
ter which classified no pixels. This intuitive heuristic
brings the remote clusters to more promising locations, and

Figure 3. Color space for a typical road scene.
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because the difference is computed before cluster weights
are updated, two clusters cannot have the exact same loca-
tion. Although the method is very simple, it works well in
our domain. At this point, all cluster weights are updated
using the computed adjustments. Upon completion, the
evaluation stage of the algorithm is entered.
Although the algorithm described in this paper uses five
clusters, we have evaluated system performance using up
to 30 clusters [Jochem, 1993, 2]. As is expected, as the
number of clusters increases, the classification becomes
more exact, and the final error in reconstruction is reduced.
(Image reconstruction is discussed in the upcoming para-
graphs.) The trade-off associated with a lower reconstruc-
tion error (i.e. better classification) is the time involved in
processing more clusters. This will be discussed in further
detail in Section 7.0.

3.3  Evaluation

In order to determine when the clustering process should
stop (i.e. when the cluster weights have converged) a clus-
ter evaluation process must be employed. We have devel-
oped a technique which allows the system to perform self
evaluation. This technique is based on the ability of the
cluster weights to accurately reproduce, or reconstruct, the
input image. The self evaluation process begins by classi-
fying every pixel in the input image according to the most
recently updated cluster weights. As in the clustering stage,
classification is done locally on each processor on the dis-
tributed input image using the previously described close-
ness measure. Once the closest cluster has been found, the
pixel is assigned the red, green, and blue mean values of
this cluster. (Remember, the mean values are described by
the cluster’s weights.) Next, the squared difference be-
tween the pixel’s assigned value, given by the closest clus-
ter mean, and its actual value, given by the pixel’s value in
the original input image, is computed and stored in local ac-
cumulators. After the squared differences have been calcu-
lated and stored for all pixels on each processor, a global

average squared difference value is computed using a glo-
bal floating point addition operator and knowledge of the
input image size. If the change between the current average
squared difference and the previous clustering iteration’s
average squared difference for each of the red, green, and
blue bands is sufficiently small, clustering ends and the
combining algorithm described in the next section begins.
If the average squared differences are not yet sufficiently
small, the clustering cycle described in the preceding para-
graphs repeats using the current cluster weights. The evo-
lution of the reconstructed image as competitive units learn
cluster means is shown in Figure 5.
More rigorously, the evaluation process looks at the rate of
change, or slope, of average squared difference values.
When this slope becomes lower than a user supplied thresh-
old for all three color bands, a minima is said to have been
reached, and any further attempts at clustering could yield
only minimal improvement. By using the rate of change of
the average squared difference, the system can always con-
verge to a locally (in the color space) good solution, regard-
less of how many clusters are available for it to use. It has
been our experience that approximately 20 cluster-evaluate
iterations are necessary for proper clustering of the initial
input image.
In the current implementation of our system, the clustering
algorithm is run on only the initial image of the color video
stream. The correct cluster means may change in subse-
quent images. Nonetheless, through our experimentation
on paved roads near campus, we have found that the change
is too small to cause system performance degradation. This
differs from results by [Crisman, 1990] and is potentially
due to the greater number of pixels which are used to form
the color clusters and the robustness of our combining al-
gorithm. We have not yet looked deeply at this difference
and it remains open for future study.

4.0  The Combining Algorithm

In order to determine where the road is located in the input

Figure 4. Two dimensional hierarchical mapping takes a 2D array of data like an image and maps it onto the processor array in a
block-like fashion. (Image reproduced from MasPar MPDDL manual.)
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image, it is necessary to separate the road from its sur-
roundings. Although it is easy to assume that a single clus-
ter will always classify the road, as the road is almost
uniformly gray, and the rest of the clusters will classify
non-road, this is not the case in practice. For example, con-
sider the case of a shadow across the road. In this circum-
stance, two or more clusters converge to areas in the color
space that corresponded to the brightly lit road, the shad-
owed road, and possibly to the minute color variations in
the transition between light and shadow. Since different
clusters classify the roadway in this example, a technique
must be found to unify this information. No matter if a road
pixel is in sunlight or shade, it should be correctly classified
as part of the road. As with the clustering algorithm, the
combining algorithm unifies the different clusters of the
same type in a distributed manner by using every pixel in
the input image. Another feature of this algorithm, similar
to the clustering algorithm, is its self evaluatory nature.
At the heart of the combining algorithm is a single, global
perceptron with a hyperbolic tangent activation function. A
perceptron is a connectionist building block used to form
Artificial Neural Networks (ANN). Artificial neural net-
works were chosen as the learning tool because of their
ability to generalize. See [Jochem, 1993, 2] for a more
complete description of Artificial Neural Networks.

