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ABSTRACT

A rapidly increasing portion of internet traffic is dom-
inated by requests from mobile devices with limited and
metered bandwidth constraints. To satisfy these requests, it
has become standard practice for websites to transmit small
and extremely compressed image previews as part of the ini-
tial page load process to improve responsiveness. Increasing
thumbnail compression beyond the capabilities of existing
codecs is therefore an active research direction. In this work,
we concentrate on extreme compression rates, where the size
of the image is typically 200 bytes or less. First, we propose
a novel approach for image compression that, unlike com-
monly used methods, does not rely on block-based statistics.
We use an approach based on an adaptive triangulation of the
target image, devoting more triangles to high entropy regions
of the image. Second, we present a novel algorithm for en-
coding the triangles. The results show favorable statistics, in
terms of PSNR and SSIM, over both the JPEG and the WebP
standards.

Index Terms— Compression, Triangulation, Thumbnails

1. INTRODUCTION

The need for highly compressed images continues to increase.
A rapidly increasing portion of internet traffic is dominated by
requests from mobile devices with limited and often metered
bandwidth constraints. Efficient delivery of quality thumb-
nails is an active area of interest to some of the largest Inter-
net companies, including Google [1], Facebook [2] and Ap-
ple [3]. In addition to decreased download latency and band-
width for end users, reducing image size also helps with stor-
age requirements for billions of thumbnails that need to be
rapidly accessed.

JPEG has long been a standard approach for image com-
pression. In this study, we examine compression in an op-
erating regime where JPEG and other popular approaches do
not fare well: under 200 bytes. Usually, when extreme com-
pression is required, it is addressed with domain specific tech-
niques, specialized for faces [4], satellite imagery [5], smooth
synthetic images [6], and surveillance [7], among others.

A powerful, recent, image compression approach is
WebP. Per [1], WebP lossless images are 26% smaller in
size compared to PNGs. WebP lossy images are 25-34%

smaller than comparable JPEG images at an equivalent SSIM
quality index. This is the standard to which we will compare.

The basis of many of the popular compression techniques
is a subdivision of the image into a set of blocks. Our ap-
proach, which is based on triangulation, does not use a block
approach nor a predefined, or uniform, spacing of triangles
over the image. Instead, we use a limited set of vertices
which are assigned a color index from a small colormap; sim-
ple color interpolation between each of the triangle vertices
is used to fill in the triangles to create the resultant image.
More triangles are devoted to the complex (high entropy) re-
gions. Triangulation has previously been used in a diverse
set of approaches for compression, see [8, 9, 10]. Finally,
other experimental compression approaches use deep neural
networks [11, 12] and diffusion [13, 14].

2. TRIANGULATION OF IMAGES

There are two broad components of our approach. The first is
creating an effective triangulation and the second is efficiently
encoding the triangulation. The triangulation component can
be thought of as two pieces that must interact well: select-
ing where to place the triangulation’s vertices and assigning
a single color to each vertex. For transmission efficiency, we
would like to minimize the number of vertices and the total
number of unique colors. Rather than transmitting the con-
nectivity matrix, we consider only Delaunay Triangulations
that can be constructed in both the encoding and decoding
stages given only the vertex coordinates. See also [15, 16].

Our approach follows a generate-and-test paradigm. We
begin with a small thumbnail image, I (usually 221 × 221).
In the simplest version of our algorithm, shown in Figure 1,
we begin with an over-complete set of vertices on a fixed-size
grid and prune them to a smaller set until the set and the color
information can fit in 200 bytes. The grid-size is our only
parameter for adjusting the compression rate.

Using only this simple procedure, the final triangulations
and resulting images are shown in Figure 2. The most salient
observation is that the triangles cluster around the higher en-
tropy regions. Homogeneous regions such as the sky have
fewer triangles. Quantitatively, PSNR quality was close to
WebP, but did not consistently out-perform WebP. Under-
standing the deficiencies is key to understanding the design
of our improved approach. (1) The colors, based on global
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1. Insert initial, evenly-spaced candidate coordinate points
from a subsampled version of I , into a set P . By consid-
ering only a fixed subset P of pixels locations for triangle
coordinates, the encoding is faster and more compressible.

2. Select a set C of colors. Cluster the colors in I and se-
lect the 8 to 16 representative ones. Each vertex p ∈ P is
assigned a color in C.

3. Triangulate. Given P , create a Delaunay Triangulation.
4. Generate I ′ and test. With C and P , the triangles are filled

using bilinear interpolation, yielding image I ′. The differ-
ence between I and I ′ is tested with either SSIM or PSNR.

