
Evolving an Intelligent Vehicle for Tactical Reasoning in Traffic

Rahul Sukthankar1;2, Shumeet Baluja1;2, John Hancock2

frahuls|balujag@jprc.com, jhancock@ri.cmu.edu

1Justsystem Pittsburgh Research Center2The Robotics Institute
4616 Henry Street Carnegie Mellon University

Pittsburgh, PA 15213 Pittsburgh, PA 15213

Abstract
Recent research in automated highway systems has

ranged from low-level vision-based controllers to high-
level route-guidance software. However there is currently
no system for tactical-level reasoning. Such a system
should address tasks such as passing cars, making exits
on time, and merging into a traffic stream. Our approach
to this intermediate-level planning combines a distributed
reasoning system (PolySAPIENT) with a novel evolution-
ary optimization strategy (PBIL). PBIL automatically tunes
PolySAPIENT module parameters in simulation by evalu-
ating candidate modules on various traffic scenarios. Since
the control interface to the simulated vehicles is identical
to that on the Carnegie Mellon Navlab vehicles, modules
developed using this process can be directly ported to ex-
isting hardware. This method is currently being applied to
the automated highway system domain; it also generalizes
to many complex robotics tasks where multiple interacting
modules must simultaneously be configured without indi-
vidual module feedback.

1. Introduction
The task of driving can be characterized as consisting

of three levels: strategic, tactical and operational [8]. At
the highest (strategic) level, a route is planned and goals
are determined; at the intermediate (tactical) level, maneu-
vers are selected to achieve short-term objectives — such
as deciding whether to pass a blocking vehicle; and at the
lowest (operational) level, these maneuvers are translated
into control operations.

Mobile robot research has successfully addressed the
three levels to different degrees. Strategic-level plan-
ners [12] have advanced from research projects to commer-
cial products. The operational level has been investigated
for many decades, resulting in systems that range from
semi-autonomous vehicle control [5, 7] to autonomous
driving in a variety of situations [3, 9]. Substantial progress

GOAL

A B

Figure 1: Car A is approaching its desired exit behind a
slow vehicle B. Should Car A attempt to pass?

in autonomous navigation in simulated domains has also
been reported in recent years [11, 2, 10]. However, the
decisions required at the tactical level are difficult and a
general solution remains elusive (see Figure 1).

PolySAPIENT, described in Section 3, is a system de-
signed to drive the Carnegie Mellon Navlab [15] in situa-
tions similar to the situation shown in Figure 1. PolySAPI-
ENT has a distributed architecture which enables re-
searchers to quickly add new reasoning modules to an ex-
isting configuration, but it does not address the problem of
reconfiguring the parameters in the new system. We present
an evolutionary algorithm, Population-Based Incremental
Learning (PBIL), that automatically searches this parame-
ter space and learns to drive vehicles in traffic.

2. The SHIVA Simulator
Simulation is essential in developing intelligent ve-

hicle systems because testing new algorithms in real
traffic is expensive, risky and potentially disastrous.
SHIVA1 (Simulated Highways for Intelligent Vehicle
Algorithms) [14] is a kinematic micro-simulation of ve-
hicles moving and interacting on a user-defined stretch of
roadway that models the elements of the tactical driving do-
main most useful to intelligent vehicle designers. The vehi-
cles can be equipped with simulated human drivers as well
as sensors and algorithms for automated control. These

1More information and an interactive demo are available at:
<http://www.cs.cmu.edu/�rahuls/shiva.html>

Figure 2: SHIVA: A design and simulation tool for devel-
oping intelligent vehicle algorithms.

algorithms direct the vehicles’ motion through simulated
commands to the accelerator, brake, and steering wheel.
SHIVA’s user interface provides facilities for visualizing
and influencing the interactions between vehicles (see Fig-
ure 2). Details of the simulator are comprehensively cov-
ered elsewhere [14, 13]. All vehicles are composed of three
subsystems: perception, cognition, and control.

The perception subsystem consists of a suite of simu-
lated functional sensors (e.g. global positioning systems,
range-sensors, lane-trackers), whose outputs are similar to
real perception modules implemented on the Navlab vehi-
cles. SHIVA vehicles use these sensors to get information
about the road geometry and surrounding traffic. Vehicles
may control the sensors directly, activating and panning the
sensors as needed, encouraging active perception. Some
sensors also model occlusion and noise, forcing cognition
routines to be realistic in their input assumptions.

