
. I .

The Evolution of Genetic Algorithms:
Towards Massive Parallelism

Shameet Baluja
Computer Science Department

Camegie Mellon University
Pittsburgh, PA 15213
baluja@ cs.cmu.edu

Abstract

One of the issues in creating any search tech-
nique is balancing the need for diverse
exploration with the desire for efficient
focusing. This paper explores a genetic algo-
rithm (GA) architecture which is more resil-
ient to local optima than other recently
introduced GA models. and which provides
the ability to focus search quickly. The GA
uses a fine-grain parallel architecture to sim-
ulate evolution more closely than previous
models. In order to motivate the need for
fine-grain parallelism, this paper will provide
an overview of the two preceding phases of
development: the traditional genetic algo-
rithm, and the coarse-grain parallel GA. A
test set of 15 problems is used to compare
the effectiveness of a fine-grain parallel GA
with that of a coarse-grain parallel GA.

1 INTRODUCTION

The effectiveness of heuristic techniques used in machine
learning, search, and function optimization, resides in the
heuristic’s ability to balance the need for a diverse set of
sampling points with the ability to focus search quickly
upon potential solutions. Genetic algorithms (GAS) are
general purpose optimization tools designed to search
irregular. poorly characterized search spaces. GAS are
baxd upon the ideas of natural selection and genetic
recombination. GAS combine the principles of survival of
the fittest with a randomized information gxchange.
Although the information exchange is randomized, GAS
are far different than simple random walks. having the
ability to recognize trends toward optimal solutions, and to
exploit such information by guiding the search toward
them.

Genetic algorithms have evolved through three phases,
their development motivated by the goal of balancing
exploration with focusing. Each of these phases will be
individually discussed in the next three sections. The first
phase presented the traditional genetic algorithm. A single
population of potential solutions is evolved through a
series of generations. The second phase introduced the
concept of parallel subpopulations. Only a limited amount
of swapping of potential solutions is allowed between sub-
populations. Each subpopulation evolves independently,
with swapping at infrequent intervals. This has been
termed coarse-grain parallelism. or the “island” model.
The third phase, an extension of the second, introduced
fine-grain parallelism. The GAS in this category differ
from the previous by relaxing the boundaries between sub-
populations. Swapping between subpopulations occurs
frtquently, and significantly contributes to the effective-
ness of this form of genetic algorithm. This phase also dif-
fers from the previous two by evolving numerous small
subpopulations; in the previous two phases, only a few
large subpopulations are evolved.

2 TRADITIONAL GAS

Traditional genetic algorithms maintain a single popula-
tion of potential solutions for the objective function being
optimized. Although a large portion of GA research has
been conducted with potential solutions encoded in binary
notation, any encoding scheme can be used. The initial
group of potential solutions is randomly selected. These
potential solutions, termed “chromosomes”, arc allowed to
evolve over a number of generations. At every generation,
the fitness of each potential solution in terms of the objec-
tive function is calculated, and pairs of solutions are
recombined to create the subsequent generation. Recombi-
nation is the method by which the parent chromosomes of
the cumnt generation donate parts of their potential solu-
tions to the “children” chromosomes which appear in the
subsequent generation. The probability that a solution will
participate in this recombination increases with its fitness.
Thus, although “good” chromosomes are more likely to be

http://cs.cmu.edu

. -

chosen for recombination, they arc not guaranteed to be
chosen. Further, the “children” chromosomes produced
are not necessarily better than their parents. Nevertheless.
because of the selective pressure applied through a number
of generations, the overall trend is towad better chromo-
somes.

In order to perform expansive search. genetic diversity
must be maintained. When diversity is lost. it is possible
for the GA to settle into a local optimum. There arc two
fundamental mechanisms which the traditional GA uses to
maintain diversity. The first, mentioned above, is a proba-
bilistic scheme of selecting chromosomes for rtcombina-
tion. This-insures that schemata, or common recurring
paaerns. other than those represented in the best chromo-
somes, appear in subsequent generations. Exclusively
recombining good chromosomes will quickly converge the
population without extensive exploration, thereby increas-
ing the possibility of settling into a local optimum. The
second mechanism, mutation, is a random change. For
example, in binary encoded chromosomes, it is usually a
random bit flip. In the traditional GA. the mutation rate is
kept at a very small constant.

