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Abstract

A rapidly increasing portion of Internet traffic is dom-
inated by requests from mobile devices with limited- and
metered-bandwidth constraints. To satisfy these requests, it
has become standard practice for websites to transmit small
and extremely compressed image previews as part of the ini-
tial page-load process. Recent work, based on an adap-
tive triangulation of the target image, has shown the ability
to generate thumbnails of full images at extreme compres-
sion rates: 200 bytes or less with impressive gains (in terms
of PSNR and SSIM) over both JPEG and WebP standards.
However, qualitative assessments and preservation of se-
mantic content can be less favorable. We present a novel
method to significantly improve the reconstruction quality
of the original image with no changes to the encoded in-
formation. Our neural-based decoding not only achieves
higher PSNR and SSIM scores than the original methods,
but also yields a substantial increase in semantic-level con-
tent preservation. In addition, by keeping the same encod-
ing stream, our solution is completely inter-operable with
the original decoder. The end result is suitable for a range
of small-device deployments, as it involves only a single
forward-pass through a small, scalable network.

1. Introduction

Compression of high-quality thumbnails is an active area
of research [36, 33, 1, 18, 3] as the demand for image con-
tent over connections of all speeds continues to quickly
rise. In addition to the decreased download latency and
bandwidth consumption that is particularly important to the
“next billion users” (NBU), reducing the compressed-image
size also helps with storage requirements for the billions of
thumbnails needed for rapid access [13, 6, 16].

Two standard measures of compression quality are
PSNR and SSIM [35]. However, at such high-compression
rates (200 bytes per thumbnail image, which is 0.033 bpp
for 221×221 thumbnails), we have found that these metrics

do not adequately reflect subjective preferences. Therefore,
in addition to using PSNR and SSIM, we measure how well
semantic information, in terms of recognizable objects and
scenes, is preserved.

Similarly, at these extreme-compression rates, JPEG
and other standard approaches do not fare well. Usu-
ally, when extreme compression is required, it is addressed
with domain-specific techniques: for example, faces [5],
satellite imagery [15], smooth synthetic images [25], or
surveillance [39]. For non-specialized image-compression,
WebP [13] is a leading compression format. When used
on small images, WebP yields better compression than both
JPEG and JPEG2000 standards [12, 14].

The fundamental operation of both WebP and JPEG is a
subdivision of the image into a set of blocks. Alternative
approaches have used triangulation [4, 9, 11, 22]. The most
recent of these, [22], has shown promising results on a wide
variety of natural images. Their approach creates an adap-
tive Delaunay [10] triangulation of the target image, based
on the underlying entropy of the local pixel distributions.
The result is a mesh in which a larger number of triangles
are devoted to the complex (high-entropy) regions, while
smooth patches of the image are approximated with fewer
triangles. After transmission, the decoder renders the trian-
gles by interpolating the vertex colors.

The performance of the triangulation method in [22]
provides a strong encoder that works well precisely in the
regime of interest: transmission of images under 200 bytes.
At that small size, image previews can be easily transmit-
ted as part of the original page-load process on mobile de-
vices or on bandwidth limited connections [6, 22]. When
measured in terms of PSNR or SSIM [35], the triangulation
method significantly outperformed JPEG and WebP. How-
ever, when the images were visually inspected, their visual
quality was very uneven: see Figure 1 (row b) for exam-
ples. Though some of the images appear very well recon-
structed (Figure 1 left columns), others are unrecognizable
when viewed without the reference. Other images resulted
in spurious edges formed by the triangulation boundaries
(Figure 1 right columns). To address these shortcomings,
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Figure 1: Images represented in ˜200 bytes. Five original images (row a) are compressed by the state-of-the-art triangulation
method from [22] (row b) and by our neural decoder (row c). A variety of qualitative results were intentionally selected —
from good (left 2 columns) to poor with many visual artifacts (right 2 columns). The middle column is acceptable, though
many extraneous “jagged” artifacts are visible. See the appendix for more examples.

we replace the decoder with a deep convolutional neural
network. We ensure that the network remains relatively
modest in size for ease of deployment. The decoder input-
feature representations played a crucial role for good per-
formance: we provide details in Section 3. The results, pre-
sented in Section 4, reveal not only improved PSNR and
SSIM scores, but also semantic-content preservation that is
quantitatively measured as far superior.