5. Find least important vertex px ∈ P . For each p ∈ P , in
turn, remove that p, re-triangulate and fill triangles to create
I ′′. Set px to the point that produces the lowest error.

6. Remove least important vertex, px. Continue from 5.

Fig. 1: Baseline: A Deterministic, Greedy, Approach.

image characteristics, are selected once and never adapted.
(2) The only allowed change is to remove vertices: they are
never added back or moved slightly to find a better combina-
tions of triangles. (3) The Baseline makes a greedy choice for
every proposed mutation, limiting the effectiveness of local
search once regions of high performance are found.

To address the difficulties, we turn to a stochastic variant.
An often-used technique to search discrete, non-differentiable,
optimization landscapes is with randomized search heuristics
such as hill climbing [17], evolutionary algorithms and strate-
gies [18, 19] and simulated annealing [20].

A stochastic hill climbing variant of the Baseline is given
in Figure 3. At the expense of determinism, this allows us to
more thoroughly explore the search space and adapt color set-
tings. There are six possible operations other than the single
“remove vertex” operator that the Baseline variant employed.

Fig. 2: Results for baseline. From left: Original Image, 8
colors version, triangulation, and result. Note that the trian-
gulation places more triangles in higher entropy regions.

1. Initialize P . Greedily select P as a set of 300 vertices that
minimizes the difference with the input image.

2. Initialize C. Agglomerate the individual vertex colors down
to 8 colors in the color table C.

3. Initialize vertex colors. For each vertex, assign the color
index in C closest to the vertex’s color in the input image.

4. Triangulate. Given P , create a Delaunay triangulation.
5. Mutate. A mutation is a subset of the actions below. An

action is included (once) with some probability.

(a) Displace a vertex. Move a vertex either horizontally
or vertically one grid point.

(b) Add a random vertex.
(c) Remove a random vertex.
(d) Re-assign vertex color randomly.
(e) Add a color to C and re-assign vertex colors.
(f) Remove a color from C and re-assign vertex colors.
(g) Perturb a color entry. Select a color entry and a chan-

nel and randomly change by ±1.

6. Re-triangulate and retain the mutation if it improved the
trade-off between error and size. Otherwise discard the mu-
tation. Repeat from Step 5.

Fig. 3: A Stochastic Approach.

Note that 4 of 7 mutation operators (Steps 5(d)-(g) in Fig-
ure 3) modify colors; no color modification was employed
in the Baseline. Second, vertices can be added (even if they
had been previously removed) if they are found to improve
the score; vertices can also make “localized” moves to nearby
grid points. Third, instead of always removing vertices until
the desired byte-size was reached, the acceptance of a move
is based on whether that move improves the quality-vs-size
objective function.

In contrast to the Baseline, the stochastic variant is initial-
ized with only a small set of vertices P . As before, they are
all on a pre-specified grid. The search progresses by mutating
the current solution set and evaluating the result with respect
to the quality-vs-size objective function.

2.1. Encoding the Triangulation

Once we have selected a triangulation, we need to losslessly
compress that representation. In all cases discussed below,
we use asymmetric numerical systems (ANS) [21] which is a
computationally efficient method to achieve the compression
rates of arithmetic encoding [22].

We send a “header” containing basic parameters such as
the grid size, the number of vertices, and the color table. The
color-table entries are sorted by frequency of use (starting
with the most common). The color table is then coded by
giving the number of colors, the color channel values (quan-
tized to 6 bits per YCoCg channel), and the usage frequencies
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Fig. 4: Visualizing the
results vs. image byte
size. For each of the
3 original images (left
most column), the im-
age at 2 WebP (roughly
400, 100 bytes) and
5 compression levels
for our system (roughly
400, 300, 250, 200,
100) are given. Byte
size (b) and grid size
(g) given for each result
from our system.

original WebP our system

(a) original (b) webp-370 b (c) webp-86 b (d) 352b / 76g (e) 300b / 61g (f) 250b / 43g (g) 202b / 33g (h) 100b / 16g

(i) original (j) webp-438 b (k) webp-84 b (l) 400b / 56g (m) 298b / 33g (n) 252b / 30g (o) 196b / 24g (p) 104b / 15g

(q) original (r) webp-434 b (s) webp-100 b (t) 398b / 93g (u) 304b / 41g (v) 244b / 37g (w) 204b / 28g (x) 104b / 16g

for each of the entries. We code the color channel values as a
correction from the average of the previously transmitted val-
ues for that channel (e.g., the Y channel), with the first entry’s
prediction set to the mid-point gray. The histogram table for
these color differences are sent as part of the header.