This algorithm is typically allowed to continue for an arbi-
trary number of generations. Upon completion, the best
chromosome in the final population. or the best chromo-
some ever found, is returned.

Unlike the majority of other optimization heuristics,
genetic algorithms do not work from a single point in the
search space. Methods which only use a single point are
susceptible to local optima. GAS continually maintain a
population of points from which the scarch space is
explored. This aids in searching multidimensional spaces,
in which many variables must be optimized, and in locat-
ing global optima.

3 COARSE-GRAIN PARALLEL GAS

A coarse-grain parallel genetic algorithm (cgpGA) is
based upon the theory of punctuated equilibria. In the
paper Disrribured Genetic Algorithm for rhe Floor Plan
Design Problem, Cohoon et. al. describe the theory
[Cohoon, 19881:

Punctuated Equilibria is based upon two princi-
ples: allopatric speciation and stasis. Allopamc
speciation involves the rapid evolution of new
species after a small set of members of species.
peripheral isolates. becomes segregated into a
new environment. Stasis. or stability, of a spe-
cies, is simply the notion of lack of change. It
implies that after equilibria is reached in an envi-
ronment, there is very little drift away from the
genetic composition of species. Ideally, a species
would persist until its environment changes (or
the species would drift very little). Punctuated
Equilibria stresses that a powerful method for

generating new species is to thrust an old species
into a new environment, where change is benefi-
cial and rewarded. For this reason we should
expect a genetic algorithm approach based upon
punctuated equilibria to perform better than the
typical single environment scheme.

By implication, after some period of evolution, a large
portion of the chromosomes in a single population will
represent very similar schema. The children chromosomes
produced thereafter will be similar to each other and to
their parents, thereby rendering recombination operators
largely ineffective for further search space exploration,
One method of resolving this problem is to partition a sin-
gle large population into separate subpopulations, each
evolving its chromosomes independently from others. The
fitness used to determine the probability of selection for
recombination is measured relative only to the other mem-
bers within the subpopulation. Independent evolutions, in
separate subpopulations, should yield closely competitive,
yet possibly unique results. In the context of a single sub-
population, in order to continue evolution after conver-
gence has started, members of species from outside
subpopulations can periodically be introduced. To ensure
thorough mixing of chromosomes throughout the popula-
tion, the swapping does not always occur between the
same subpopulations.

Although the sudden injection of new material is an
important aspect of these simulations, it is not always
effective. It is possible that the subpopulation into which
new material is introduced is entirely settled into an qui-
librium state. If this is the case. new infomation may not
be incorporated because of its incompatibility with the
existing information.

Despite the problems associated with the sudden introduc-
tion of new material, parallel subpopulations have proven
their effectiveness in two arcas. The first is, as mentioned
above, to preserve diversity and to ensure perpetual nov-
elty in the population’s “gene pool”. Through the use of
parallel subpopulations, GAS have been able to solve
problems which could not be solved in a reasonable
amount of time by single population GAS W t l e y &
Starkweather, 19901 [Liepins & Baluja, 19911 [Muhlen-
bien, 19891. The second use of the subpopulation structure
is to emphasize various characteristics in the chromosome.
For example, in multi-objective functions, the evaluations
in each subpopulation can be used to emphasize different
objectives: When members of separate subpopulations are
mixed, the genetic information may be combmed to reveal
chromosomes which are swng with respect to more than a
single objective. An exploration of multi-objective func-
tion optimization with parallel subpopulations can be
found in [Husbands. 1991). An interesting method of
multi-objective optimization using only a single popula-
tion with multiple fitness measures can be found in [Schaf-
fer & Grefensteae. 19851.

4 FINE-GRAIN PARALLEL GAS

4.1 OVERVIEW & MOTlVATION

Unlike cgpGAs, the fine-grain parallel genetic algorithms
(fgpGAs) examined here evolve numerous small, con-
stantly interacting subpopulations. Variants of fgpGAs
have been explored by Pavidor, 1991). [Spiessens and
Manderick. 19911, muhlenbein. 19891 and [Schleuter,
19901. One way in which to view the modified form of
parallelism in fgpGAs is to conceptualize the populations
as overlapping, as shown in Figure 1.

