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Abstract. Typography is a ubiquitous art form that affects our under-
standing, perception, and trust in what we read. Thousands of different
font-faces have been created with enormous variations in the characters.
In this paper, we learn the style of a font by analyzing a small subset
of only four letters. From these four letters, we learn two tasks. The
first is a discrimination task: given the four letters and a new candidate
letter, does the new letter belong to the same font? Second, given the
four basis letters, can we generate all of the other letters with the same
characteristics as those in the basis set? We use deep neural networks to
address both tasks, quantitatively and qualitatively measure the results
in a variety of novel manners, and present a thorough investigation of
the weaknesses and strengths of the approach.
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1 Introduction

The history of fonts and typography is vast, originating back at least to fif-
teenth century Germany with the creation of the movable type press by Johannes
Gutenberg, and the first font “Blackletter.” This was based on the handwriting
style of the time, and was used to print the first books [1, 2]. Centuries later,
numerous studies have consistently shown the large impact that fonts have on
not only the readability of text, but also the comprehensibility and trustability
of what is written [3–5].

Despite the prevalence of just the few standard fonts used throughout aca-
demic literature, there are innumerable creative, stylized and unique fonts avail-
able. Many have been created by individual designers as hobbies, or for particular
applications such as logos, movies or print advertisements. A small sample of a
few of the over 10,000 fonts [6] used in this study are shown in Figure 1.

The seminal work of Tenenbaum and Freeman [7] towards separating style
from content was applied to letter generation. Our motivation and goals are
similar to theirs: we hope that a learner can exploit the structure in samples of
related content to extract representations necessary for modeling style. The end-
goal is to perform tasks, such as synthesis and analysis, on new styles that have
never been encountered. In contrast to [7], we do not attempt to explicitly model
style and content separately; rather, through training a learning model (a deep
neural network) to reproduce style, content and style are implicitly distinguished.
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Fig. 1. Fonts with varying shapes, sizes and details. As a preview, half of these were
entirely synthesized using our approach. (synthesized rows: A,B,D,E,G,J,K).

We also extend their work in four directions. First, we demonstrate that a very
small subset of characters is required to effectively learn both discriminative and
generative models for representing typographic style; we use only 4 instead of
the 54 alpha-numeric characters used previously. Second, with these 4 letters, we
learn individual-letter and combined-letter models capable of generating all the
remaining letters. Third, we broaden the results to thousands of unseen fonts
encompassing a far more expansive set of styles than seen previously. Finally,
we present novel methods for quantitatively analyzing the generated results that
are applicable to any image-creation task.

Fonts are particularly well suited for the examination of style: they provide
diversity along many axes: shape, size, stroke weight, slant, texture, and serif
details — all within a constrained environment in which the stylistic elements
can be readily distinguished from content. Additionally, unlike many image gen-
eration tasks, this task has the enormous benefit of readily available ground-
truth data, thereby allowing quantitative measurement of performance. Recently,
growing attention has been devoted to style, not only in terms of fonts [8–10], but
in perceptual shape similarity for architecture and rigid objects [11], computer
graphics [12], cursive text [13], photographs [14–16], artwork [17], and music [18].

The primary goal of this paper can be succinctly stated as follows: given
a small set of letters (the basis set) of a particular font, can we generate the
remaining letters in the same style? Before we can address this question, we
need to ensure that there is enough information in a small basis set to ascertain
style. This is the subject of the next section.
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2 A Discriminative Task: Same Font or Not?

By addressing the question of whether a set of basis-letters contain enough in-
formation to extract “style”, we immediately work towards identifying sources
of potential difficulties for the overarching goal of generating characters – i.e.
will the generative process have enough information to extract from the basis
letters to successfully complete the task? Further, the networks created here will
be a vital component in validating the final generated results (Section 3.3).

The discriminative task is as follows: Given a set of four basis letters1, e.g.
B,A,S,Q, in font-A and another letter Φ, can we train a classifier to correctly
identify whether Φ is generated in font-A’s style? See Figure 2. Next, we describe
how the data is pre-processed and the neural networks used to address the task.

