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Abstract—As state of the art network models routinely grow to
architectures with billions and even trillions of learnable param-
eters, the need to efficiently store and retrieve these models into
working memory becomes a more pronounced bottleneck. This
is felt most severely in efforts to port models to personal devices,
such as consumer cell phones, which now commonly include
GPU and TPU processors designed to handle the enormous
computational burdens associated with deep networks. In this
paper, we present novel techniques for dramatically reducing
the number of free parameters in deep network models with
the explicit goals of (1) model compression with little or no
model decompression overhead at inference time and (2) reducing
the number of free parameters in arbitrary models without
requiring any modifications to the architecture. We examine four
techniques that build on each other and provide insight into when
and how each technique operates. Accuracy as a function of free
parameters is measured on two very different deep networks:
ResNet and Vision Transformer. On the latter, we find that we
can reduce the number of parameters by 20% with no loss in
accuracy.

Index Terms—Free parameters, Model compression, Deep
networks, Deep network implementation

I. INTRODUCTION

Recent research in Deep Neural Networks (DNNs) has
focused on improving accuracy by increasing the size and
complexity of the neural network architectures. State of the art
results across a variety of tasks in domains including natural
language processing, visual scene analysis, and text-to-image
generation are now achieved with networks with more than
10 billion free parameters [1] [2]. Concurrently, as personal
devices become more powerful and privacy and security come
more into focus, there is an effort to move processing out of
data centers and onto personal devices. Not only is this benefi-
cial for data privacy, it also has the potential for lower-latency
off-line results. By having DNNs operate on phones directly,
all interactions, including pictures and audio recordings, never
leave the device; see [3] [4] [5] [6] for a discussion of on-
device computation models. The computational requirements
of deep network models has become feasible on consumer-
level personal devices as both GPUs and TPUs are becoming
standard [7] [8]. This shifts the obstacles from on-device
computation to storage of the enormous DNN models, and
on the speed at which the stored model can be loaded into
memory for computation.

Structured Multi-Hashing [9] provides a technique to reduce
the model storage requirement for general DNN models by

using a large matrix-matrix multiply to decompress the stored
model for actual classification use. While [9] reported impres-
sive model compression rates, their approach could require a
significant amount of computation when the model is loaded
and decompressed from persistent storage. For example, in a
108-parameter model, to achieve a five-fold reduction in stor-
age size, the matrix sizes would be 10K×1K, requiring 1011

multiplies. Since many phone applications (especially camera
apps) aggressively reclaim working memory, in practice, this
decoding overhead would be incurred often — as much as
each time the model is used on a new image or recording.

Our work starts with [9] as inspiration. Similar to their work,
our primary goal is to tackle DNN compression. We add the
very pragmatic constraint of reducing, and even eliminating,
the model decompression costs. Like [9], our primary goal
is to achieve this improvement without any changes to the
network architecture. Our goal is not to recommend new
architectures for specific tasks, rather it is to demonstrate that
it is possible to efficiently store and uncompress any given
network architecture using our techniques. Throughout the
remainder of this paper, we will experiment with two DNNs to
quantitatively measure the effect of free parameter reduction
and accuracy.

Section II briefly looks at background and related work,
focusing on [9]. Section III details a sequence of four tech-
niques, starting with the one that is closest to the matrix-matrix
multiply of [9] but with significantly less computation required
for the decompression stage. For each technique, we examine
the advantages and disadvantages of that approach using
ResNet-50 on ImageNet as our target network and application.
Section IV summarizes our ResNet experimental results and
then examines performance on a Vision Transformer network.
Finally, Section V presents our conclusions and provides
directions for future work.

II. RELATED WORK

Though our techniques are novel, the goal of shrinking net-
works is not new. For example, ResNet [10], EfficientNet [11]
and Vision Transformer [12] (ViT) all have architecture hy-
perparameters that modify the width of layers or depth of the
network in an effort to tune the number of free parameters and
computational cost at the expense of accuracy. Our techniques
focus on the free parameters while eliminating the need to
change the architecture.



We briefly provide a high-level overview of a few alternate
approaches to model compression. This review is not meant
to be comprehensive, rather it should provide a starting point
for discovery into related approaches.