Figure 1: Overlapping Populations in a Fine Grain
Parallel Genetic Algorithm.

The fine-grain population architecture offers three benefits
which the other two models do not. First, the transfer of
genetic information from one population to another is
inherent in the architecture. In the traditional GA, there is
no flow of information because there is only one popula-
tion. In the cgpGA. the information is shared between sub-
populations by swapping potential solutions at infrequent
intervals. As pointed out earlier. the effectiveness of sud-
den infrqucnt swapping between subpopulations is lim-
ited because each subpopulation has the potential to
evolve to incompatible local optima. The assimilation of
genetic information across subpopulations is easier in the
fine-grain parallel architecture as the exchange of informa-
tion between subpopulations is continuous. A subpopula-
tion cannot exist in a state of equilibrium until each
subpopulation reaches equilibrium.

Second, the fine-grain model provides a more accurate
representation of evolution. Instead of maintaining a large
population from which any two chromosomes may recom-
bine. recombination must be between two chromosomes
from within the same neighborhood. This feature reveals a
similarity to biological natural selection. in which a popu-
lation is typically composed of relatively independent sub-
populations which interact. Although the similarity with
natural selection may not be important directly within the
context GAS are used, the constant interaction can signifi-
cantly help subpopulations escape from local minima.

The third benefit is a gain of speed. In the traditional
genetic algorithm each potential solution must be assigned
a fitness value with respect to all other potential solutions
within the current population. This value is used to deter-

mine probabilistically which chromosomes will be chosen
for recombination. Global ranking slows the GA consider-
ably. Although the c@A does not require a global rank-
ing of each potential solution, it requires a ranking within
each individual subpopulation. In the fine-grain parallel
model. the ranking required is local; ranking is relative to
the other chromosomes within the neighborhood. As the
population and neighborhood size can be kept small. the
time required to perform local ranking is not as severe as
in the two earlier models.

The fine-grain parallel organization and the cgpGA orga-
nization share the advantages of the model presented in the
theory of punctuated equilibria: subpopulations which are
a iarge distance apart will evolve comparatively unique
chromosomes in a manner similar to simple. disjoint, par-
allel subpopulations. However, the fgpGA's higher con-
nectivity allows all subpopulations within a close
proximity to each other to have a greater influence on each
other than those a large distance apart. As with cgpGAs,
the larger the number of subpopulations. the greater the
potential diversity in individual evolutions.

The danger of reaching a suboptimal state in fine-grain
parallel genetic algorithms can be greater than that in cgp-
GAs for two reasons. First, the fgpGA structure employs a
greater d e p of swapping between subpopulations than
the cgpGA's. Therefore, strong local optima can quickly
spread throughout the entire population. Stcond, because
thm are significantly fewer chromosomes per subpopula-
tion in the fgpGA model than in the cgpGA model, the
diversity of infomation within subpopulations is more
limited. In order to address this problem, fgpGAs rely
upon the size of the group of genetic algorithms and the
controlled dtgret of overlap to allow unique evolutions in
different portions of the total population.

One question which must be answered under the fppGA
model is the extent and nature of overlap between subpop-
ulations muhlenbein, 19891 [Schleuter, 19901 [Baluja,
19921. If the overlap spans many subpopulations. good
chromosomes could rapidly flow throughout the GA smc-
mre. However. with a fast flow, the advantages of punctu-
ated equilibria may be lost, and niche formation may be
hindered. Many different issues regarding topology need
to be addressed, such as whether the subpopulations
should be connected in a linear manner or whether the
overlapping subpopulations should be virtual, almost sim-
ulating neural network connections. Furthermore, should
the connections between subpopulations be fixed, or time-
varying? These topics are among those to be addressed by
future m h within this area.