Fig. 2. Positive (Left) and Negative (Right) samples for the classification task. In the
left group, the fifth letter is a member of the same font. On the right, the fifth letter
is not. Note that some cases on the right are easy. However, the top two are more
challenging, requiring the slant and subtle edge weights to be analyzed, respectively.

2.1 Data Specifics

Due to the large variation in the font-faces examined, normalization of the font
images was vital, though minimal. Each letter was input to the network as a
36×36 gray-scale pixel image. In total, 5 letters were used as inputs: the first
4 were the basis letters (all from the same font), and the fifth letter was to be
categorized. The output of the network was a single binary value, indicating
whether the fifth letter belonged to the same font as the other 4.

All the fonts used in this study were True-Type-Font format (TTF), which
allows for scaling. Due to the stylistic variations present in the data, the ratio
of widths to heights of different font faces vary dramatically. The size of the
characters within the 36×36 image is set as follows. For each font, all 26 capital
letters are generated with the same point-setting until the bounding box of
any one of the 26 characters reaches the 36×36 limit in either dimension. All 26
characters are then generated with that point setting; this ensures that if the font
style specifies having a large ’R’ while having a little ’L’, that stylistic decision
is preserved in the training example and that the largest letter fits within the

1 B,A,S,Q comprised the basis set throughout this study. They were chosen because
they contained a diverse set of edges, angles and curves that can be rearranged/an-
alyzed to reveal hints for composing many of the remaining letters.
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36×36 bounding box. Note, that this sometimes creates non-standard positioning
of letters when seen together. For example, the character ’Q’ sometimes has a
descender [19] that extends below the font’s baseline; this will appear raised up
in the training examples (see Figure 2).

A training set of approximately 200,000 examples was created from 10,000
randomly chosen unique fonts. The training set was composed of 100,000 positive
examples (5th letter was the same font) and 100,000 negative examples (5th
letter was a different font). When generating the examples, each character was
randomly perturbed from the center location by up to ±2 pixels to introduce
variation (this also allowed us to create enough unique positive examples). A
disjoint testing set with 1,000 font families not present in the training set was
created in exactly the same manner. For both training and testing, negative
examples were chosen by randomly pairing different font-families2.

2.2 Network Architectures

Building on the successes of deep neural networks for image recognition tasks (see
[20] for a recent summary with ImageNet), we explore a variety of neural network
architectures for this task. Numerous experiments were conducted to discover
effective network architectures to use. Of the over 60 architectures tried, the top
performing seven were selected. Though a full description of the experiments is
beyond the scope of this paper, a few of the general principles found are provided
here to help guide future studies.

1. Treating inputs as a single large image or as 5 individual images: We com-
pared using the full 36×(36×5) pixel image as a single input vs. creating
individual ’towers’ for each of the 5 characters (see [21–24] for a review of
column/tower architectures). As a single image, it may be easier to capture
the relative sizes of characters. As multiple images, individualized character
transformations can be created with potentially cleaner derivatives. Through
numerous experiments, the results consistently favored using individual tow-
ers, both in terms of training time and final accuracy. See Figure 3.

2. Network Depth: In contrast to the trend of increasing network depth, deeper
nets did not lead to improved performance. Unlike in general object detec-
tion tasks in which deep neural networks are able to exploit the property
that images can be thoughts of as compositional hierarchies [25], such deep
hierarchies may not be present for this task. For this study, two sets of con-
volution layers were used with fully connected layers prior to the final output
(more details in Section 2.3). Additional depth did not increase performance.

2 To create negative examples, two fonts from the same font-family, i.e. Times-Roman-
Bold and Times-Roman were never used in the same negative example. Because the
hierarchy of fonts is not apriori known, font families were estimated by a simple
lexicographic analysis of the font names. Importantly, it should be noted that this did
not preclude fonts that appear visually nearly indistinguishable (but with dissimilar
names) from being used as negative examples.
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Fig. 3. Left & Middle: Two tower-based network architectures. Left: Layers within
the towers are fully connected. Middle: Layers within the towers are convolutions.
Right: Fully connected net that treated the 5 character inputs as a single image (not
shown: experiments with single-image-input networks that employ convolutions were
also conducted). The figure also shows three different fonts used in training all the
networks.