Network Pruning. Network pruning is often used as a post-
training procedure in which weights, output units, channels
or even entire layers are removed from the network [13] [14]
[15] [16] [17] [18]. The underlying assumption for the pruning
process, which mirrors our underlying assumptions as well,
is that DNNs are hugely over-parameterized, for example,
see [19]. The process often involves finding sets of either
redundant features and weights or features that are weighted
too low to have an impact on the overall performance of the
network. The network is commonly fine-tuned multiple times
during successive iterations of the pruning process.

Quantization. Extensive research has been done to quantize
the full floating point weights of networks, as well as their
activations, to lower precision. This quantization alleviates the
need to store large number of bytes for each weight [20]
[21] [22] [23] [24] [25]. Quantization to binary weights has
been extensively studied; this can have direct beneficial conse-
quences to power consumption. Quantization techniques can
be used in combination with the network pruning described
above, as well as the techniques that will be described in
this paper. The quantization process has been used as both a
post-training and during-training process. Many formulations
of quantization rely on either an implicit or explicit clustering
step to find reasonable settings for shared weight values [26]
[27]. Our work will also take advantage of the ability to share
weights, however, we will first select which weights will be
clustered, and will then allow the value of that set of weights
to be assigned.

Rethinking Network Architectures. Rather than viewing the
model compression step as a post-training step, research has
also been conducted towards starting with compact models
and training them from scratch [19] [28] [29], as well as in-
troducing additional error terms to encourage smaller network
through regularization terms, see [30] for a good discussion of
variants. Many automatic techniques for the creation of small
and/or efficient networks have been proposed, ranging from
heuristic search to parameterizing the space of networks for
differentiability, and are being used in practice [31] [32] [33].
Other approaches to revising network architectures include
the commonly employed broad set of network knowledge-
distillation techniques [34] [35] which, viewed in this context,
provides an alternate route to reduce network size.

The closest related work to ours is Structured Multi-Hashing
(SMH), a framework for model compression introduced by [9].
While their framework is quite general, most of their reported
results effectively treat the DNN’s weights as reshaped slices
from a single, large, square matrix. The square matrix is size
NSMH × NSMH where N2

SMH is as large or (more typically)
larger than the number of DNN weights. The NSMH ×NSMH
matrix is formed as part of the decompression process, as
a matrix product of two rectangular matrices of dimensions
NSMH × MSMH and MSMH × NSMH, requiring MSMHN

2
SMH

multiplies where MSMH < 1
2NSMH. The ratio of NSMH

2MSMH
gives

the approximate compression rate for this approach. Their
results show an impressive compression rate of 10× with
approximately a 5% drop in accuracy using Resnet-101 [10]
on ImageNet [36].

Building on the ideas and goals of SMH, we offer tech-
niques that avoid the matrix multiplication entirely, thereby
reducing decompression costs, while maintaining little or no
loss in accuracy.

III. TECHNIQUES

Inspired by Structured Multi-Hashing [9], we examine a
series of techniques that not only reduce the model size,
they also minimize decompression times. Throughout this
presentation, for clarity in reproduction, we always refer to
the learned free parameters that are stored to disk as “backing
weights” and the larger set of weights that are required by the
DNN for computation as “working weights”. Working weights
are derived from backing weights.

The four techniques we examine are:

1) Outer Product - Working weights within each layer
are an outer product of rank-1 matrices of the backing
weights.

2) All Pairs - Working weights within each layer are
products of pairs drawn from a pool of backing weights.

3) Layered Weight Pool - Working weights within each
layer are randomly assigned, many-to-one, to backing
weights.

4) Global Weight Pool - Working weights across the full
network are drawn from a circular queue of backing
weights.

Within this section, we preview a selection of results ob-
tained on ResNet-50 using these four techniques. The specifics
of the methodology and detailed results are presented in
Section IV.

A. Outer Product

The strongest results achieved by [9] use the product of two
rectangular matrices of backing weights to give a reduced-rank
matrix containing working weights. We begin with this. In our
first investigation, Outer Product, we use a similar approach on
a per-layer basis, but simplify the matrices to rank-1, using the
outer product of two vectors of length N1 and N2. This gives
a solution that, in decompression, uses the fewest multiplies
possible for a matrix product approach — approximately 1
multiply per working weight. As with [9], the shape of the
working-weight matrix, N1 × N2, does not have to conform
to the shape of the layer kernel, it simply needs to be as large
or larger than the total size of the layer kernel. This allows
us to pick the outer dimensions of our working-weight matrix
according to our desired compression ratio. For example, if
K, the kernel of a dense layer,1 is Nin × Nout and if W ,
our working-weight matrix is W = W1W

T
2 , we can reshape

1The derivation is very similar for convolutional kernels with two additional
dimensions for the spatial support on the layer kernel.



the working-weight matrix into a single N1N2-length vector,
truncate that vector to length NinNout, and reshape again into
the Nin ×Nout.