While a variety of cognition modules have been devel-
oped in SHIVA, this paper is only concerned with two
types: rule-based reasoning (MonoSAPIENT [13]) and
a modular, distributed architecture (PolySAPIENT [13]).
The rule-based reasoning system, which was manually de-
signed, is implemented as a monolithic decision tree. An
example rule is:

“Initiate a left lane change if the vehicle ahead is
moving slower thanf(v) m/s, and is closer than
h(v), and if the lane to your left is marked for
legal travel, and if there are no vehicles in that
lane withing(v) meters, and if the desired right-
exit is further thane(x; y; v) meters.”

where: f(v) is the desired car following velocity,h(v) is
the desired car following distance (headway),g(v) is the re-
quired gap size for entering an adjacent lane, ande(x; y; v)

is a distance threshold to the exit based on current lane, dis-
tance to exit and velocity. While this system performs well

on many scenarios, it suffers from four disadvantages: 1) as
the example above illustrates, realistic rules require the de-
signer to account for many factors; 2) modification of the
rules is difficult since a small change in desired behavior
can require many non-local modifications; 3) hand-coded
rules perform poorly in unanticipated situations; 4) imple-
menting new features requires one to consider an expo-
nential number of interactions with existing rules. Similar
problems were reported by Cremeret al. [2] in their single-
layer state-machine implementation for scenario control.
To address some of these problems, we have developed a
distributed reasoning architecture, PolySAPIENT, which is
discussed in Section 3.

The control subsystem is compatible with the controller
available on the Carnegie Mellon Navlab II robot testbed
vehicle. Commands to the controller are issued by the cog-
nition modules at a rate of 10 Hz. SHIVA only allows
vehicles to control desired velocity and steering curvature.
Denying control over acceleration ensures that systems de-
veloped in simulation can be directly ported onto our exist-
ing hardware configuration.

3. PolySAPIENT
PolySAPIENT [13] is a distributed reasoning system

designed to solve tactical driving problems. To over-
come deficiencies with the monolithic reasoning systems,
PolySAPIENT partitions the driving task into several as-
pects; each is represented by an independent module
known as areasoning object.

3.1. Reasoning Objects

The reasoning associated with each relevant physical en-
tity in the environment (e.g. the car ahead or the approach-
ing exit), is addressed by a specialized local expert known
as areasoning object. Each reasoning object is respon-
sible for assessing the impact of its associated entity on
the robot’s actions,independently, of the interactions with
other entities in the scene. Thus, the object associated with
monitoring the vehicle ahead is mainly concerned with pre-
venting collisions and suggesting overtaking, while the ob-
ject associated with the exit recommends lane-changes to-
wards the exit. For this to work, the reasoning objects must
share a common output language. In PolySAPIENT, ev-
ery object presentsvotesandvetosover a preselected set
of actions (see Section 3.2), and the action selection is per-
formed by a domain-independent arbiter.

A total of nine reasoning objects were used in the ex-
periments described here; these included experts associ-
ated with the current lane, the desired exit and nearby ve-
hicles. Appropriate reasoning objects were instantiated or
destroyed as the relevant objects appeared and left the sim-
ulated sensors’ field of view. Additional inputs included
higher-level goals (such as the preferred velocity). The rea-

Voting
Arbiter

Front Car
 Object

 Exit
Object

Velocity
 Object

Front Right
 Car Object

Front Left
Car Object

Back Right
Car Object

 Back Left
Car Object Lane

Object

Selfstate
 Exit
Finder

Car Detection
 Modules

 Lane
Tracker

Controller

Hysteresis
 Object

Figure 3: The PolySAPIENT reasoning object configura-
tion consists of several, independent local experts, known
as reasoning objects.

soning object configuration is shown in Figure 3 For more
details on this architecture, see [13].

3.2. Actions

Tactical maneuvers (such as lane changing) are com-
posed by concatenating several basic actions. Reasoning
objects indicate their preference for a basic action by as-
signing a vote to that action. The magnitude of the vote cor-
responds to the intensity of the preference and its sign indi-
cates approval or disapproval. Each reasoning object must
assign some vote to every action in the action space. All ac-
tions have a velocity change (longitudinal) and a lane-offset
(lateral) component; for example, “brake hard while chang-
ing left” or “increase speed and maintain your current lane
position”. In the experiments described here, there were
nine possible actions: the cross product offincrease speed,
maintain speed, decrease speedg with fshift-left, maintain
lane, shift-rightg.