4.2 fgpGA: POPULATION ARCHITECTURE

As described in the previous section. there arc many possi-
ble population topologies. The fgpGA examined through-
out the remainder of this paper uses a two dimensional
toroidal array of subpopulations. See Figure 2. Each sub

population evolves only 2 chromosomes per generation.
The 2 parent chromosomes are chosen from a group of 10
chromosomes. The group of 10 is comprised of 1 chromo-
some from each of the 8 surrounding neighbors and the 2
chromosomes which were evolved in the previous genera-
tion. The chromosome selected from a neighbor is chosen
randomly from the 2 evolved at the neighbor. The fitness
of each chromosome is determined relative to the other
chromosomes in the group of 10. Two chromosomes from
this set of 10 arc probabilistically chosen for recombina-
tion based upon their fitness; the other 8 arc discarded. In
the subsequent generation, the 2 “children” chromosomes
produced, through crossover and mutation (described in
the next section) of the selected parents, are available for
recombination. either within the population in which they
are located, or by its neighbors.

(O.YMW

0 0 ... I7

. .
... . .

SUBPOPULATION (X.Y)

chrom.subpop. (x+l.y) chmmsubpop. (x.y+ 1)
chrom.subpop. (x+l.y-I) chrom.subpop. (x+l,y+l)
chrom.subpop. (x-1.y-I) chmmsubpop. (x.y-I)
chrom.subpop. (x-1.y) chrom.subpop. (x,y)
chrom.subpop. (x-l,y+l) chrom.subpop. (x.y)

Figure 2: Each subpopulation contributes
one of its two chromosomes to each of its 8
nearest neighbors. The composition of
subpopulation (x,y) is shown. Both of the
chromosomes evolved at population(x,y)
arc included. The subpopulations form a
toroid.

4.3 fgpGA: IMPLEMENTATION SPECIFICS

This section describes the recornbination. mutation, and
elitist selection mechanisms used. The recombination
operator used for testing this algorithm is a standard two
point crossover, in which a randomly chosen subsection of
one parent chromosome is swapped with the comspond-

ing subsection of the second parent chromosome. This is a
general crossover operator that has been shown to be
effective in GA literature. For a discussion of the merits
and drawbacks of two point crossover, the reader is
referred to [DcTong. 19901 [Syswerda 19901. Mutation is
implemented as a simple random bit flip which OCCUIS in
the “children” chromosomes after the crossover has taken
place with the parents, and before the chromosome is eval-
uated. The mutation rate is kept at a constant 1%.

Elitist selection is a commonly employed tool to ensure
that the progress made by a GA is not lost due to random
chance. Because a GA’s selection of parent chromosomes
is probabilistic, it is not guarantetd that the best chromo-
some in a particular generation will survive to the subse-
quent generation. It is also possible that if the chromosome
is selected for recombination. some of the good genetic
material may not survive through the crossover and muta-
tion operators. A modest form of elitist selection is used to
address this problem. Elitist selection carries the best chro-
mosome, from the population of 10 candidates for mom-
bination, from generation g to g+l. This does not imply
that the best chromosome will be selected for recombina-
tion; rather, it means that the chromosome will be in the
population of 10 which are candidates for recombination.
Since the population size is limited to 10, the best chromo-
some from the previous generation replaces the chromo-
some with the lowest relative fitness in the cumnt
generation. Although this aids in preventing repetitive
search, it may be detrimental when the GA is caught in a
local optima, as elitist selection may preserve the local
optima in the population’s candidates for recombination.

5 FINE VS. COARSE-GRAIN
PARALLELISM

The remainder of this paper is devoted to comparing fine-
grain and coarse-grain parallel GAS. This paper does not
compare results with traditional GAS since a large amount
of work has already been conducted towards quantifying
the differences in structure and performance between cgp-
GAS and traditional GAS [Pettey et. a]. 19871 [Cohoon et.
al. 19881 [Whitley & Starkweather, 19901 [Tanese, 19871.

5.1 ALCORITHMSTESTED

nkro GAS were tested, the fgpGA described in the previ-
ous section and the cgpGA described below. The cgpGA
was very loosely based upon the cgpGA described in
(Whitley & Starkweather, 19901. Two point crossover and
a 1% mutation rate were used. Like the fgpGA described
above, the cgpGA employed modest elitist selection, in
which the single best chromosome from each generation
was carried to the subsequent generation. The best chro-
mosome replaced the worst chromosome in the subsequent
generation. Forty subpopulations were evolved. Each sub
population contained 100 chromosomes. for a total of
4ooo chromosomes evaluated simultaneously.