Upon first glance, it is natural to assume that we should
set Nin = SN1 and N2 = SNout. This special case does
offer computational savings (as well as on-disk compression).
We can explicitly exploit the structure of the working-weight
matrix by thinking of it as a set of S separate N1 × Nout
weight matrices and thinking of the input channels as S sets
of inputs, each of length N1. In this case, we can multiply
our S dense-layer inputs by W1 to give S scalar values and
then use those scalars to combine our S Nout-long pieces of
W2. This approach uses SN1 + N2 multiplies instead of the
N1N2 that would be needed without using this structured-
matrix exploitation. Unfortunately, the kernel is low rank and,
experimentally, this sometimes (though not always) produces
low accuracy results. In general, we need the least-common
multiple of N2 and Nout to be greater than NinNout to avoid
this low-rank or “striding problem”.

One way to avoid the low-rank kernel while still using a
rank-1 outer product to generate the working weights is to
simply permute the weights that we get from W1W2. Permut-
ing the entries destroys the scaling structure that originally
existed between the column/row vectors of the layer’s kernel.
However, this weight permutation prevents us from using the
structured-matrix exploit for computational savings. Without
this savings, there is no advantage to having N2 = SNout.
Further, the permutation approach is extremely slow to decode
due to the very high cost of the random memory accesses
needed for the permute operation.

A more efficient solution is avoid any small-integer rela-
tionship between N2 and Nout and instead simply select N2

to be co-prime with Nout such that N1N2 ≥ NinNout. Using
this co-prime–sized outer product approach gives an accuracy
which, experimentally, is as good as permuting but decodes
much faster than permutation in TensorFlow [37].

For convenience, we assume N1 ≤ d
√
NinNoute and N2 =

dNinNout
N1
e. Choosing N1 = 1 is degenerate: it does not reduce

the number of backing weights below the number of working
weights. Choosing N1 = 2 can result in the striding problem
since often Nin is a multiple of 2: in this case, N2 will itself be
a multiple of Nout and will violate the least-common-multiple
constraint needed to avoid striding. The next larger value of
N1 = 3 produces a large compression ratio and results in a
relatively high loss in accuracy. As shown in Figure 4, there is
a drop in accuracy of 3.3% (from 76% to 72.7%) when using
N1 = 3.

In summary, while Outer Product is conceptually closest
to [9] and has much lower decompression costs than that
earlier work, its lowest compression ratio is quite large and,
at that compression rate, there is a strong negative impact on
accuracy. Next, we will remove the structural requirements
imposed by a matrix-matrix multiplication.

Fig. 1. All Pairs technique. Backing weights are duplicated and arranged
in memory so every weight is paired with every other weight, allowing a
vectorized multiply to produce Nw weights.

B. All Pairs

The next approach, All Pairs, continues to use the idea from
Subsection III-A of minimizing multiplications by forming
working weights from pairwise products of backing weights.
In All Pairs, we do not impose the separation and structure
that matrix-matrix multiplication imposes. Instead, we treat
the backing weights as a single pool of Nb values from which
we draw Nw pairs of samples, which we multiply together to
form the Nw working weights.

Drawing pairs randomly suffers from the same random-
memory-access slowdowns that permutation did in Subsec-
tion III-A. Instead we implement the All Pairs approach by first
pairing weights that are 1 step apart in the backing-weights
buffer, then 2 steps apart, etc. When arranged as separate
buffers for the first multiplicands and the second multiplicands,
backing weights are contiguous in these two buffers and the
buffers can be constructed using Tensorflow concat and slice
operations. These operations avoid high-cost random memory
accesses. The arrangement is shown in Figure 1. The pairs
of backing weights are multiplied to create working weights.
There are Nb(Nb−1)

2 possible pairs.
All Pairs allows for a wider range of compression ratios

than is possible with Outer Product, from Nh = Nw

Nb
= 1

to
√
Nw/2. At less extreme compression ratios (Nh <<√

Nw/2), All Pairs more uniformly re-uses backing weights
compared to Outer Product, thereby reducing the maximum
number of working weights that are tied to any single backing
weight. As shown in Figure 4, All Pairs improves the accuracy
over that of Outer Product everywhere below 10M free
parameters in ResNet-50. Next we look at a generalization
of All Pairs.