Deep neural networks for compression have been studied
in a variety of configurations, from shallow [8, 20, 18] and
deep feed-forward auto-encoders [3, 26, 32, 2] to recurrent
neural nets/LSTMs for variable-length encodings [33, 34].
Others have taken approaches more closely tied in spirit to
ours: employing established encodings as the inputs and
using neural networks as the basis for a new decoder with
improved performance. These techniques effectively learn
a mapping from decompressed patches back to the origi-
nal image, for example to remove JPEG compression arti-
facts [37, 30, 7]. Finally, though we do not explore gener-
ative adversarial networks (GANs) in this paper, we will
briefly address how they can easily be used in a man-
ner similar to other super-resolution and compression stud-
ies [21, 1].

2. Triangulation of Images: Encoding & De-
coding

In this section, we review the triangulation approach pre-
sented in [22]; this yields a state-of-the-art compressed en-
coding that is used (indirectly) as the input for our neural
decoder (presented in the next section).

In [22], the compressed representation of an image de-
scribes a list of colored vertices and a color table. The ver-
tices lie on a regular grid of size M × M and the edges
of the grid lie on the edges of the image. The vertex color
is an index into the color table. Their “triangle-based” de-
coder constructs a Delaunay triangulation of the vertices on
a raster image of size N ×N where M << N . Each raster
pixel in a triangle is colored using a linear interpolation of
the colors of its triangle’s vertices.

Their encoder uses a stochastic-hillclimbing optimizer to
find the vertices and color table that optimize the output of
their decoder, i.e., that produce a good Delaunay triangu-
lation and raster pixel colors from their decoder algorithm.
In this way, the encoder is optimized specifically for their
decoder.

We built our decoder to directly operate on the output
of the state-of-the-art encoder presented in [22] because of
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Figure 2: Visualizing the results vs. image byte size. For each of the two original images (left-most column), the image is
shown after compression with WebP at two levels (roughly 400 & 100 bytes) and five compression levels for the triangulation
approach. The grid-size (M ) is also given. Figure adapted with permission [22].

its good performance across a wide variety of natural im-
ages. and because that encoder has been proposed as a pro-
file in the next-generation WebP standard [23]. By strictly
adhering to this as our input with no modifications, wide de-
ployment becomes substantially easier. Ensuring this inter-
operability of decoders is an important feature since some
very low-end devices may not support even our light-weight
decoding network; therefore, we need to be able to seam-
lessly back-off to [22]’s decoder. For those devices that
can support forward propagation through our simple net-
work, we will demonstrate substantially improved images
in both reconstruction quality and recognizability. Unlike
other profile-based compression approaches, this interop-
erability ensures that the encoder does not need to know
which decoder that the client is using. In fact, if necessary,
a mix of different decoders can all be supported by exactly
the same bit-stream.

Increasing the vertex grid size (making M larger) in-
creases the encoded rate while reducing distortion. Figure 2
shows sample decompressed images with grid sizes ranging
from 15×15 to 76×76 and compressed sizes ranging from
100 to 400 bytes. In the examples shown in Figure 2, the
types of errors that the triangle-shading codec introduces
become evident. As each triangle needs to encode more of
the image, the jagged edges of the triangles introduce spu-
rious features and misalignments (see the car’s front grill in
Figure 2). Nonetheless, it is interesting to note that even at
these extreme compression levels many colors and much of
the shading remain intact. More examples are presented in
Figure 6 and the appendix; see the “interpolated” column.

To provide insight into the actual triangulations com-
puted, see Figures 3 (right column) and 4 (“edges” column).
As can be seen, triangles are more densely concentrated in
the high-entropy regions of the image. In contrast, the uni-

form regions of the input image are adequately represented
by fewer triangles.