4.1  The Combining Perceptron

The combining perceptron in our system is trained, by
modifying its input weights, to differentiate road pixels
from non-road pixels using information derived from
knowledge of which clusters correctly and incorrectly clas-
sify a pixel in the input image. The output of the perceptron
can be thought of as the ‘certainty’ of a particular pixel hav-
ing a characteristic road color. The perceptron has one in-
put weight for each cluster as well as a bias weight which
is always set to 1.0. (Having a bias weight is a standard
technique used in perceptron training.) It is important to
note that the same global perceptron is used for all pixels

on every processor.
Alternatively, probabilistic methods which take into ac-
count cluster size and location could be used to differenti-
ate between road and non-road clusters. This approach has
been explored by [Crisman, 1990] and will be discussed in
greater detail in Section 8.0.
In order to bootstrap the system, the road region in the ini-
tial image is outlined by the user. From this original image,
we can determine which colors should be classified as road
and which as non-road. The outline also determines the
trapezoidal road model. Because we are using a two dimen-
sional mapping, the left and right edges of the outlined re-
gion can be superimposed onto the processor array.
Processors which lie on these edges are marked, and ones
which are between the left and right edges are said to con-
tain road pixels while those outside the edges contain non-
road pixels. This interaction only occurs once. The algo-
rithm automatically proceeds to classify each pixel in the
input image using the clusters previously formed. After a
pixel has been classified, if it is located on a road processor
(i.e. within the user defined road region), the perceptron is
given a target activation value of 1.0. If it is not, the percep-
tron is given a target activation value of -1.0.
The input activation to each connection weight of the per-
ceptron is determined by the following simple rule: if the
connection weight is the one associated with the cluster that
correctly classified the pixel, it is given an input activation
value of 1.0, otherwise it is given an input activation value
of -1.0. See Figure 6. Next, each input activation is multi-
plied by its corresponding connection weight. These prod-
ucts are summed together and this value is passed through
the perceptron’s activation function which yields its output
activation. This process is known as forward propagation.
The difference, or error, between the output activation and
the target activation is computed. This error, along with the
input activation to each connection, is used in the Least
Mean Square learning rule [Widrow, 1960], so that each
connection’s weight adjustment can be computed. These
adjustments are stored in a local accumulator. After all pix-

Figure 5. Evolution of reconstructed image as competitive units learn. As the clusters move in the color space, they more
accurately represent the actual colors of the pixels. Shown above: original image, reconstructed image after 1 and 12 iterations.



els have been processed, the local connection adjustments
are summed using the global floating point addition opera-
tor and the average adjustment for each connection weight
is calculated by dividing the sums by the number of pixels
in the image. Each connection weight is then modified by
its computed average adjustment value.
As with the clustering algorithm, a method has been devel-
oped which allows the system to determine when learning
should be stopped. Using this method, the output activation
of the perceptron along with the difference between the tar-
get and actual output activation is calculated and stored, as
before, for every pixel in the input image. After all pixels
have been processed, the average pixel error is computed
and compared to the average error from the previous per-
ceptron training iteration. If this difference is sufficiently
small, learning is halted. If it is not, another iteration of per-
ceptron training is commenced using the new perceptron
connection weights. See Figure 7.
After perceptron training is completed, when pixels which
are part of the road are shown to the system, they will be
classified uniformly as road, regardless of which individual
cluster correctly classified them. In our case, the output of
the perceptron for a road pixel is near 1.0 while the output
for a non-road pixel is close to -1.0.