C. Layered Weight Pool

Both Outer Product and All Pairs multiply pairs of backing
weights to create the working weights. Our next approach
is based on generalizing that concept to multiplying any
m-tuples to create the working weights. We experimented
with various settings of m. One might initially expect, as
we did, that having a larger number of multiplies to create
the working weights would help to disentangle weights and
therefore improve performance. However, we were surprised
to see the opposite held true.



Our finding was that setting m = 1, i.e. 1-tuples where
we directly tied multiple working weights to the same single
backing weight, was not only the simplest implementation but
also the most effective. This is similar to Random Weight
Sharing described in [38]. First, the first Nb working weights
are each assigned to a distinct backing weight. Then the next
Nb working weights are assigned to a random permutation of
the backing weights, and this is repeated until Nw working
weights are obtained (see Figure 2). By construction, this
ensures uniform use of the backing weights, a property shared
with All Pairs. Additionally, the random sampling approach
(probabilistically) avoids the striding problem seen in Outer
Product.

This effectively “ties” sets of working weights in the net-
work. These working weights must always have the same
value. This constraint seems much more stringent than that
imposed by All Pairs or Outer Product, which merely ties
together single multiplicands of different working weights. As
can be seen in Figure 4, Layered Weight Pool does quite
well at small compression ratios: it outperforms All Pairs
for compression ratios less than 2.5 with no multiplications
needed. Why doesn’t the tying of weights hurt performance?
Our hypothesis is that the DNN can mitigate the tied weights
by effectively “re-organizing” dense units or convolutional
channels as needed. For example, if we consider a layer in
a trained network in which two output units compute two
independent values that would not be possible had some
weights been tied together, the network can simply move that
computation to an output unit in which the weights are not tied.
In a sequence of dense layers, there are many combinations of
weights that produce exactly the same output and even more
combinations of weights that produce different outputs with
similar overall accuracy. The computation is under-constrained
by the shape of the architecture. The same is true of CNNs.
DNNs are able to exploit this flexibility to find a layout for
the required computation in which the tied weights are least
harmful.

Note that in the procedure described to this point, we have
entirely eliminated the need for multiplications to construct the
working weights. Nonetheless, the decompression time for the
model remains slow due to the random memory access needed
to map backing weights to working weights. Second, though
this method performs well at lower compression rates, it un-
derperforms Outer Product and All Pairs at compression ratios
higher than 2.5. One hypothesis for this underperformance is
that, when larger sets of working weights that are directly
tied together (without even the freedom of the additional
multiplicand of All Pairs), the DNN loses too much flexibility
and can not find a good compromise value for the backing
weight. This loss of freedom is further amplified by the tied-
together sets all residing within a single layer of the DNN.
We follow that line of investigation with our next technique,
Global Weight Pool.

Fig. 2. An example of the Layered Weight Pool technique using backing
weights A to L.

Fig. 3. In Global Weight Pool, layers draw working weights from a circular
queue of ordered backing weights.

D. Global Weight Pool

In the previous approach, Layered Weight Pool showed
promising results at low compression ratios but suffered at
higher compression ratios. Global Weight Pool takes a similar
approach to Layered Weight Pool but, to mitigate the accuracy
loss from tying weights in the same layer, it ties weights
across layers. Fortunately, this also simplifies the approach
tremendously.

Global Weight Pool draws working weights in ordered
slices from a global circular queue of backing weights. See
Figure 3. In experiments, permuting these weights has no
effect on accuracy, perhaps because their greater separation in
the network makes tying weights together less problematic or
perhaps because the DNN has more flexibility to mitigate tied
weights in different layers. By keeping the backing weights
ordered, we avoid the random memory accesses of Layered
Weight Pool.

As can be seen in Figure 4, Global Weight Pool provided
the best accuracy across nearly all of the compression ratios
that we considered.