3. Neural Decoding

Let us examine a few sample triangulations in detail to
see where there is room for improvement: see Figure 3. The
most salient observations are: (1) there are severe jagged
edges in the image (see both images) and (2) discontinuities
in straight lines appear (see the boat-deck outline). These
are caused by triangle boundaries. Recall that each trian-
gle is in-painted using only the colors of its own vertices.
However, vertices of nearby triangles have the potential to
contain valuable information - especially when they are as-
signed the same (or nearly same) color. For example, in
the toy-dial image, notice that many triangles encode sub-
tle shading differences. It should be possible to use this
consistency information across triangles in re-rendering the
image.

One can imagine a variety of simple techniques to over-
come the jagged edges in the decoded image. However,
designing the rules to best employ information from close
triangles will likely result in a number of ad-hoc heuristics
and thresholds. Instead, we use a deep neural network to
implicitly create the rules to address both of these short-
comings, based on image statistics. To train the network,
we start with exactly the same inputs from the triangulation
procedure that were used to render the images shown above.
For the target output, we use the original image. Training
proceeds using samples from Imagenet’s training set [28].

3.1. Architecture and Inputs

A variety of deep convolutional networks have been driv-
ing recent computer-vision research, for example in object
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Figure 3: Two sample
triangulations, shown en-
larged. Note the jagged
edges and discontinuities
introduced. Also note that
triangles with similar color
vertices may yield infor-
mation about shading and
color consistency along in-
ferrable directions; this
is not taken into account
when triangles are shaded
independently.

detection and recognition (e.g. the Imagenet challenge [28]
and activity recognition [29]). For this application, how-
ever, the goal is to take an extremely sparse input and gen-
erate a full image. We formulate this problem as an image-
translation task. As described by Isola et. al., Image trans-
lation is the task of “translating one possible representation
of a scene into another, given sufficient training data ... the
setting is always the same: predict pixels from pixels” [17].

Unlike the more common object-identification tasks,
where the end result is a classification, here the result is
a full image. Therefore, it is important to be able to recre-
ate details from the inputs while allowing for non–spatially-
local influences to direct larger features and impose global
consistency. The need to have both details from the original
image and potentially global coordination of the generated
image has resulted in a variety of fine→coarse→fine archi-
tectures such as “hourglass” and “u-net” [17, 27]. These
architectures pass the inputs through a series of convolution
layers that progressively downsample the image. After the
smallest layer is reached, the process is reversed and the
image is expanded back to the desired size.

One of the largest differences between the previous
image-to-image translation work and ours is that our inputs
are not the typical 3-channel images. Instead, they are com-
posed of 8 channels (Figure 4): (channel 1) the edge im-
age - a binary image showing the edges created by the De-
launay triangulation; (channel 2) the binary vertex-presence
image; (channels 3-5) the reconstruction using the original
system’s bilinear-interpolation approach [22]; and (chan-
nels 6-8) the RGB color-vertex image showing the color

assigned to each vertex (with black everywhere else).1

Beyond good reconstruction performance, an equally
important consideration for this study was the simplic-
ity/size of the final decoding network — keeping computa-
tion requirements manageable is crucial for large-scale de-
vice deployment. An enormous number of architectures and
a variety of approaches were empirically examined. Be-
cause of space limitations, we provide a brief summary
of them here. We tried architectures ranging from image-
translation (e.g. pix2pix [17], cycle-gan [38]), to shape-
encoding/decoding networks (e.g., where the bottleneck is
a set of geometric descriptions), to progressive-completion
networks [33, 34]. The approach that provided the best
trade-off, in terms of reconstruction quality vs. simplicity,
was the stacked hourglass network described below. The
hourglass network is also simple enough to meet the NBU-
applications requirements since, in NBU areas, processor
computational limitations are prevalent in the available mo-
bile devices. As a secondary benefit, the number of hour-
glass networks (e.g. stack size) can be adjusted according
to computational availability, though, as will be described
in the experiments, even a single hourglass provides sub-
stantial benefits.