5.0  The Road Finding Algorithm

In order for the system to successfully navigate the vehicle,
it must find the correct path to follow. We will assume that
a safe path is down the middle of the road. The technique
that our system employs is a parallelized version of a
Hough transform. See [Jochem, 1993, 2] for an introduc-
tion to Hough transforms. Hough transforms and related

techniques are not new to the field of Parallel Computing,
but because our work crosses traditional boundaries, (those
between Parallel Computing, Artificial Neural Networks,
and Robot Navigation) a detailed description of our algo-
rithm, and how it relates to the domain of autonomous
roadway navigation, is warranted. We use the topology of
the processor array to simulate the parameters of the Hough
space and determine the location of the center line of the
road by searching for the most likely combination of all
possible parameters. The parameters which we are trying to
find are the intersection column of the center line and the
top row of the image and the angle of the center line with
respect to the top row.

The first step of the road finding algorithm is to assigneach
processor in the array a probability of being road. This is
done by averaging the perceptron output activation values
of all pixels within a particular processor, as defined by the
two dimensional hierarchical mapping scheme, and scaling
them to a value between 0 and 255. Because the output of
the perceptron can be thought of as the ‘certainty’ of a pixel
belonging to the road, the average perceptron output for a
processor is related to how many road pixels the processor
contains. A higher average value indicates more road pixels
while a lower value indicates the processor contains many
non-road pixels. Processors which lie on road edges are ex-
pected to have intermediate values while ones within the
edges are expected to have high average values. In this for-
mulation, 0 represents non-road and 255 represents road.

Because the road edges were marked in the combining al-
gorithm and because we use a two dimensional hierarchical
mapping, it is easy to compute how wide, in terms of pro-
cessors, the road is at each row in the processor array. See
Figure 8. We will assume that the width of the physical road

Figure 6. System Architecture. Each pixel is classified in parallel by competitive learning units. The winning unit has its output
activation set to 1.0 while all others are set to -1.0. A perceptron classifies this combination of inputs as either road or non-road.
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is constant and that perspective effects cause the same
amount of foreshortening in all images that the system
evaluates. More precisely, once we determine that the road
is 4 processors wide in the first row, 6 processors wide in
the second, 9 in the third, etc., these road width values for
each row are held constant for all future images.

The next step is to center a contiguous, horizontal, summa-
tion convolution kernel on every processor in the array. (A
summation convolution is defined as one in which all val-
ues marked by the kernel are added together. The kernel
specifies how many processors are to be included in the
summation.) The width of this convolution kernel is given
by the road width for the row in which the processor is lo-
cated as determined in the previous paragraph. The convo-
lution kernel is implemented using local, synchronized,
neighbor-to-neighbor communications functions and can
therefore be computed very quickly. Because the convolu-
tion kernel is larger for rows lower in the processor array,
not all processors shift their data at the same time. This
slight load imbalance has proven to be insignificant. By us-
ing this summation convolution kernel, we have essentially
computed the likelihood that the road center line passes
through each processor. Processors which are near the ac-
tual road center line have larger convolution values than
ones which are offset from the actual center because the
convolution kernel does not extend onto non-road proces-
sors. The convolution kernel for processors which are off-
set from the actual road center will include processors
which have low probability of being road because the un-
derlying pixels have been classified as non-road. The con-
volution process is shown in Figure 8.

Finding the road’s center line can be thought of as finding
the line through the processor array which passes through
processors which contain the largest aggregate center line
likelihoods. This is equivalent to finding the maximum ac-
cumulator value in a classical Hough transform where the
intersection row and intersection angle are the axes of the
Hough accumulator. To parallelize this Hough transform,
we can shift certain rows of the processor array in a prede-

termined manner and then sum vertically up each column
of the array. The shifting gives us the different intersection
angles and finding the maximum vertical summation al-
lows us to determine the intersection of the center line with
the top row of the image.
The shifting pattern is designed so that after the first shift,
the row center line likelihood in the bottom half of the pro-
cessor array will be one column to the east from its original
position. After the second shift, the bottom third will be
two columns to the east, the middle third will be one col-
umn to the east and the top third will still have not moved.
This pattern can continue until the value of the middle pro-
cessor in the bottom row has been shifted to the east edge
of the processor array. This will happen after 32 shifts in ei-
ther direction.
Shifting to the west is done concurrently in a similar man-
ner. This shifting represents examining the different center
line intersection angles in the Hough accumulator. Because
of the way the values are shifted, vertical binary addition up
the columns of the processor array can be used to compute
the center line intersection and angle parameters. (In this
context, binary addition does not refer to binary number ad-
dition, but rather to summing using a binary tree of proces-
sors.) By finding the maximum vertical summation across
all east and west shifts, the precise intersection and angle
can be found very efficiently. See Figure 9. Once the inter-
section column and angle of the center line have been
found, the geometric center line of the road can be comput-
ed. This geometric description of the center line is passed
to the vehicle controller for transformation into the global
reference frame and is used to guide the vehicle. This algo-
rithm, while perhaps the hardest to understand, takes full
advantage of the tightly coupled processor array.