The color-entry frequencies are transmitted using a bi-
nomial distribution model: we use a “fair selection” model
on the remaining colors and vertices (i.e., N = VCr trials,
where VCr is the number of remaining vertices not counted
by the previous color entries, and a success probability of
p = 1/|Cr| where |Cr| is the number of remaining color-
table entries, Cr). We improve on this probability model by
limiting the considered values of the distribution to be at least
VCr/|Cr| (based on knowing that the upcoming entries have
been sorted) and at most the frequency count of the previous
entry (based on knowing that the previous and current entries
have been sorted). Using this approach to color-entry fre-
quency coding, we save 1%-3% of the file size, on average,
compared with using a simple uniform-probability model of
the distributions.

We also explore alternative approaches to compressing the
vertex locations and their color assignments. For the vertex
locations, the simplest alternative is to send one bit (without
arithmetic coding) per grid point to mark whether it is used
as a vertex. This takes Ng bits, where Ng is the number of
grid points and corresponds to using a 0.5 probability of oc-
cupancy. We can do better by using a fixed, but more accurate,
probability of occupancy: Vt/Ng where Vt is the total num-
ber of vertices (sent in the header). In our experiments, this
fixed-probability only saved an average of 1% of the single-
bit-per-grid-point approach. We also tried using run-length
codes (coding the run length of “unoccupied” grid points be-
tween vertices), however the overhead of sending the distri-
bution of run-lengths made this approach worse.

The best compression in our tests uses an adaptive-
probability approach to compressing the occupancy map.
In this approach, we simply update our probability model as
we progress through the grid, so that at each point the model

probability is Vr/Nr where Vr and Nr are the remaining
vertex and grid point counts, respectively. In our tests, this
gave a savings of 2.25% over the single-bit-per-grid-point
approach.

We use a similar approach for coding the color-table index
for each vertex. Since we know the color-entry frequencies,
we can use adaptive models for these indices. Instead of sim-
ply using these remaining-count probabilities, we can explic-
itly treat the color index coding as a chain of Boolean encod-
ings — each with the probability indicated by the remaining-
count probability for the corresponding color-table entry but
with their order of encoding set by a spatially adaptive pre-
diction. This helps even without changing any of the model
probabilities because once we see a “true” Boolean value, we
can stop encoding for that vertex and move to the next one.
We determine the order of encoding by sorting the previously
seen (and already transmitted) colors based on their Manhat-
tan distance to the current vertex, with ties broken in favor
of the more probable color. Using this ordering results in a
1% − 3% file size reduction for the color-table frequencies.
Using the spatially-adaptive ordering provides an additional
0.66% file-size reduction.

3. EXPERIMENTS

In this section, we present a summary of the experiments we
performed. The performance is assessed with PSNR (Peak-
Signal-to-Noise Ratio) and SSIM (Structural Similarity In-
dex) [23], which is based on the visible structures in the im-
age, and is considered a perceptual metric. All of the re-
sults reported are the average of compressing 1,024 images,
each consisting of 221 × 221 pixels. The images were ran-
domly selected from the ImageNet training set [24]. Figure 4
shows the effects of final byte-size on the results obtained by
the stochastic variant described in the previous section. The
larger the allowed byte-size, the finer the initial grid can be.
Our results are shown for grid sizes from 15×15 (around 100
bytes, compressed) up to 96× 96 (around 400 bytes).
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Fig. 5: Measuring quality as a function of bytes. WebP be-
comes competitive at approximately 400 bytes, JPEG is com-
petitive after 500 (not shown).

Quantitative results are shown in Figure 5. When mea-
sured with either metric, PSNR or SSIM, the triangulation
approach outperforms both WebP and JPEG. As can be seen,
JPEG performs quite poorly in this operating range. Also
note that to be as favorable to JPEG as possible, we set qual-
ity=20, which produced the best quality/size, and used head-
erless JPEG encoding. Adding a header significantly deterio-
rates performance. WebP is a close competitor at quality=10.
At the range of interest (200 bytes) we outperform WebP in
both metrics. By 400 bytes, WebP and the triangulation ap-
proach perform equally. Beyond 400 bytes, we again expect
WebP to have an advantage.