1The decision to use images as inputs into the network is not the only
possible approach. For example, after decoding the transmission, the series
of vertex+color tuples could be directly used. We did not pursue this av-
enue since, in addition to learning the image-translation problem, it would
require the network to learn how to triangulate and how to map between the
real-value inputs and coordinates. Further, more complex measures would
be required to handle the variable number of vertices. All of these are
avoided by using the eight-channel, image-like input in which the spatial
information is explicitly maintained and the triangulation’s edges directly
given.
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Figure 4: Eight input channels. Left: Original Image (not used as input, only shown for reference). Channel 1: Delaunay-
edge map (binary image). Channel 2: Binary vertex-location map (visibility enhanced for printing). Channels 3-5: Linear-
interpolation reconstruction. Channels 6-8: Colored vertex-location map. (Channel 2 is also given, in order to correctly
represent pure-black vertex colors.)

The remainder of this study uses the most promising of
these: the hourglass network. The input images have a res-
olution of 256 × 256 with 8 channels and a batch size of
32. The output is an RGB image of the same resolution.
Our network (Figure 5) is based on the Stacked Hourglass
in [24]. We apply a Conv2d(size=7x7,filters=256,stride=2)
to the 256 × 256 × 8 input, then a Conv2d(3x3,f256,s2) to
bring the dimensions to 64 × 64 × 256. This feeds into an
Hourglass as described in [24] except 1) when downscal-
ing, each MaxPool layer is replaced by a layer that stacks
the values of each 2× 2 spatial block depth-wise (a Space-
ToDepth(2x2) layer) followed by a Conv2d(3x3,f256,s1)
and, 2) when upscaling, each nearest neighbor upsampling
is replaced by a DepthToSpace(2x2), the inverse of a Space-
ToDepth, followed by a Conv2d(3x3,f256,s1). The Hour-
glass output is added to the Hourglass input and passed to
the next Hourglass. We stacked two Hourglass networks.

To apply intermediate supervision as described in [24],
we split an intermediate Loss Module off the output
of every Hourglass. It is a DepthToSpace(4x4) and a
Conv2d(1x1,f3,s1) with a Tanh activation to get us to a
256× 256 RGB image. During training, we apply a mean-
squared-error loss between this and the original ground
truth image to maximize PSNR. During inference, the net-
work’s prediction is the 256×256 RGB image in the second

(final) Hourglass’s Loss Module. Every layer is followed by
Batch Norm and Relu except the final layer (with the Tanh).
We use the Adam Optimizer [19] with learning rate of 0.1.

4. Experimental Results

The network described in the previous section was
trained for 2.2 million steps on five asynchronous GPUs:
this was approximately 15 days of continuous training.
Testing was conducted on 20,000 images drawn from the
ImageNet validation set; these were not used elsewhere in
training.

In addition to Figure 1, Figure 6 and the appendix
provide more comparisons to the interpolated images and
their respective PSNR and SSIM (Structural Similarity In-
dex [35]) scores. Overall, when measured on the entire
testing set, we are able to outperform the triangulation ap-
proaches in both PSNR and SSIM.

• For PSNR: Triangulation scored 20.7 dB and our neural
approach scored 21.7 dB. In this range, a 1-dB PSNR
increase is extremely valuable. Out of the 13,000 exam-
ples examined, 12,810 (98.5%) showed improved PSNR
via the neural decoding. Comparing the two approaches
using a standard t-test on the PSNR, p < 0.0001.
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Figure 5: Modified Stacked-Hourglass network from [24], including intermediate loss.

• For SSIM: Triangulation scored 0.51 and our neural ap-
proach scored 0.54. Out of the 13,000 examples exam-
ined, 12,255 (94.2%) were improved via the neural de-
coding. Comparing the two approaches using a standard
t-test on SSIM, p < 0.0001.

Importantly, recall that the triangulation method [22]
also outperformed JPEG and WebP, which, in turn, equals
or outperforms JPEG2000 [12, 14].

To better understand what the network was encoding,
an extensive grid search was also performed to determine
which channels were actually necessary. For space reasons,
we cannot recreate all of the results here. A few salient
findings, however, are worth noting: (1) The best perform-
ing network was one that received all the eight channels
as input; (2) If we removed the interpolated image (as cre-
ated by [22]) from the inputs, the PSNR performance drops
approximately 0.75 dB; (3) Interestingly, if we used only
the interpolated as input, the PSNR performance drops 0.5
dB; (4) Finally, while we used 2 stacked Hourglasses in this
work, the results with 1 Hourglass or 3 stacked Hourglasses
were almost identical; any variation was likely due to the
stochasticity in the training procedure. On a mobile or com-
putationally constrained device, a single Hourglass can be
used. This decision on the complexity of the decoder can be
made on a pre-device basis and all will work on exactly the
same encoding.