The cgpGA implemented a small amount of communica-
tion between the subpopulations. Assuming a circular
ordering of subpopulations, after every 100 generations,
the best chromosome from each subpopulation migrated to
a subpopulation e subpopulations away, where e is defined
to be the number of generations divided by 100 that have
passed. Because the population was a set size, the migrat-
ing chromosome replaced the worst chromosome in the
target subpopulation.

Although the parameters for both the cgpGA and the
fgpGA were not optimized for any single problem, they
were chosen to work satisfactorily on a variety of different
problems. When comparing results, it should be consid-
ered that the fgpGA evaluated 8192 chromosomes per
generation, and the cgpGA evaluated 4000. The discrepan-
cies in the number of evaluations per generation can be
attributed to the mapping of the algorithm onto the hard-
ware architecture on which these tests were attempted.

5.2 TEST PROBLEMS

This section presents the test problems which are used to
compare the effectiveness of fine and coarse-grain parallel
genetic algorithms. Fifteen test problems were attempted:
DeJong’s five function test suite, three subset-sum prob-
lems, two orderings of fully and partially deceptive order 4
problems, and three versions of all-ones problems.

5.2.1 DeJong’s Test Suite

DeJong’s test suite is comprised of five minimization
problems commonly used to test the effectiveness of GAs
[DeJong, 19751. The test suite was designed to incorporate
functi,ons with the following characteristics: continuous1
discontinuous, convexhonconvex, unimodal/multimodal,
quadratidnonquadratic, low dimensionalityhigh dimen-
sionality, and deterministic/stochastic [Goldberg, 19891.
The functions were encoded in standard binary notation.

5.22 Subset-Sum

The problems can be stated as follows: given S elements,
each of a possibly unique weight, is there a subset of S that
adds up exactly to an arbitrary number, T. The subset sum
problems are NP-complete. This problem was imple-
mented as a 120 bit chromosome. Each bit represented a
unique object, with weight randomly assigned between 1
& 200. The weight T was selected to be either 1/4. 1/20, or
1/40 of the sum of the weights of the objects. The only
addition to the problem was that the sum of the weights
was guaranteed to be divisible by 4.20 & 40, respectively.

5.23 Fully and Partially Deceptive Order 4

The fully deceptive problem is a 40 bit maximization
problem. The problem was defined in Whitley & Stark-
weather’s paper GENITOR II [Whitley & Starkweather,
1990). The problem is comprised of 10 subproblems, each

4 bits long. The subproblems use the lookup table shown
in Table 1. The partially deceptive problem uses the same
evaluations. with the exceptions of the evaluations corre-
sponding to 1111 and 0101, which are reversed.

Table 1: Order 4 Fully Deceptive Problem

Both the fully deceptive and partially deceptive problems
were attempted using two orderings of bits. The first
encoding is block encoding; the placement of the 4 bits
which comprise a subproblem are located next to each
other. The second encoding is interleaved; the bits which
comprise each subproblem are uniformly spread through-
out the chromosome.Wlth the use of two point crossover,
the first encoding is much easier for the GA to solve than
the second. The encodings are shown in Figure 3.

Block Ending: aaaabbbbccccddddcteeffffgggghhhhiiiijjii

Intaleaved: abcdefghijabcdefghijabcdcfghijabcdefghtj

Figure 3: Two encodings of the order 4 deceptive
problem Bi partially deceptive problems.

5.24 Three “AU-Ones” Problems

Three versions of the all-ones problem were tried
[Syswerda, 19901. The first version was the straight all-
ones problem. The objective of this problem is to find the
chromosome which contains a 1 in each bit position. .

The second version of the all-ones problem contains bits
which are meaningless. This problem was encoded as a
180 bit problem, but only the first 120 bits were counted
toward the evaluation.

The third all-ones problem is the contiguous bits problem.
In evaluating the chromosome, points are only given for 1s
which also have at least one other neighbor which has a
value of 1. If there exists a 1 which has zeros as its two
neighbors, no points are given for the bit.

53 RESULTS & DISCUSSION

The results arc shown for the I5 test problems in Table 2.
They are the average of 10 runs per problem for each algo-
rithm. Each run was started with a different randomly cho-
sen initial population of chromosomes. The maximum
number of allowed generations for the cgpGA is 3000;
after 3000 the attempt is considered a failure. The maxi-
mum number of generations before failure for the fgpGA
is 1400.