6.0  Runtime Processing

Once all clusters and the perceptron have been trained, the
system is ready for use either in simulation or to physically
control the vehicle. Input images are received by the pro-

Figure 7. As the perceptron learns, its output better classifies road and non-road. The white pixels represent road, while the black
represent off-road. Images shown perceptron output after 1, 3, and 6 training iterations.



cessor array and pixel classification occurs using the pre-
computed cluster means. The perceptron uses this
classification to determine if the pixel is part of the road.
The perceptron’s output is supplied to the road finding al-
gorithm which determines the center line location. The cen-
ter line location is transformed onto the ground plane and
is passed to the vehicle controller which guides the vehicle.
(At this point, because learning is complete, the iterative
forms of the clustering and combining algorithms are no
longer necessary.)

7.0  Results

The results obtained, both in simulation and driving the ve-
hicle, were very encouraging. The simulation results in
terms of color frames processed per second are summa-
rized in Table 1. These results represent average actual pro-
cessing speed, in terms of frames processed per second,
measured when running our system on the specified ma-
chine with the set image size. As the number of pixels in-
creased, the frames processed per second decreased in a
roughly linear fashion. The slight irregularity is due to the
convolution kernel in the road finding algorithm. It is also
interesting to note that the 16K MasPar machines did sig-
nificantly worse than the 4K machines as the image size de-
creased. Again, this is due to the convolution kernel in the
road finding algorithm. We believe that this is not a load
imbalance problem but rather a side effect of having a
physically larger array topology. Because of the extra width
of the processor array, more local neighbor-to-neighbor
communication operations are required to compute the
summation convolution. As the image size was decreased,
these operations came to dominate the processing time.
We are very pleased with the fact thatframe rate compu-
tation was achieved on a 4K MasPar MP-1 machine for the
256x256 pixel image case and on a 16K MasPar MP-2 for
the 512x512 pixel image case. Although our ultimate goal
is to develop algorithms which can process 512x512 color
image streams at frame rate on our 4K MasPar MP-1, we

are excited about the results of our initial experiments.
Clearly, fine-grained SIMD machines can provide a benefit
in real world vision tasks such as autonomous navigation.
On test runs of our testbed vehicle, the Navlab I, the system
has been able to successfully navigate the vehicle on a
paved road using 128x128 images. At present, the major
bottleneck is the slow digitization and communication
hardware which is supplying the MasPar with images. This
bottleneck limits the image size to 128x128 and the cycle
time to approximately 2.5 Hz. Even so, the system has con-
sistently driven the vehicle in a robust manner over the en-
tire 600 meter path. For comparison, other systems that
have been developed are ALVINN, which processes 30x32
images at 10 Hz (4 times slower) and SCARF, which pro-
cessed 60x64 images on a 10 cell Warp supercomputer at 1/
3 Hz (32 times slower) [Crisman, 1990][Crisman, 1991].
These figures include image digitization time and slow-
downs are computed based on pixels processed per second.
A better comparison of processing speed may actually be
the time processing the image, not including image acqui-
sition. As an example of this, consider the SCARF system
which was also implemented on a parallel machine. For
this system running on the Warp machine, a 60x64 images
could be processed in one second [Crisman, 1991]. Com-
paring this to our system (running on a 4K MP-1) process-
ing 64x64 images at 69.4 Hz yields a 74 times speed
improvement. For a 1024x1024 image, a 846 times speed-
up is achievable. On a 16K MP-2, for 128x128 images, pro-
cessing is 158 times faster and for the 1024x1024 case on
this machine, a speedup of over 5000 can be realized.
Speedups are computed based on pixels processed per sec-
ond.