4.1. Semantic Content Preservation

The quantitative results, in terms of PSNR and SSIM,
reveal a significant improvement for extremely compressed
images. Despite the numeric improvements, however, it is
important to assess whether the images are qualitatively bet-
ter. The simplest, though resource-consuming, method is to
employ human raters. We propose a novel technique using
a well-trained classification network as an automated proxy.

For our experiments, we employ a pre-trained state-of-
the-art classifier, Inception ResNet v2 (IR2), which pro-
duces a 1000-dimension “classification vector” prior to the
final soft-max layer representing the classification of the ob-
jects in the image. On the ImageNet challenge, IR2 has has
a top-1 single-crop error rate of 19.9% on the 50,000 image
validation set, and a top-5 error rate of 4.9% [31]. For each
of our test images, we use the original image, the interpo-
lated image and the neural decoded image: torig, tinterp, and
tnnDec. Passing each of these through IR2 produces classifi-
cation vectors corig, cinterp, and cnnDec. We measure the simi-
larity between corig and cinterp and between corig and cnnDec in
two ways: (1) the L2 difference between the classification
vectors, and (2) whether the top classification in corig ap-
pears in the top-1, -5, and -10 positions of cinterp and cnnDec.

Note that this is not equivalent to checking the ground-
truth classification. The goal of our compression task is not
to alter the original image to make a wrong classification
correct, it is to achieve the same classification as the origi-
nal. Finally, we remark that with such aggressive compres-
sion rates, we do not expect all images to be recognized;
for example, images in which the object of interest does not
cover a large portion of the image, the object may be lost.
Nonetheless, for images in which the object is large, these
metrics elucidate how recognizable the object remains.

The results are presented in the first two rows of Ta-
ble 1. There is more than a 10% decrease in the L2 error
using the neural-network decoding. However, the largest
benefit comes when looking at the recall measures. Look-
ing at recall in the top-1 position, the results are 300%
improved (3×) and at top-10, they remain approximately
2.5× improved. This large gain indicates that the content of
the image remains far more recognizable using our neural-
network decoder.

Upon first glance at our decoded neural-network images,

6



Figure 6: Seven results
comparing decoding
via [22] (interp.) and our
neural network (nn) decod-
ing. Rows A-E are good
quality reconstructions.
Rows F-G show examples
where both methods do
poorly. Also given with
each image pair are the
PSNR and SSIM scores
without (left) and with
(right) neural network
decompression. Additional
examples (plus WebP
results) can be found in the
appendix.

Detailed notes:
A: Note the jagged lines
along the window.
B: Both images are rec-
ognizable, but our method
provides cleaner lines.
C: Note the severe artifacts
in the vertical lines.
D: Note the smooth shad-
ing from the lights and the
hair lines.
E: Note the problem with
the two thin triangles
starting from the upper left
corner.
F: Neither method provides
a good reconstruction but
our decoder gives a slightly
better rendition.
G: Compression rate is too
extreme for either method
to provide recognizable
results.

original interp. [22] neural (ours) interp. v nn

A.
PSNR: 17.74 v 19.00
SSIM: 0.39 v 0.46

B.
PSNR: 18.01 v 19.46
SSIM: 0.48 v 0.54

C.
PSNR: 14.67 v 18.03
SSIM: 0.42 v 0.48

D.
PSNR: 21.54 v 23.44
SSIM: 0.73 v 0.78

E.
PSNR: 21.47 v 22.90
SSIM: 0.90 v 0.96

F.
PSNR: 11.66 v 12.12
SSIM: 0.15 v 0.24

G.
PSNR: 15.86 v 16.19
SSIM: 0.21 v 0.24
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Table 1: Semantic Similarity: Comparing Classification Vectors of Original and Compressed Images