3. RELU or Logistic? A variety of activation functions were attempted, in-
cluding exclusively logistic activations throughout the network (recall that
the networks were not as deep as is often used in image-recognition tasks,
a condition often cited for using Rectified Linear (RELU) activations [26]).
Except for the final logistic-output unit, the rest of the activations through-
out the network worked best as RELU. Though the performance difference
was not consistent across trials, RELU units trained faster.

4. Convolutions vs. Fully Connected Layers: Convolution layers are frequently
employed for two purposes: achieving translation invariance and free param-
eter reduction, especially when used in conjunction with pooling layers. For
this task, translation invariance is not as crucial as in general object de-
tection tasks, as the object of interest (the character) is centered. Further,
this task worked well across a number of network sizes and free-parameter
ranges. Networks that employed convolutions as well as those that used fully
connected layers exclusively performed equally well.

2.3 Individual and Ensembles Network Results

As mentioned in the previous section, over 60 architectures were experimented
with for this task. Gradient descent with momentum (SGD+Momentum) was
used to train the networks and no domain-specific prenormalization of the weights
was necessary. From the 60 architectures, seven were chosen (see Table 1). All
are based on the tower architecture (Figure 3). The performance on the dis-
crimination task was measured on an independent test set — the 4-basis letters
and Φ were drawn from fonts that were not used for training. The results were
consistent across a wide variety of free parameters; in the seven networks, the
number of parameters varied by a factor of 18×, with similar performance.

It is illuminating to visualize the types of errors that the networks made. Fig-
ure 4 provides examples that were both correctly (Left) and incorrectly (Right)
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Table 1. Seven top performing architectures found from the 60 networks tried.

network
Description of
hidden layers
in each tower

Fully Connected
hidden units in

aggregation layers

Total free
parameters

performance

1 1 Fully Connected (50 units) 2 (250,200) 437,602 90.3%
2 3 Fully Connected (50,50,50 units) 2 (250,200) 463,102 89.2%
3 3 Fully Connected (100,100,100 units) 2 (250, 200) 925,352 88.2%
4 3 Fully Connected (100,100,100 units) 2 (50, 50) 777,202 89.3%

5
2 Conv Paths, 2 Deep

(3x3 → 3x3, 4x4 → 3x3)
2 (50, 50) 216,952 90.7%

6
2 Conv Paths, 2 Deep

(3x3 → 3x3, 4x4 → 3x3)
4 (50, 50, 50, 50) 222,052 91.1%

7
2 Conv Paths, 2 Deep

(3x3 → 3x3, 4x4 → 3x3)
4 (10, 10, 10, 10) 52,612 90.0%

Voting Ensemble 92.1%

classified by all 7 networks. In the leftmost column, examples in which the 5th
character was correctly recognized as belonging to the same font are shown. In
the second column, correctly recognized negative examples (the 5th letter was a
different font) are given. Note that the 6th letter, the “ground-truth”, was not
used as input to the network; it is provided here to show the actual letter of the
same font. In the second column, note the similarity of the correctly discerned
letters from the ground-truth. In particular, in this column, row 1 had very few
distinguishing marks between the proposed and real ’H’; in row 4, the ’U’ was
recognized as not being a member of the same font, as was the ’V’ in row 7 –
based solely on the weight of the strokes.

Fig. 4. Same Font or Not? 10 binary classification results. In columns 2 & 4, which show
examples in which the 5th character is taken from a different font than the basis set, the
corresponding actual letter from the basis set is also given. This sixth character, “the
ground-truth,” is not used in training/testing; it is only shown here for comparison.

The third column shows the false-negatives. Several of the mistakes are read-
ily explained: rows 5,6,7 are non-alphabetic fonts (no pre-filtering was done in
the font selection process). Rows 2 and 9 are explicitly designed to have a diverse
set of characters, e.g. for creating ’Ransom Note’ like artistic effects. Also shown
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are color-inverted fonts (row 4); the likely cause of the mistakes was the sparsity
of such fonts in the training set.