For many problems, especially the all-ones problem, on
which the cgpGA did comparatively poorly, cgpGAs can
do significantly better if the population size, mutation rate,
and swap interval parameters are tuned for the problem.
For example, because the all-ones problem is relatively
“easy” for the GA to solve, it can be solved very effi-
ciently using a population size of 10 rather than 100. How-
ever, to measure the ability of the algorithms to perform on
a variety of problems without parameter tuning, the
parameters were held constant throughout all of the test
runs.

Table 2: Results for the 15 test problems. Each entry
represents the average number of generations before the
optimal solution was found. The fgpGA evaluated 8192
chromosomes per generation, the cgpGA 4000.

Size fgpGA @A I TestFunction I (Bits) I I 40subpop. I
I I I

DeJong FunctionUl [30 I 29.8 I 79.0 1
I Wong Function $2

1 Subset Sum (I i O) ~

Subset Sum (1/40)

Partially Deccptive (A)

111.8

seCFigurc4

18.0 18.0

76.8 629.0

40 32.0 95.1

40 53.0 252.5

40 5 7 5 305.9

40 742.5 1634.7

90.8 609.1

The stopping criterion for Ddong’s F3 was an evaluation of -30.
** nK stopping criterion for DeJong’s F5 was an evaluation of
0.998004.

*** Due to memory restrictions. this problem was utcmped with 90
significant bits, and 30 extm bits (cgpGA only). The fgpGA was
e m p a l with 120 significant bits and 60 extra,

++ fgpGA

- cgpGA

G e n a a t i O n S

Figure 4: Average evaluations for 10 runs of
the cgpGA and fgpGA on DeJong’s F4. Due
to memory restrictions, the cgpGA was run
with 80 subpopulations with 50 chromosomes
per population. F4 is shown graphically to aid
in quantifying performance in the presence of
the random gaussian factor [DeJong, 19751,
pngber, 19921. Note that generations 200-700
yield only very small improvements.
(Samples taken at every 10 generations.)

One of the reasons the fgpGA performed better than the
cgpGA is the ability of good chromosomes to spread rap
idly through the population. A large portion of the popula-
tion has access to the best chromosome very shortly after
it is found. A sample run. shown in Figure 5, displays the
number of populations which “have seen” the best chro-
mosome found in each generation. The term “has seen”
does not imply that the populations have selected the chro-
mosome for recombination, rather that the chromosome is
a candidate for selection. The sudden drops of the number
of populations, in Figure 5, represent generations in which
a better chromosome is found.

The fgpGA implementation allows a good chromosome to
be accessed immediately by the 8 surrounding subpopula-
tions. In order for more than the original 9 populations to
incorporate the chromosome, it must again be selected for
recombination. Assuming that it is selected, valuable sche-
mata must not be destroyed by crossover or mutation oper-
ators. Although the populations which surround the
original 9 will incorporate the resultant chromosomes into
their population, for it to spread further, they must also
select them for recombination based upon their evaluation,
which may not be as good as their parents. Further, if the
crossover and mutation operations have destroyed valu-
able schemata, the children produced may not be pre-
served by elitist selection. If the important schemata are a
small part of the total chromosome, the chances of the
chromosomes spreading throughout the population with
the schemata intact is much greater, since in this case,

- opumal - populations

!OD Bo 00 m !a a4 100 8

Generations
Figure 5: The Number of populations which
contain the best chromosome using the
fgpGA to optimize the order 4 fully deceptive
problem, interleaved. Also plotted is the best
value 10. for comparison. The sudden drops
in the number of populations correspond to a
new best solution found in one of the
populations.

crossover and mutation operators have a smaller chance of
destroying valuable schemata.

The choice of how subpopulations should overlap plays a
significant role in how fast the chromosomes spread
through the subpopulations. For certain classes of prob-
lems, it may be important to ensure that the flow of chro-
mosomes is slow. in order to allow for extremely different
evaluations in different portions of the model. However, in
other applications. in which the search space is not decep-
tive and does not contain many local minima a fast flow
may yield good answers quickly, as good chromosomes
can rapidly dominate the “gene pool”.