(Lower Better) (Higher Better)
L2 Error Recall Top-1 Recall Top-5 Recall Top-10

interpolated [22] 39.5 0.05 0.13 0.15
nn-Decoded (our method) 36.0 0.17 0.33 0.38

interpolated+Blur x1 39.5 0.11 0.26 0.30
interpolated+Blur x5 43.0 0.08 0.18 0.22

it is tempting to wonder if much of the recognition im-
provement is coming from simply blurring the triangulated
image. Though we would not expect an improvement in
PSNR or SSIM from additional blurring, it is possible that
the Inception-Resnet-V2 network is not robust to the types
of edges seen in Figure 6. We explicitly checked that pos-
sibility, to ensure that the network is not acting as an overly
complex approach to a simple blur operation. Instead of de-
coding with a neural network, we use the method from [22]
followed by Gaussian blurring (r=2). We create two new
test sets: the first with a single pass of a blur filter and
the second with 5 sequential passes. The last two rows
of Table 1 show the performance after the added blurring.
The results, though improved, do not match those our NN-
based decoding. And, as expected, the PSNR and SSIM
rates decline for both sets over the base triangulation results
reported above (PSNR: blur1: 20.6, blur5: 19.6, SSIM:
blur1: 0.50, blur5: 0.46). Visually, it appears that the neural
approach is smoothing the harsh color transitions created
by the triangulation. However, based on the PSNR/SSIM
scores and the similarity of the classification vectors, the
neural network’s effect is well targeted: the edges and de-
tails required to maintain the object identity and similarity
to the original image are preserved.

5. Discussion & Future Work

The application of neural networks to image decompres-
sion is not only of interest to researchers and practitioners,
as witnessed by the vast amount of neural image compres-
sion literature, but also will have a large and socially impor-
tant impact: allowing efficient discovery/browsing of visual
content for the “next-billion users” whose bandwidth is lim-
ited and expensive. We have found that the impact of using
neural networks in place of the current triangle-shading de-
coder results in consistent and very significant quantitative
and qualitative improvements to the final image quality.

By casting the task of decompression into an image-to-
image–translation problem, we were able to generate im-
ages that, when compared to recently released state-of-the-
art compression techniques, more closely resemble the orig-
inal image in terms of the standard quantitative metrics such
as PSNR and SSIM. More importantly, they far exceeded

the previous method [22] in preserving semantic quality.
The results come in an operating regime of extreme com-
pression where there is large practical interest, but existing
compression schemes do not fare well.

These improved results are somewhat surprising since,
on each encoding, the encoder is explicitly optimizing for
the best results from the triangle-based decoder in [22]. Yet,
we are able to provide better reconstructions with neural
decompression without changing the encoder at all. This
points the way for efforts to replace full H.264 decoders
with neural approaches without changing the already de-
ployed video encoders.

This study leads to many avenues of future work. First,
simultaneously to the development of this study, Generative
Adversarial Networks were in parallel developed for com-
pression [1]. Beyond using GANs for error signals, they
also make clever use of the ability for GANs to synthesize,
rather than compress. Though they operate on larger images
at higher bit rates, many of the same approaches, including
using GANs to augment the objective functions, can easily
be incorporated.

Second, although not discussed in this paper, an inter-
esting side finding was early evidence that it is possible to
train a network to infer a Delaunay triangulation given just
the vertex points. In preliminary studies, the network fared
much better than expected in not only finding the same con-
nections, but also in creating relatively straight edges be-
tween the vertices (the output was a 256 × 256 image). If
these results hold true, this has potentially broad applicabil-
ity as the operation of triangulation could then be integrated
into a fully differentiable system.

Third, we should consider that if we know that semantic
recall, as measured by IR2, is important, should it be in-
cluded as an extra error term during training? The answer
may not be straightforward – if it is used, it is possible that
the examples generated will take advantage of small incon-
sistencies in the training, in the same way that adversarial
attacks are remarkably plentiful and easy to find. On the
other hand, if we train and test on distinct semantic models,
perhaps the semantic recall will improve without falling into
model-specific traps.
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A. Additional Examples
We provide additional examples of the neural-decoding

method’s best and worst performance on both PSNR and
SSIM. Images are from the ImageNet test set, reported in
the paper.