Finally, in the last column, false-positives are shown – different fonts that are
mistakenly recognized as the same. Three types of errors were seen. When the
fonts have extremely thin strokes (row 2), the failure rate increases. This is due
to two factors: under-representation in the training set and less information in
the pixel maps from which to make correct discriminations. Second, as before,
non-alphabetic fonts appear. The third source of mistakes is that many fonts
have characters that appear similar or match the basis font’s style (rows 3,7,8).
It is worth emphasizing here that the font design process is not an algorithmic
one; the artist/designer can create fonts with as much, or as little, variation as
desired. There may be multiple acceptable variations for each character.

Despite the similar performance of the 7 networks, enough variation in the
outputs exists to use them as an ensemble [27]. In 76.7% of examples, all networks
were correct. In 8.2%, only 1 network was mistaken, in 4.1%, 2/7 were mistaken
and in 3.0%, 3/7 were mistaken. Therefore, by using a simple majority voting
scheme, the seven networks can be employed as an ensemble that yields 92.1%
accuracy. This ensemble will be used throughout the remainder of the paper.

3 A Generative Task: Creating Style-Specific Characters

In the previous section, we determined that there was sufficient information in
the 4-Basis letters to correctly determine whether a fifth letter was a member of
the same font. In this section, we attempt to construct networks that generate
characters. The experiments are broadly divided into two approaches: single
and multiple-letter generation. In the first approach, a network is trained to
generate only a single letter. In the multiple-letter generation networks, all letters
are generated simultaneously by the same network. Though the single letter
networks are conceptually simpler, training a network to generate multiple letters
simultaneously may allow the hidden units to share useful representations and
features – i.e. serif style, line width, angles, etc. This is a form of transfer learning
with a strong basis in multi-task learning [28–31].

3.1 Single Letter Generation

As in the previous section, experiments with numerous network architectures
were conducted. The architectures varied in the number of layers (2-10), units
(100s-1000s) and connectivity patterns. The final architecture used is shown in
see Figure 6(Left). In the discrimination task described in the previous section,
there was a single output node. This allowed the use of large penultimate hidden
layers since the number of connections to the final output remained small. In
contrast, in image generation tasks, the number of output nodes is the number
of pixels desired; in this case it is the size of a full input character (36×36). This
drastically increases the number of connections in the network. To alleviate this
growth in the number of connections, reverse-retinal connections were used in



8 Shumeet Baluja

which each hidden unit in the penultimate layer connects to a small patch in
the output layer. Various patch sizes were tried; patches of both sizes 3 and 4
were finally employed. Unlike other convolution and de-convolution networks, the
connection weights are not shared. Sharing was not necessary since translation
invariance is not needed in the generated image; each letter should be generated
in the center of the output. Similar architectures have been used for super-
resolution and image deconvolution, often with weight sharing [32, 33].

The letter ’R’ was chosen as the first test case, since, for many fonts, the
constituent building blocks for ’R’ are present in the basis letters (e.g. copy the
’P’ shape from the ’B’-basis letter and combine it with the bottom right leg of
the ’A’). As in the previous experiments, the network was trained with the same
set of 9,000 unique fonts with L2 loss in pixel-space, using SGD+Momentum.
Numerous experiments, both with and without batch normalization [34], were
conducted – no consistent difference in final error was observed. Results for fonts
from the test set are shown in Figure 5.

Inputs Gen. SSE shape serif accept? comments by rater Actual

1 1574 Yes Yes Yes

2 1527 Yes Yes No Missing divider

3 1358 Yes Yes Yes

4 1996 No Yes Yes

5 1728 Yes Yes Yes

6 1955 No Yes Yes Top of R should not be closed

7 1399 Yes Yes Yes

8 2258 Yes No No Serifs missing

9 3290 Yes Yes No Similar, but not quite

10 1355 Yes Yes Yes

11 1359 Yes Yes Yes

12 2593 Yes Yes Yes

13 2428 Yes Yes Yes

14 2144 No No No Not Same

15 1934 Yes Yes Yes

16 1512 Yes Yes Yes Shape very close, maybe tilted?