6 SUMMARY & FUTURE DIRECTIONS

Preliminary results on fifteen test problems have shown
the fgpGA to be able to solve problems more efficiently
than a cgpGA. To evaluate fine-grain parallelism further,
both harder test problems and different population topolo-
gies should be explored.

One of the difficulties inherent in comparing parallel
genetic algorithms with each other. and with traditional
GAS. is choosing the best criteria. Although the number of
evaluations is commonly used, parallel evolutions show
extensive overlap in the evaluations performed. For prob-
lems which are “easy” for the GA to solve, parallel sub-
populations may perform too broad a search, as the search

performed by a traditional. single population GA may be
enough. However, on harder problems. it often happens
that parallel populations find solutions both mom often
and faster than traditional GAS. Another measure, genera-
tions to find optimal solutions, has a bias in favor of paral-
lelism because more chromosomes are evaluated per
generation. Another candidate criterion is cpu-speed; how-
ever, implementations of different algorithms may use the
same hardware with varying degrees of effectiveness. In
this paper, both evaluations and generations were pre-
sented. Although the results were in favor of the fgpGA.
the parameters in the cgpGA and the fgpGA were not
tuned per problem. As stated earlier. it is suspected that
with a little tuning, both GAs could improve performance.

Perhaps the most interesting topic for future research is the
need to design subpopulation topologies which maximally
exploit the parallelism inherent in these GAS. Two inter-
esting structures to examine in the future would be one in
which each population is only connected to 1 of its nearest
neighbors and a second in which the connections arc made
randomly, perhaps with a set maximum reaching distance.

One of the important applications of parallel genetic algo-
rithms, which was not explored here, is the use of sets of
populations to optimize different objectives in multi-
objective functions. For this type of problem, each sub
population evolves under the pressures of individual sub-
goals of the complete problem. As stated in [Husbands,
19911 “...the solution to a complex problem is allowed to
emerge from the simultaneous solution of a number of
simpler, related subproblems. Using this variation of
divide and conquer, the inherent parallelism in a problem
is brought out and thoroughly exploited.” This method is
directly applicable to the fgpGA described here: individual
populations can work towards individual sub-goals. It will
be interesting to determine the role that the position of
subgoal assignment to individual populations has on the
overall effectiveness of the GA.

Acknowledgments

I would like to thank Dean Pomerleau, Chuck Thorpe,
Stephen Smith. Dayne Freitag. and Todd Jochem for their
helpful comments and suggestions throughout the devel-
opment of this paper.

This research was partly sponsored by Defense Advanced
Research Projects Agency, under contracts “Perception for
Outdoor Navigation” (contract number DACA76-89-C-
0014. monitored by the US Army Topographic Enginecr-
ing Center) and “Unmanned Ground Vehicle System”
(contract number DAAE07-9M-RO59, monitored by
TACOM). It was also partially sponsored by the National
Science Foundation, under NSF Contract BCS-9120655,
titled ‘Annotated Maps for Autonomous Underwater
Vehicles”, and the NSF grant titled “Massively Parallel
Real-Time Computer Vision”. The views and conclusions
contained in this document are those of the author and

should not be interpreted as representing the official poli-
cies, either expressed or implied. of the Defense Advanced
Research Projects Agency, the National Science Founda-
tion, or the U.S. Government.

References

Baluja, S. (1992) A Massively Distributed Parallel Genetic
Algorithm. CMU-CS-92-196R. School of Computer Sci-
ence, Carnegie Mellon University.

Caruana. R. and J. Schaffer (1988) Representation and
Hidden Bias: Gray Vs. Binary Coding for Genetic Algo-
rithms. Proceedings of the 5th International Conference
on Machine Learning. Morgan Kaufmann. Los Altos. CA.
June 1988 152-161

Cobb, H. (1990) An Investigation Into the Use of Hyper-
mutation as an Adaptive Operator in Genetic Algorithms
Having continuous. lime Dependent Nonstationary Envi-
ronments. NCARAI Library. AIC-90-00 1.