Since different reasoning objects can return different
recommendations for the next action, conflicts must be re-
solved. PolySAPIENT uses a voting arbiter to perform this
integration. During arbitration, all of the votes for a given
action are summed together (after being scaled by the rea-
soning object’s external parameter), and the most popular
action is executed.

3.3. Parameters

As described in Section 3.1, different reasoning objects
use different internal algorithms. Each reasoning object’s
output depends on a variety ofinternal parameters(e.g.

car following
 (external)
 = 2 = 64

exit weight
 (external)
= 2 = 16

 60 bits
(20 parameters * 3 bits)

{ {

desire to exit
 (internal)
 = 2

{ {

21car following
 (internal)
 = 5

011 . . . 010100101110 . . . 101

4 6

Figure 4: The three-bit encoding scheme used to represent
parameters: internal parameters are linearly scaled while
external ones are exponentially scaled.

thresholds, gains, etc.). The outputs are then scaled byex-
ternal parameters(e.g. weights).

When a new reasoning object is being implemented, it
is difficult to determine whether a vehicle’s poor perfor-
mance should be attributed to a bad choice of parame-
ters, a bug within the new module or, more seriously, to
a poor representation scheme (inadequate configuration of
reasoning objects). To overcome this difficulty, we have
implemented a method for automatically configuring the
parameter space. A total of twenty parameters, both in-
ternal and external, were selected for the tests described
here, and each parameter was discretized into eight values
(represented as a three-bit string). For internal parameters,
whose values are expected to remain within a certain small
range, we selected a linear mapping (where the three bit
string represented integers from 0 to 7); for the external pa-
rameters, we used an exponential representation (with the
three bit string mapping to weights of 0 to 128). The lat-
ter representation increases the range of possible weights at
the cost of sacrificing resolution at the higher magnitudes.
A representation with more bits per parameter would allow
finer tuning but increase the learning times. Empirically,
we found that three bits per parameter allowed good solu-
tions to be rapidly discovered. The encoding is illustrated
in Figure 4. In the next section, we describe the evolution-
ary algorithm used for the learning task.

4. Population-Based Incremental Learning
Population-Based Incremental Learning (PBIL) is a

combination of genetic algorithms (GAs) [6] and competi-
tive learning [1]. The PBIL algorithm attempts to explicitly
maintain statistics about the search space and uses them to
direct its exploration. The object of the algorithm is to cre-
ate a real valued probability vector which, when sampled,
reveals high quality solution vectors with high probability.
For example, if a good solution can be encoded as a string
of alternating 0’s and 1’s, a suitable final probability vector
would be 0.01, 0.99, 0.01, 0.99, etc. The full algorithm is
shown in Figure 5.

Initially, each element of the probability vector is ini-

****** Initialize Probability Vector ******
for i := 1 to LENGTH do P[i] = 0.5;

while (NOT termination condition)
 ****** Generate Samples ******
 for i := 1 to SAMPLES do
 sample_vectors[i] := generate_sample_vector_according_to_probabilities(P);
 evaluations[i] := Evaluate_Solution(sample_vectors[i];);
 best_vector := find_vector_with_best_evaluation(sample_vectors, evaluations);

 ****** Update Probability Vector towards best solution ******
 for i := 1 to LENGTH do
 P[i] := P[i] * (1.0 − LR) + best_vector[i] * (LR);

 ****** Mutate Probability Vector ******
 for i := 1 to LENGTH do
 if (random (0,1) < MUT_PROBABILITY) then
 if (random (0,1) > 0.5) then mutate_direction := 1;
 else mutate_direction := 0;
 P[i] := P[i] * (1.0 − MUT_SHIFT) + mutate_direction * (MUT_SHIFT);

USER DEFINED CONSTANTS (Values Used in this Study):
SAMPLES: the number of vectors generated before update of the probability vector (100)
LR: the learning rate, how fast to exploit the search performed (0.1).
LENGTH: the number of bits in a generated vector (3 * 20)
MUT_PROBABILITY: the probability of a mutation occuring in each position (0.02).
MUT_SHIFT: the amount a mutation alters the value in the bit position (0.05).