Fig. 5. 16 Results shown for ’R’ generation. Results are judged by an external human
evaluator. Actual font characters shown on the right. 12/16 were deemed as acceptable
replacements for the original.
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Unfortunately, simply measuring the pixel-wise difference to the actual target
letter (SSE) does not correlate well to subjective evaluations of performance.
Yet, as in all real-world image generation tasks, aesthetic judgment is vital. We
asked a human rater3 to ascertain the quality of the result along 3 axis: (1) is
the shape generally correct, (2) are the serif appropriately captured, (3) is this
an acceptable replacement for the actual letter? The last metric is the hardest
to measure, but perhaps the most relevant. The outcome was overall positive,
with the caveats noted in Figure 5.

3.2 Simultaneous Letter Generation - Multi-Task Learning

In this section, we explore the task of generating all the upper-case letters simul-
taneously. Unlike the single-letter generation process described in the previous
section, the hidden units of the network can share extracted features. This is
particularly useful in the character generation process, as many letters have
common components (e.g. ’P’ & ’R’ , ’O’ & ’Q’, ’T’ & ’I’). See Figure 6(Right).

Fig. 6. Single Vs. Multi-Letter Generation. The left networks show individual letter
creation (only 2 of 22 shown). The right network generates all letters simultaneously,
thereby allowing the hidden units to share extracted information. The tower/column
architectures are employed to transform the basis letters (as was done for the discrim-
ination task). The generative network also auto-encodes the basis letters (Right).

Once again, numerous architectures were explored (over 30 in total). Compar-
ing the best single-letter-generation networks with the best multi-letter-generation
networks, the SSE error was repeatedly reduced (by 5%-6%) by using the multi-
letter generation networks. Qualitatively, however, the characters generated by
both networks appeared similar. Nonetheless, because of the small SSE error
improvement coupled with the ease of deployment, the multi-letter-generation
network are used going forward. A large set of results are shown in Figure 7.
Subjectively evaluating these results would be error prone and yield inconsistent
results given the difficulty in evaluating the individual consistency of a large set

3 The subjective evaluation was conducted by an independent User Experience Re-
searcher (UER) volunteer not affiliated with this project. The UER was given a
paper copy of the input letters, the generated letters, and the actual letter. The
UER was asked to evaluate the ’R’ along the 3 dimensions listed above. Addition-
ally, for control, the UER was also given examples (not shown here) which included
real ’R’s in order to minimize bias. The UER was not paid for this experiment.
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Fig. 7. Raw Output of the multi-letter-generation networks, with no post-
processing. 18 examples shown. Top good results. Bottom, results where some of
the letters are smudged. Non-alphabet/picture fonts not shown.
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of characters with each other and with respect to the basis set. Instead, in the
next section, we describe novel methods for validating the results.

3.3 Validating Results

In the previous section, the results of the font generation network were measured
by the network’s SSE error and subsequently by an external human evaluator.
Here, we present alternate methods based on using the discriminative networks
developed in Section 2. The discriminative networks were used to determine
whether an input character Φ was the same font as the basis characters. Recall
that by employing a voting-ensemble of 7 networks, 92.1% accuracy was attained.

Here, to test the generative network G on font f , the results of G(f) are
passed into the discriminative network ensemble (D) along with the original
BASQ-basis letters, D(Bf , Af , Sf , Qf , G(f)). Consequently, the output of D is
used to determine whether the generated letter is the same font as the basis
letters. Novel variants of this method, using pairs of generator/discriminator
networks have been independently proposed in [35], which is based on the archi-
tectures of generative-adversarial models [36, 37].

In the most straightforward formulation, we test whether the letters gener-
ated by G appear the same as the original font. See Table 2 – column Original
Basis, Synthetic Test. Formally, the test is:

For each font , f , in the test set:

generate all characters:

G(Bf , Af , Sf , Qf ) → [Af ′ , Bf ′ , Cf ′ , Df ′ , ..., Zf ′ ]

test each GENERATED character:

D(Bf , Af , Sf , Qf , Af ′) → [Same/Different]
...