Ten examples of each have been provided in the tables
below along with their metrics and a comparison to the
bi-linear–interpolated, non–neural-network approach and
WebP. Because WebP could not target the same rates on
256× 256 resolution images, the input images were resized
to 4 or more times smaller in each dimension, compressed
with WebP, decompressed, and then upscaled to bring it
back to source resolution.
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Figure 7: Best PSNR
Original Image Interpolated Neural Decoded WebP

Ground Truth 33.0163 PSNR, 0.9023 SSIM 34.2382 PSNR, 0.9074 SSIM 28.8307 PSNR, 0.8653 SSIM

Ground Truth 32.3473 PSNR, 0.9331 SSIM 34.7422 PSNR, 0.9415 SSIM 33.7351 PSNR, 0.9364 SSIM

Ground Truth 32.7623 PSNR, 0.9441 SSIM 34.8865 PSNR, 0.9535 SSIM 37.6550 PSNR, 0.9625 SSIM

Ground Truth 29.7310 PSNR, 0.9296 SSIM 35.3078 PSNR, 0.9522 SSIM 33.9794 PSNR, 0.9413 SSIM

Ground Truth 36.9100 PSNR, 0.9358 SSIM 37.3513 PSNR, 0.8361 SSIM 36.0570 PSNR, 0.8978 SSIM
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Figure 8: Best PSNR
Original Image Interpolated Neural Decoded WebP

Ground Truth 33.5368 PSNR, 0.9082 SSIM 34.4789 PSNR, 0.9242 SSIM 33.0402 PSNR, 0.9024 SSIM

Ground Truth 34.2424 PSNR, 0.8959 SSIM 34.8164 PSNR, 0.9018 SSIM 33.2535 PSNR, 0.8920 SSIM

Ground Truth 30.6643 PSNR, 0.9273 SSIM 34.9344 PSNR, 0.9540 SSIM 31.6522 PSNR, 0.9306 SSIM

Ground Truth 34.7180 PSNR, 0.9317 SSIM 35.7485 PSNR, 0.9376 SSIM 33.5282 PSNR, 0.9195 SSIM

Ground Truth 41.7112 PSNR, 0.9772 SSIM 37.4974 PSNR, 0.9389 SSIM 41.7442 PSNR, 0.9762 SSIM
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Figure 9: Worst PSNR
Original Image Interpolated Neural Decoded WebP

Ground Truth 11.6645 PSNR, 0.1480 SSIM 12.1248 PSNR, 0.2400 SSIM 11.8997 PSNR, 0.1747 SSIM

Ground Truth 13.2179 PSNR, 0.2111 SSIM 13.2259 PSNR, 0.2121 SSIM 13.2145 PSNR, 0.2086 SSIM

Ground Truth 13.2704 PSNR, 0.3395 SSIM 13.3209 PSNR, 0.3734 SSIM 12.8824 PSNR, 0.2858 SSIM

Ground Truth 13.0367 PSNR, 0.1830 SSIM 13.4482 PSNR, 0.2189 SSIM 12.6962 PSNR, 0.1356 SSIM

Ground Truth 12.7520 PSNR, 0.2868 SSIM 13.5967 PSNR, 0.3586 SSIM 12.4848 PSNR, 0.2032 SSIM
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Figure 10: Worst PSNR
Original Image Interpolated Neural Decoded WebP

Ground Truth 12.0996 PSNR, 0.2213 SSIM 12.8032 PSNR, 0.3029 SSIM 11.6907 PSNR, 0.1503 SSIM

Ground Truth 13.1227 PSNR, 0.1299 SSIM 13.2882 PSNR, 0.1496 SSIM 13.0452 PSNR, 0.1211 SSIM

Ground Truth 13.2473 PSNR, 0.1040 SSIM 13.4038 PSNR, 0.1157 SSIM 13.1843 PSNR, 0.0973 SSIM

Ground Truth 13.3954 PSNR, 0.1427 SSIM 13.4994 PSNR, 0.1541 SSIM 13.4025 PSNR, 0.1437 SSIM