Our next section reviews our ResNet results in more detail,
and examines the performance of Global Weight Pool on
a transformer architecture. Finally, we will introduce Split
Pools, a refinement of Global Weight Pool, which exploits the
functional structure of Transformer Networks.

IV. EXPERIMENTS

Results for all four approaches on ResNet-50 [10] are next.
The best performing approach, Global Weight Pool, is then
tested on the DeiT [39] variant of the Vision Transformer [12]
in Section IV-B.



TABLE I
TRAINING TIME AND NUMBER OF DECOMPRESSION OPERATIONS.

Rand Mem is the number of random memory accesses during decompression.

Training Decompression
Technique (hours) Multiplies Rand Mem
SMH [9] O(N

3/2
w ) 0

Unmodified ResNet 1.6 0 0
Outer Product 1.6 O(Nw) 0
Outer Product with Permute 7.2 O(Nw) O(Nw)
All Pairs 1.6 O(Nw) 0
Layered Weight Pool 7.4 0 O(Nw)
Global Weight Pool 1.6 0 0

A. ResNet

The first set of experiments, using ResNet-50, apply the
four techniques to all the convolutional layers inside bottleneck
blocks and in projection shortcuts. The “stem” convolutional
layer is never modified and the final dense layer is modified
only in select experiments. Only convolutional and dense
kernels are modified, leaving biases, batch normalization, and
other learned variables unmodified. In each layer, Nb is chosen
to keep Nh = Nw/Nb as constant as possible across layers.
For Global Weight Pool, the layers share a single pool with
a single Nb. One of the details that must be addressed in
implementing Global Weight Pool is the kernel initializer. In
many standard implementations, the ResNet kernel initializer
depends on the shape of the convolutional kernel. In Global
Weight Pool, multiple kernels can use the same backing
weight, thereby making initialization more challenging. For
consistency, we use TruncatedNormal to initialize the backing
weights for all techniques. To verify the suitability of this
choice, we compared an unmodified ResNet-50 to a Layered
Weight Pool using TruncatedNormal with Nh = 1 so that
both networks had the same number of free parameters. Both
networks achieved the same accuracy (76.5%).

Figure 4 shows the top-1 accuracy of each technique when
varying the number of free parameters (by controlling Nb).
The rightmost points use Nh = 1 (no compression). As
expected, the rightmost points for Layered Weight Pool and
Global Weight Pool are equal in both free parameters and
accuracy to the unmodified ResNet (76.5%).

For insight into our experiments, Table I shows the wall time
to train each technique. All of our runs use 32 TPU v3 [40]
cores with a batch size of 128 on each core and train for
28,080 steps. We measure the training time and, while there
can be considerable variance between runs, it is dominated by
whether weights are randomly accessed in memory (over 7
hours) or can be used in place (1.6 hours).

Table I also looks at the cost of decompression, as distinct
from initially loading backing weights into memory, split into
the number of multiplies and the number of random mem-
ory accesses required. The techniques that access contiguous
blocks of memory could be implemented as reference to
existing memory with no additional accesses to the backing
weights.

Fig. 4. Accuracy of the four techniques applied to ResNet-50. Nb, and
consequently the number of free parameters, is varied.

In summary, we find that we are able to reduce the number
of free parameters by a factor of Nh = Nw

Nb
= 1.44× with an

accuracy loss of only 0.9% or by 2.57× with an accuracy loss
of 2.8%. We review the results for each technique:

• Outer Product. This is limited to compression rates of
Nh = 2 or higher. Even in this operating region, the
performance was surpassed by other techniques.

• All Pairs. Though this method performs well with high
compression rates, it does poorly for larger numbers of
free parameters.

• Layered Weight Pool. This simple free-parameter repli-
cation worked better than the potentially larger repre-
sentational freedom provided by m-tuple combinations.
However, this method suffers from long decompression
times as random access across the backing weights can
be computationally expensive.

• Global Weight Pool. This method performed the best
across all operating regions. The improvement over Lay-
ered Weight Pool suggests that tying weights in the same
layer is more harmful than tying weights in different
layers. In addition, it runs faster than Layered Weight
Pool because it avoids permuting the weights.