D(Bf , Af , Sf , Qf , Zf ′) → [Same/Different]

Recall that the discriminative network ensemble, D, was trained with tuples
of letters {BasisSet, Φ} drawn from the training set of fonts and tested on an
entirely separate set of fonts. Thus, we are not limited in the set of fonts that we
can use as the basis-set. In the next examination, we reverse the question asked
above. We generate the letters as before, but ask the question, if the generated
letters are used as the basis set, will the original letters be recognized as the
same font? See Table 2 – column Synthetic Basis, Original Test. The generation
portion remains the same, but the test is revised to:

test each ORIGINAL character:

D(Bf ′ , Af ′ , Sf ′ , Qf ′ , Af ) → [Same/Different]
...

D(Bf ′ , Af ′ , Sf ′ , Qf ′ , Zf ) → [Same/Different]
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In the previous two experiments, we compared the generated characters to
the original font. This gives a measure of how closely the generated characters
resemble the original font. In the final experiment, we ask how consistent the
generated letters are with each other. If we are given the basis letters from the
generated font, will the other generated letters from the same font be classified
as the same? See Table 2 – column Synthetic Basis, Synthetic Test.

test GENERATED characters against GENERATED basis:

D(Bf ′ , Af ′ , Sf ′ , Qf ′ , Af ′) → [Same/Different]
...

D(Bf ′ , Af ′ , Sf ′ , Qf ′ , Zf ′) → [Same/Different]

Looking at Table 2, from the column Original Basis, Synthetic Test, it can be
seen that the generated fonts appear similar to the original fonts on which they
are based. An interesting question arises: why, then, does the second test Syn-
thetic Basis, Original Test have a lower recognition rate? The answer lies in the
fact that the font designer may introduce non-systematic variations that add vi-
sual interest, but may not adhere to strict stylistic cues present in other letters.
In the most obvious cases, the ’ransom note fonts’, each character is intention-
ally not representative of other characters. Other themed fonts introduce objects
such as trees, animals, and vehicles into the design that reflect each artist’s indi-
vidual creativity. For example, some fonts replace the empty spaces in the letter
’B’ with mini-airplanes, but may not do so in the letter ’A’, etc. The generated
fonts, when they capture such shapes, will synthesize more consistent characters
that reuse many of the same elements. It is likely that the original font’s glyphs
may appear outside the more cohesive set generated by the networks.4

The third column, Synthetic Basis, Synthetic Test, shows that the characters
generated are extremely consistent with each other. Normally, this would be con-
sidered a good attribute; however, when viewed in terms of the baseline (Column
4: Original Basis, Original Test), it raises an important question. Why are the
generated fonts more homogeneous than the original fonts? Is it for the reason
mentioned above, or is it for the, potentially more troubling, reason that all the
generated characters (across all fonts) are too much alike? Have all the characters
“regressed to the mean?” As a final test, we examine this possibility explicitly
using only network generated fonts. First, we set the basis letters (BASQ) from
a randomly selected generated font. Second, we randomly select another gener-
ated font and character as the candidate test character. 50,000 randomly paired
samples are created. Unlike the previous tests, in which accuracy was measured
by how many matches were found, the accuracy is measured by how many non-
matches are detected. This explicitly tests whether the generated fonts look too
similar to each other. Running this test with the discriminative network ensem-
ble, D, yields a different-font detection rate of 90.7%. For a baseline, we repeat

4 For completeness, we also analyzed the ’R’s generated by the one-letter-at-a-time
networks. They had similar performance (when measured with D) to the ’R’ row
shown in Table 2, with (6%) higher SSE.
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Table 2. Performance by Letter: (SSE & Discriminative Network Ensemble