8.0  Other Related Systems

Our system compares very well with any road following
system in use today in terms of processing speed. Three
competitive high performance systems are the ALVINN
and MANIAC systems [Pomerleau, 1991][Jochem, 1993,

Figure 8. Convolution kernels for different rows centered on the actual center line of the road superimposed on the processor
array. Arrows indicate the direction of travel of the convolution summation.
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1], developed at Carnegie Mellon University, and the sys-
tem designed by the VaMoRs group in Munich, Germany.
Like ours, the ALVINN and MANIAC systems are neural-
ly based. However, both use reduced resolution (30x32)
preprocessed color images. They cycles at about 10 frames
per second, using SPARC based processors, and ALVINN
has driven for over 90 miles at speeds of up to 55 m.p.h. (88
km/hr). A system which is founded in very different tech-
niques is the one being developed by the VaMoRs group
[Dickmanns, 1992]. This system, which uses strong road
and vehicle models to predict where road features will ap-
pear in upcoming images, processes monochrome images
on custom hardware at speeds near frame rate, but uses a
windowing system to track the features so that not every
pixel processed. This system has been able to successfully
drive on the German Autobahn at speeds around 80km/hr.
Various other systems have been developed that use color
data and include the VITS system developed at Martin
Marietta [Turk, 1988] and SCARF developed by [Crisman,
1990] at Carnegie Mellon University. The VITS system
used a linear combination of the red and blue color bands
to segment the road from non-road. The segmented image
was thresholded and back-projected onto the ground plane.
The vehicle was steered toward the center of this back-pro-
jected region. This system was able to drive Martin Mari-
etta’s testbed vehicle, the ALV, at speeds up to 20 km/hr on
straight, single lane roads found at the test site.
Perhaps most closely related to our system is SCARF. Like
our system, SCARF uses color images to develop clusters
in color space. These images are greatly reduced; typically
30x32 or 60x64 pixels. The techniques for developing
these clusters, however, are very different from the one im-
plemented in our system. SCARF uses Bayesian probabil-
ity theory and a Gaussian distribution assumption to create
and use color clusters to segment incoming color images.
The clusters are recreated for every input image by using a
strong road model and known road and non-road data as
seed points for the new cluster means. The computational
load of SCARF is higher than that of our system because of

the Bayesian and Gaussian computations and, partially be-
cause of this load, the system was only able to drive at
speeds of less than 10 m.p.h. The most closely related part
of our system and SCARF is the Hough transform based
road finding algorithm. Because the Hough algorithm maps
very well to finding single lane roads, it was adapted to the
parallel framework of our system. Although the implemen-
tation of the Hough algorithm is different, the main concept
remains the same. Finally, it should be noted that the
SCARF’s objectives were not limited to autonomous road
following; other tasks it performed include intersection de-
tection and per-image updating of the color cluster means.
SCARF needed to be smarter because it took a significant
amount of time to process a single image.

9.0  Conclusions

Our system has shown that fine-grained SIMD machines
can be effectively and efficiently used in real world vision
tasks to achieve robust performance. By designing algo-
rithms for specific parallel architectures, the resulting sys-
tem can achieve higher performance than if the algorithms
were simply ported to the parallel machine from a serial
implementation. The system described in this paper uses
substantially larger frames and processes them at faster
rates than other color road following systems. The algo-
rithms presented here were tested on 4K and 16K processor
MasPar MP-1 and on 4K, 8K, and 16K processor MasPar
MP-2 parallel machines and were used to drive Carnegie
Mellon’s testbed vehicle, the Navlab I, on paved roads near
campus. The goal that our work has strived toward is pro-
cessing 512x512 pixel color images at frame rate in an au-
tonomous road following system. Our results have shown
that in this domain, with the appropriate mapping of algo-
rithm to architecture, frame rate processing is achievable.
Most importantly, our results work in the real world and not
simply in simulation.

Figure 9. After shifting, center lines which were originally angled, are aligned vertically. Summation up the columns of the
processor array can then determine the most likely intersection angle and column.

Potential center lines in unshifted array. Potential center lines in shifted array.
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Table 1. System performance in color frames processed per second.

Number of
Processors

Size of Color Image

1024x1024 512x512 256x256 128x128 64x64

4K MP-1 3.1 11.0 30.6 55.4 69.4

4K MP-2 8.2 25.7 55.4 77.8 86.5

8K MP-2 12.4 25.4 34.3 37.5 na

16K MP-1 9.2 20.0 28.3 31.6 na

16K MP-2 18.5 30.0 35.5 37.2 na