Finally, we return to Structured Multi-Hashing [9] which
provided the foundations for our study. To make our work
more similar, we extended Global Weight Pool by modifying
the final dense layer to also use the weight pool. Figure 5 com-
pares this technique to the results presented in [9]. Not only
do we achieve higher accuracy across the measured points,
we incur no extra decompression time over an unmodified
ResNet-50 since we are using Global Weight Pool.

B. Vision Transformers and DeiT

For more than a decade, convolutional neural networks, such
as the ResNet architectures described in this paper, have been
the dominant architecture for image understanding and classi-
fication tasks. The recent rapid advances in Natural Language
Modeling tasks using attention-based transformer models [41]



Fig. 5. ResNet-50 modified to use Global Weight Pool in both convolutional
and dense layers compared to Structured Multi-Hashing [9]. A Global Weight
Pool with Nb = Nw gets the same accuracy (76.5%) as an unmodified
ResNet-50. Both have 25.6M free parameters.

[42] has led to numerous investigations into using similar
attention-based models for visual tasks [43] [44] [45] [46].

Many transformer networks require immense numbers of
training examples and large training times. Even when the
goal is ImageNet classification, it is common to use much
larger repositories of external data in training the transformer.
Touvron et al. [39] presented an attention-based network that
contains no convolutional layers and that achieves competitive
results against the state of the art on ImageNet without the use
of any external data. In their study, their networks, termed
Data-Efficient Image Transformers (DeiT), were trained on
a single node with 4 GPUs in three days. DeiT [39] uses
the same architecture as ViT [45]: namely, a sequence of
12 transformer-encoding modules, each of which contains a
multi-head attention block (with an enclosing skip connection)
followed by a 2-layer dense multi-layer perceptron (MLP)
(also with an enclosing skip connection). The multi-head
attention blocks use 3 dense layers to project down from D
dimensions to h separate subspaces (for h heads), each of
dimension d: one layer each for the query (Q), key (K), and
value (V) for each of the heads separately. The resulting h
separate d-dimensional outputs are re-projected using another
dense layer to return to the single, original D-dimension space
before then feeding into the MLP.

The architectures from [39] that we use are DeiT-S (em-
bedding dimension 384, 6 heads, 12 layers, 22.7M params)
and DeiT-B (embedding dimension 768, 12 heads, 12 layers,
87.2M params).

For these experiments, we begin with Global Weight Pool
since it produced the overall best results for ResNet. The
results are shown in Figure 6; we measure the accuracy as
we reduce the number of free parameters in the larger of the
two models, DeiT-B. We see small reductions in accuracy for
small reductions in size and we see a range of numbers of free
parameters that have higher accuracy than DeiT-S.

Due to the structure within the transformer-encoding mod-
ules, we can create 6 separate weight pools, one for each of

Fig. 6. DeiT-B accuracy at various numbers of free parameters. The DeiT-S
point uses no compression.

TABLE II
RESULTS USING GLOBAL WEIGHT POOL AND SPLIT POOLS

Compressing DeiT-S and -B using Split Pools gives better performance than
using a single Global Weight Pool.

Free Weight Pool Split Pools
Arch Parameters Accuracy Accuracy

22,731,113 uncompressed accuracy = 79.3%
21,497,449 79.2% 79.2%

DeiT-S 17,497,449 78.1% 78.5%
13,497,449 76.4% 76.6%
87,159,017 uncompressed accuracy = 81.6%
80,224,361 81.6% 81.6%

DeiT-B 70,224,361 81.2% 81.7%
22,224,361 78.7% 78.5%
17,224,361 77.3% 77.0%

the distinct functions within the module: (1) query projection,
(2) key projection, (3) value projection, (4) across-head–output
combination, (5) first MLP layer, and (6) second MLP layer.
Note that, unlike Layered Weight Pool, these pools are shared
across modules (which is across layers). The pool separation
is by function not by depth within the network. We refer to
this splitting of backing weights by function as Split Pools.
Table II shows the performance of this experiment.

In summary, note that in the larger model, DeiT-B, we can
reduce the number of free parameters to 70M (approximately
a 20% reduction in free parameters), simply by tying their
values together, with no loss in accuracy. Moreover, when we
reduce the number of free parameters in DeiT-B to the size of
DeiT-S (a compression ratio of 3.8×), accuracy is only 0.6%
lower than DeiT-S even though DeiT-S was tuned to work with
an appropriately sized embedding dimension. Whereas using a
different pool for each layer in ResNet produced worse results,
splitting the pool by function in DeiT in many cases produced
better results.