Cohoon, J.P, S.U. Hedge, W.N. Martin & D. Richards
(1988). Distributed Genetic Algorithms for the Floor Plan
Design Problem. Technical Report TR-88-12. School of
Engineering and Applied Science. Computer Science
Department, University of Vrginia.

Davidor, Y (1991) A Naturally Occurring Niche & Spe-
c i a Phenomenon: The Model and First Results. Pmceed-
ings of the Fourth International Conference on Genetic
Algorithms. Morgan Kaufmann. San Mateo. CA.

DeJong, K.A. (1975) An Analuis of the Behavior of a
C h s of Genetic Adaptive Systems. (Doctoral dissertation,
University of Michigan). Dissertation Abstracts Intema-
tional36-10,5140B.

DeJong, K.A. and W. Spears (1990) An Analysis of Multi-
Point Crossover. N C M Library. AIC-90-014.

Eshelman. L. (1990). The CHC Adaptive Search Algo-
rithm: How to have safe search when engaging in nontra-
ditional genetic recombination. Foundations of Genetic
Algorirhms, Bloomington, IN.

Goldberg, D.E. (1989) Genetic Algorithms in Seaxh,
Optimiultion, and Machine Learning. Addison-Wesley.

Husbands, P., F. Mill & S.Warrington (1991). Genetic
Algorithms, Production Plan Optimisation and Schedul-
ing. Parallel Problem Solving from Nature, H.P. Schwefel
& R. Manner Eds. Springer Verlag. Berlin.

Ingkr. L and B. Rosen (1992) Genetic Algorithms and
Very Fast Simulated Reannealing: A comparison. To be
published in Mathematical and Computer Modelling.

Liepins. G.E. and S. Baluja (1991) apGA: an Adaptive
Parailel Genetic Algorithm. Computer Science and Opera-

tions Researrh, N ~ w Developments in Their Interfaces.
Balci, Sharda & Zenios eds. Pergamon Press.

Liepins, G. E. and M. D. Vose (1990). Representational
Issues in Genetic Optimization, Journal Expt. i7zeol: Am'-
Jcial Intelligence., 2. 101-1 15

Muhlenbein. H (1989) Parallel Genetic Algorithms, Popu-
lation Genetics and Combinatorial Optimization. Proceed-
ings of the nird IntemriOna1 Conference on Genetic
Algorithm. Morgan Kaufinann. San Mateo. CA.

Petty, C, M. Leuze, J. Grefenstent (1987) A Parallel
Genetic Algorithm, Pmeedings of the Second Intern-
tional Conference on Genetic Algorithms. Lawrence
Erlbaum Associates. N J.

Schaffer, J.D. and JJ. Grefenstctte (1985) Multi-Objective
Learning Via Genetic Algorithms, Proceedings of Ninth
Intematwnal Joint Confewnce on Amjkial Intelligence.

Schaffer, J.D., R.A. Canrana, LJ. Eshclman. and R. Das
(1989). A Study of Control Parameters Affecting Online
Performance of Genetic Algorithms for Function Optimi-
zation, Proceedings of the Third International Confemnce
on Genetic Algorithms. Morgan Kaufmann, San Mateo.
CA.

Schleuter, M.G. (1990). Explicit Parallelism of Genetic
Algorithms through Population Structures. Parallel Prob-
lem Solvingfrom Nmn, H.P. Schwefel & R. Manner Eds.
Springer Verlag. Berlin.

Spiessens, P. and B. Manderick (1991). A Massively Par-
allel Genetic Algorithm: Implementation and First
Results. Proceedings of the Fourth lnterntionol Confer-
ence on Generic Algorithms. Morgan Kaufmann. San
Maw, CA.

Syswerda, G. (1989) Uniform Crossover in Genetic Algo-
rithms, Proceedings of the Third Intemational Conference
on Genetic Algorithms. Morgan Kaufmann. San Mateo,
CA.

Tanese, R. (1987) A Parallel Genetic Algorithm for a
Hypercube. Pmceedings of the Second lntenrarional Con-
ference on Genetic Algorithms. Lawrence Erlbaum Asso-
ciaw. NJ.

Whitley, D. and T. Starkweather (1990). GENITOR II: a
Distributed Genetic Algorithm, J o u m l Expt. Theox Am'-
ficial Intelligence, 2, 189-2 14.