Ground Truth 13.1887 PSNR, 0.2672 SSIM 13.6563 PSNR, 0.3064 SSIM 11.8838 PSNR, 0.1647 SSIM
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Figure 11: Best SSIM
Original Image Interpolated Neural Decoded WebP

Ground Truth 23.0814 PSNR, 0.9077 SSIM 27.0714 PSNR, 0.9474 SSIM 23.4490 PSNR, 0.9231 SSIM

Ground Truth 30.5001 PSNR, 0.9176 SSIM 32.3672 PSNR, 0.9495 SSIM 30.8484 PSNR, 0.9180 SSIM

Ground Truth 29.7310 PSNR, 0.9296 SSIM 35.3078 PSNR, 0.9522 SSIM 33.9794 PSNR, 0.9413 SSIM

Ground Truth 30.6643 PSNR, 0.9273 SSIM 34.9344 PSNR, 0.9540 SSIM 31.6522 PSNR, 0.9306 SSIM

Ground Truth 31.1331 PSNR, 0.9571 SSIM 31.7848 PSNR, 0.9567 SSIM 31.6693 PSNR, 0.9548 SSIM
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Figure 12: Best SSIM
Original Image Interpolated Neural Decoded WebP

Ground Truth 29.5948 PSNR, 0.9361 SSIM 31.0210 PSNR, 0.9480 SSIM 30.1475, 0.9384 SSIM

Ground Truth 31.7642 PSNR, 0.9299 SSIM 34.0957 PSNR, 0.9505 SSIM 32.7695 PSNR, 0.9360 SSIM

Ground Truth 32.7623 PSNR, 0.9441 SSIM 34.8865 PSNR, 0.9535 SSIM 37.6550 PSNR, 0.9625 SSIM

Ground Truth 21.4695 PSNR, 0.8972 SSIM 22.9038 PSNR, 0.9565 SSIM 25.5479 PSNR, 0.9398 SSIM

Ground Truth 25.5729 PSNR, 0.9287 SSIM 33.2967 PSNR, 0.9612 SSIM 26.4886 PSNR, 0.9374 SSIM
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Figure 13: Worst SSIM
Original Image Interpolated Neural Decoded WebP

Ground Truth 15.5495 PSNR, 0.0659 SSIM 15.6083 PSNR, 0.0734 SSIM 15.5354 PSNR, 0.0735 SSIM

Ground Truth 16.5936 PSNR, 0.0833 SSIM 16.7179 PSNR, 0.0909 SSIM 16.5516 PSNR, 0.0860 SSIM

Ground Truth 16.4997 PSNR, 0.0879 SSIM 16.5101 PSNR, 0.0944 SSIM 16.4033 PSNR, 0.08411 SSIM

Ground Truth 18.2631 PSNR, 0.0962 SSIM 18.3455 PSNR, 0.1022 SSIM 18.0795 PSNR, 0.0917 SSIM

Ground Truth 16.6109 PSNR, 0.1014 SSIM 16.7528 PSNR, 0.1111 SSIM 16.4989 PSNR, 0.0962 SSIM

Figure 14: Worst SSIM
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Figure 15: Worst SSIM
Original Image Interpolated Neural Decoded WebP

Ground Truth 16.0347 PSNR, 0.0777 SSIM 16.1087 PSNR, 0.0814 SSIM 15.9726 PSNR, 0.0765 SSIM

Ground Truth 17.7205 PSNR, 0.0933 SSIM 17.7716 PSNR, 0.0935 SSIM 17.7348 PSNR, 0.0909 SSIM

Ground Truth 13.4859 PSNR, 0.0805 SSIM 13.6928 PSNR, 0.1000 SSIM 13.4264 PSNR, 0.0754 SSIM

Ground Truth 33.1259 PSNR, 0.9421 SSIM 28.6035 PSNR, 0.1032 SSIM 34.9583 PSNR, 0.9679 SSIM

Ground Truth 16.5107 PSNR, 0.1072 SSIM 16.6494 PSNR, 0.1148 SSIM 16.0610 PSNR, 0.0815 SSIM
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