V. CONCLUSIONS AND FUTURE WORK

This paper has presented novel techniques to reduce the
number of free parameters in large DNNs. Of the techniques,
Weight Pool worked best, or Split Pools where there is a clear



functional split between free parameters. Both simply tie the
value of some weights together during training and thereby
reduce the number of learned weights while achieving little
or no loss in accuracy. This was demonstrated on two diverse
architectures: ResNet and Data-Efficient Image Transformers.
Absolutely no architecture changes were required to benefit
from our techniques.

One important benefit of our work over the closest related
successful approach presented in [9] is in the decompression
process from the reduced number of backing weights to the
working weights required for DNN inference. [9] and the
earlier techniques mentioned in this paper require a potentially
enormous matrix-matrix multiply to obtain working weights
from the backing weights. For both Global Weight Pool and
Split Pools, no multiplies are required for decompression. In
both of these methods, by ensuring that we are careful in
our use of weight-reuse so that random memory accesses are
minimized – thereby incurring no extra overhead over standard
networks for weight decompression.

There are numerous and varied avenues for future research.

1) All of these methods can be used in conjunction with
other techniques for reducing network size, such as
model distillation and model quantization. To minimize
network size, all three approaches can be combined.

2) The dichotomy in performance of global-vs-non-global
pools between ResNet and Transformers was pro-
nounced. With transformers, we split the pool according
to the network layer’s function, whereas with ResNet it
was done simply by layer. In networks in which different
sections of the network have clearly defined roles, using
Split Pools is warranted. Alternatively, analyzing the
statistical characteristics of portions of trained networks
may yield insight into which groups of weights will be
least impacted if they are tied together. Whether such
statistical characteristics occur in ResNet is an open
question.

3) It will be interesting to more thoroughly understand the
ramifications of these findings to network architectures
and sizing. If we can reduce the number of learnable
free parameters in a model, does that indicate that we
should use smaller models? Will a deeper analysis of
these results hint at the size of the network that will
be sufficient, and even which portions of the network
require more parameters by seeing where the weight-
tying is most detrimental? These questions are open for
future study.

REFERENCES

[1] A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen,
and I. Sutskever, “Zero-shot text-to-image generation,” in Proceedings
of the 38th International Conference on Machine Learning, ser.
Proceedings of Machine Learning Research, M. Meila and T. Zhang,
Eds., vol. 139. PMLR, 18–24 Jul 2021, pp. 8821–8831. [Online].
Available: https://proceedings.mlr.press/v139/ramesh21a.html

[2] A. Chowdhery, S. Narang, and e. a. Devlin, Jacob, “Palm:
Scaling language modeling with pathways,” 2022. [Online]. Available:
https://arxiv.org/abs/2204.02311

[3] M. R. Rahimi, J. Ren, C. H. Liu, A. V. Vasilakos, and N. Venkatasub-
ramanian, “Mobile cloud computing: A survey, state of art and future
directions,” Mobile Networks and Applications, vol. 19, no. 2, pp. 133–
143, 2014.

[4] S. Malik and M. Chaturvedi, “Privacy and security in mobile cloud
computing,” International Journal of Computer Applications, vol. 80,
no. 11, 2013.

[5] P. Corcoran, “Privacy in the age of the smartphone,” IEEE Potentials,
vol. 35, no. 5, pp. 30–35, 2016.

[6] M. Othman, S. A. Madani, S. U. Khan et al., “A survey of mobile
cloud computing application models,” IEEE communications surveys &
tutorials, vol. 16, no. 1, pp. 393–413, 2013.

[7] Apple, “Apple introduces iphone 13 and iphone 13 mini,”
https://www.apple.com/newsroom/2021/09/apple-introduces-iphone-
13-and-iphone-13-mini/, 2021, accessed: 2022-6-26.

[8] M. Gupta, “Google tensor is a milestone for machine learning,”
https://blog.google/products/pixel/introducing-google-tensor/, 2021, ac-
cessed: 2022-6-26.

[9] E. Eban, Y. Movshovitz-Attias, H. Wu, M. Sandler, A. Poon, Y. Idel-
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