Discriminative Network Ensemble Based Evaluation

letter SSE
Original Basis
Synthetic Test

Synthetic Basis
Original Test

Synthetic Basis
Synthetic Test

Baseline:
Original Basis
Original Test

C 1851.0 99% 90% 100% 96%
D 1987.7 99% 90% 100% 97%
E 2006.9 99% 89% 100% 95%
F 1943.0 98% 84% 100% 93%
G 2096.7 99% 89% 100% 95%
H 2066.6 99% 89% 100% 96%
I 1495.3 94% 83% 99% 90%
J 1968.8 92% 84% 97% 91%
K 2146.3 99% 88% 100% 95%
L 1799.7 99% 88% 100% 94%
M 2697.1 97% 83% 99% 92%
N 2162.8 98% 87% 99% 94%
O 1828.5 98% 89% 99% 95%
P 1936.3 99% 89% 100% 95%
R 2135.6 99% 90% 100% 97%
T 1714.8 97% 85% 99% 94%
U 1910.5 99% 89% 99% 96%
V 1950.6 97% 85% 99% 93%
W 2611.0 97% 82% 99% 92%
X 1985.5 99% 86% 100% 94%
Y 1998.3 98% 85% 99% 92%
Z 1901.4 97% 84% 99% 91%

Average 97% 86% 98% 94%

this experiment with 50,000 pairs generated from the original (non-synthesized)
fonts. D yields a correct different-font detection rate of 90.1%. The very close re-
sults indicate that the generated fonts have not regressed to the mean, in terms
of recognizable serifs and style, and remain as distinguishable as the original
fonts. The difference in performance between column 3 and 4 in Table 2 is likely
due to the variability introduced by smaller artistic variances inserted by the
designers, as described in the paragraph above.

4 Future Work

Beyond the straightforward explorations of varying the number and selection of
basis letters and also generating lower-case letters, there are many conceptually
interesting avenues for future work. First, an alternative approach to using the
generator networks is to use discriminative-networks and propagate derivatives
back to the inputs to modify the input pixels to maximize the similarity of
the hidden states to specified values. This has recently been proposed to create
natural images as well as dream like images “Deep Dreams” [38, 17].

Second, we made a concerted effort to use the simplest networks possible. An
extensive empirical search through the space of networks and learning algorithms
was conducted to find the most straightforward approach to addressing this
task. Recent preprints [9, 35] describe concurrent explorations of similar and
related problems with much more complex architectures that yield comparably
promising results. Extending this work to other architectures is easily done; for
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example, the evaluation mechanisms used in this study are akin to Generative
Adversarial Nets (GAN) [36, 39, 37] in which a synthetic-vs.-real distinguisher
network and a font generator are trained to outperform each other. This study
provides a strong, and easily implemented, baseline to which new architectures
and learning approaches can be compared.

Third, the trained networks can be used in novel manners beyond synthesiz-
ing characters from existing fonts. Will it be possible to take the attributes of
multiple fonts and combine them? For example, if the the basis set is composed
of 2 characters from font-A and 2 characters from font-B, will the resulting char-
acters be a combination of the two? Preliminary evidence (see Figure 8) suggests
that it may be possible; though perhaps more than 2 examples from each font
will be necessary for artistically more innovative combinations to be produced.

Fig. 8. Novel combinations of two fonts. In each of the two results, the first row shows
the 4 input letters and characters generated from GfontA, second row for GfontB . In
the Row 3, two characters from each font are used as input and the resulting characters
shown. Top Example: Note that the weight (thickness of lines) from the first font are
combined with the size of the second font. Bottom Example: Note that the “hollow”
look of the first font is combined with the weight and shapes of the second font.

Fourth, we have taken an image based approach to font generation. An al-
ternate, more speculative direction, is to use a non-image based approach with
recurrent networks, such as Long-Short-Term-Memory (LSTMs). Can LSTMs be
used to generate characters directly in TrueType language? For this task, net-
work’s inputs would include the TTF of the basis letters. Similar programmatic
learning in which LSTMs compose simple programs and sequences of music have
been recently attempted [40–42]. If it is possible to generate results directly in
TTF encodings, this will produce another, orthogonal, result to complement this
study. The feasibility of this approach is open for future research.

5 Conclusions

In this paper, we have presented a learning method to analyze typographic style
based on a small set of letters and to employ the learned models to both dis-
tinguish fonts and produce characters in the same style. The results are quite
promising, but fully capturing artistic visual intent is just beginning. Many of
the overall shapes, weights, angles and serifs were successfully modeled. In the
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future, as learning progresses, some of the more individualized nuances and re-
peated intricate design patterns, unique to individual fonts, will be captured.

6 Acknowledgments

Fig. 9. Acknowledgments displaying 24 synthesized fonts (from test set only).
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