Despite the promising results in Figure 5, we need to
ensure that the average performance is indicative of expected
performance. In Figure 6, we provide histograms of the
PSNR and SSIM errors on the 1,024 image test set. In the
same figure, we also look at the best and worst performing
examples: intuitively, the worst cases have large entropy re-
gions (similar to checkerboard patterns) while the best ones
have large areas of similar colors.

Finally, we would like to give a better understanding at
the best steps in our pipeline. In the interest of space, we
present one graph in Figure 7 that provides the most insight
into the benefits of the stochastic approach over the baseline.
We repeat all of our experiments using only a subset of the
operators described in Figure 3 Step 5. The biggest improve-
ment is from vertex modfication and, next, from color-entry
perturbation (PSNR shown, same for SSIM). The gains seen
with color modification suggest that pre-computing the color
table based on the color clusters in the thumbnail is not ade-
quate for use in a triangulated approximation.

≈
1
5

p
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r
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Fig. 6: Histogram of Results (at bytes=200). Top Left: PSNR, Top
Right: SSIM. 3 Cases with poor (middle row) and high PSNR (last
row). Shown alternating: original, compressed.

4. CONCLUSIONS & FUTURE WORK

We have presented an approach to compressing images to ex-
tremely small byte sizes. In the operating range of interest,
200-400 bytes, standard JPEG operates poorly. With tiny
thumbnails under 400 bytes, we surpass the latest deployed
version WebP, version 1.0.0, in both PSNR and SSIM. Only
after ∼400 bytes, does WebP do better. Further, our repre-
sentation is scale-free: the triangles can be easily scaled and
simply rendered with low-level primitives.

There are three immediate avenues for future work. The
first is the large-scale human evaluation of the images to ver-
ify the SSIM and PSNR improvements. Second, the stochas-
tic search process can be computationally expensive; domain-
specific heuristics to narrow the search space may help. Third,
we have found that adding synthetic noise in post-processing
can enhance the perceived quality without always improving
the quality/size score. Further research on a perceptual metric
dedicated to thumbnails is needed.

Fig. 7: What makes the algorithm (Figure 3) work? Green: no
search, only initialization. Blue: using only vertex-modification op-
erators (steps 5 (a)-(c)). Red: adding color perturbation (steps 5
(a)-(c) plus (d) and (g)). Yellow: all operators (steps 5 (a)-(g)).
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Supplemental Materials
The below are seven example images, which we have taken from our evaluation set. The subsequent pages show them encoded
with different sized grids, across our full range of bitrates. Below each image, we list PSNR, SSIM, and file size. We use file
size, instead of BPP, since our triangle representation does not limit the reconstruction to any fixed size. The reconstructions
are shown at 221×221, but larger-sized reconstructions will retain the sharpness of these reconstructions, since the upsampling
conversion is done before the interpolation, used to fill in the Delaney triangles. The ridges that are seen in the 221 × 221
reconstructions will remain as sharp, even at larger image sizes, due to the vertex-based representation.

Original target images
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PSNR: 20.18; SSIM: 0.515; bytes: 98.0 PSNR: 20.43; SSIM: 0.531; bytes: 128.0 PSNR: 21.15; SSIM: 0.550; bytes: 152.0

PSNR: 21.43; SSIM: 0.565; bytes: 176.0 PSNR: 21.76; SSIM: 0.578; bytes: 208.0 PSNR: 22.06; SSIM: 0.590; bytes: 236.0

PSNR: 22.48; SSIM: 0.609; bytes: 256.0 PSNR: 22.63; SSIM: 0.617; bytes: 278.0 PSNR: 22.66; SSIM: 0.622; bytes: 298.0

PSNR: 22.73; SSIM: 0.624; bytes: 314.0 PSNR: 22.86; SSIM: 0.635; bytes: 344.0 PSNR: 23.20; SSIM: 0.643; bytes: 370.0
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PSNR: 24.31; SSIM: 0.578; bytes: 70.0 PSNR: 24.80; SSIM: 0.586; bytes: 120.0 PSNR: 25.14; SSIM: 0.594; bytes: 140.0

PSNR: 25.28; SSIM: 0.604; bytes: 168.0 PSNR: 26.11; SSIM: 0.617; bytes: 192.0 PSNR: 26.52; SSIM: 0.635; bytes: 222.0

PSNR: 27.24; SSIM: 0.648; bytes: 246.0 PSNR: 26.97; SSIM: 0.643; bytes: 264.0 PSNR: 27.38; SSIM: 0.654; bytes: 288.0

PSNR: 27.03; SSIM: 0.649; bytes: 312.0 PSNR: 27.57; SSIM: 0.660; bytes: 340.0 PSNR: 27.20; SSIM: 0.659; bytes: 352.0
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PSNR: 18.61; SSIM: 0.410; bytes: 96.0 PSNR: 18.97; SSIM: 0.422; bytes: 116.0 PSNR: 19.64; SSIM: 0.453; bytes: 154.0

PSNR: 19.72; SSIM: 0.454; bytes: 178.0 PSNR: 20.08; SSIM: 0.483; bytes: 194.0 PSNR: 20.36; SSIM: 0.479; bytes: 230.0

PSNR: 20.72; SSIM: 0.508; bytes: 268.0 PSNR: 20.80; SSIM: 0.517; bytes: 286.0 PSNR: 20.72; SSIM: 0.514; bytes: 302.0

PSNR: 20.91; SSIM: 0.520; bytes: 328.0 PSNR: 21.15; SSIM: 0.532; bytes: 344.0 PSNR: 21.39; SSIM: 0.532; bytes: 374.0
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PSNR: 26.22; SSIM: 0.625; bytes: 86.0 PSNR: 26.59; SSIM: 0.635; bytes: 118.0 PSNR: 27.36; SSIM: 0.648; bytes: 140.0

PSNR: 27.48; SSIM: 0.662; bytes: 164.0 PSNR: 27.91; SSIM: 0.666; bytes: 204.0 PSNR: 28.27; SSIM: 0.675; bytes: 248.0

PSNR: 28.50; SSIM: 0.682; bytes: 282.0 PSNR: 28.78; SSIM: 0.689; bytes: 308.0 PSNR: 28.79; SSIM: 0.691; bytes: 336.0

PSNR: 28.77; SSIM: 0.689; bytes: 354.0 PSNR: 28.76; SSIM: 0.693; bytes: 370.0 PSNR: 29.04; SSIM: 0.701; bytes: 382.0
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PSNR: 23.50; SSIM: 0.623; bytes: 94.0 PSNR: 24.15; SSIM: 0.653; bytes: 116.0 PSNR: 24.95; SSIM: 0.670; bytes: 134.0

PSNR: 25.26; SSIM: 0.683; bytes: 146.0 PSNR: 26.18; SSIM: 0.709; bytes: 198.0 PSNR: 26.35; SSIM: 0.707; bytes: 208.0

PSNR: 26.38; SSIM: 0.702; bytes: 216.0 PSNR: 26.47; SSIM: 0.712; bytes: 238.0 PSNR: 26.59; SSIM: 0.721; bytes: 258.0

PSNR: 27.13; SSIM: 0.735; bytes: 288.0 PSNR: 27.60; SSIM: 0.749; bytes: 332.0 PSNR: 27.78; SSIM: 0.748; bytes: 342.0
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PSNR: 18.42; SSIM: 0.494; bytes: 90.0 PSNR: 18.74; SSIM: 0.503; bytes: 124.0 PSNR: 19.08; SSIM: 0.524; bytes: 152.0

PSNR: 19.19; SSIM: 0.531; bytes: 170.0 PSNR: 19.56; SSIM: 0.546; bytes: 204.0 PSNR: 19.90; SSIM: 0.564; bytes: 252.0

PSNR: 20.09; SSIM: 0.574; bytes: 312.0 PSNR: 20.18; SSIM: 0.586; bytes: 336.0 PSNR: 20.27; SSIM: 0.593; bytes: 352.0

PSNR: 20.30; SSIM: 0.592; bytes: 378.0 PSNR: 20.39; SSIM: 0.600; bytes: 396.0 PSNR: 20.43; SSIM: 0.600; bytes: 416.0
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PSNR: 17.02; SSIM: 0.328; bytes: 102.0 PSNR: 17.39; SSIM: 0.336; bytes: 132.0 PSNR: 17.77; SSIM: 0.360; bytes: 154.0

PSNR: 18.28; SSIM: 0.387; bytes: 200.0 PSNR: 18.47; SSIM: 0.395; bytes: 214.0 PSNR: 18.78; SSIM: 0.405; bytes: 242.0

PSNR: 18.97; SSIM: 0.424; bytes: 284.0 PSNR: 19.45; SSIM: 0.452; bytes: 340.0 PSNR: 19.54; SSIM: 0.456; bytes: 388.0

PSNR: 19.83; SSIM: 0.470; bytes: 398.0 PSNR: 19.84; SSIM: 0.470; bytes: 456.0 PSNR: 20.02; SSIM: 0.484; bytes: 472.0
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