Figure 5: PBIL algorithm, explicit preservation of best so-
lution from one generation to next is not shown.

tialized to 0.5. Sampling from this vector yields random
solution vectors because the probability of generating a 0
or 1 is equal. As search progresses, the values in the proba-
bility vector gradually shift to represent high evaluation so-
lution vectors through the following process. A number of
solution vectors are generated based upon the probabilities
specified in the probability vector. The probability vector
is pushed towards the generated solution vector with the
highest evaluation. After the probability vector is updated,
a new set of solution vectors is produced by sampling from
the updated probability vector, and the cycle is continued.
As the search progresses, entries in the probability vector
move away from their initial settings of 0.5 towards either
0.0 or 1.0.

The probabilistic generation of solution vectors does not
guarantee the creation of a good solution vector in every
iteration. This problem is exacerbated by the small popu-
lation sizes used in these experiments. Therefore, in order
to avoid moving towards unproductive areas of the search
space, the best vector from the previous population is in-
cluded in the current population (by replacing the worst
member of the current population) — in GA literature, this
is termedelitist selection[6].

Since space limitations preclude a complete discussion
about the relationship between GAs and PBIL, we can only
provide a brief intuition. Diversity in the population is
crucial for GAs. By maintaining a population of solu-
tions, the GA is able — in theory at least — to main-
tain samples in many different regions. Crossover is used
to merge these different solutions. However, when the
population converges, this deprives crossover of the di-
versity it needs to be an effective search operator. When
this happens, crossover begins to behave like a mutation
operator that is sensitive to the convergence of the value
of each bit [4]. If all individuals in the population con-

verge at some bit position, crossover leaves those bits un-
altered. At bit positions where individuals have not con-
verged, crossover will effectively mutate values in those
positions. Therefore, crossover creates new individuals that
differ from the individuals it combines only at the bit po-
sitions where the mated individuals disagree. This is anal-
ogous to PBIL which creates new trial solutions that differ
mainly in bit positions where prior good performers have
disagreed. More details can be found in [1].

Our application challenges PBIL in a number of ways.
First, since a vehicle’s decisions depend on the behavior of
other vehicles which are not under its control, each simu-
lation can produce a different evaluation for the same bit
string. We evaluate each set of vehicle parameters multiple
times to compensate for the stochastic nature of the envi-
ronment. Second, the PBIL algorithm is never exposed to
all possible traffic situations (thus making it impossible to
estimate the “true” performance of a PBIL string). Third,
since each evaluation takes considerable time to simulate,
minimizing the total number of evaluations is important.

5. Training Specifics
All of the tests described below were performed on the

track shown in Figure 6, known as theCyclotron. While
this highway configuration is not encountered in real-life,
it has several benefits as a testbed: 1) It is topologically
identical to a highway with equally spaced exits; 2) Taking
thenth exit is equivalent to travelingn laps of the course;
3) One can create challenging traffic interactions at the en-
try and exit merges with only a small number of vehicles.
For training, each scenario was initialized with one PBIL
vehicle, and eight rule-based cars (with hand-crafted deci-
sion trees). The PBIL car was directed to take the second
exit (1.5 revolutions) while the other cars had goals of zero
to five laps. Whenever the total number of vehicles on the
track dropped below nine, a new vehicle was injected at
the entry ramp (with the restriction that there was always
exactly one PBIL vehicle on the course).

Whenever a PBIL vehicle left the scenario (upon taking
an exit, or crashing 10 times), its evaluation was computed
based on statistics collected during its run. This score was
used by the PBIL algorithm to update the probability vector
— thus creating better PBIL vehicles in the next generation.

While driving performance is often subjective, all good
drivers should display at least the following characteristics:
they should drive without colliding with other cars, try to
take the correct exit, maintain their desired velocity, and
drive without straddling the lane markers. Additionally,
they should always recommend some course of action, even
in hopeless situations.

We encoded the above heuristics as an evaluation func-
tion to be maximized:

Eval = �(10000 � all-veto)� (1000 � num-crashes)

Figure 6: Cyclotron track (15 obstacles)

�(500� if-wrong-exit)� (0:02 � speed-deviation)

�(0:02 � lane-deviation) + (dist-traveled)

where:all-veto indicates that the PBIL vehicle objects
to all actions (with good parameters, this should never hap-
pen);num-crashes is the number of collisions involv-
ing the PBIL vehicle;if-wrong-exit is a flag — true
if and only if the PBIL vehicle exited prematurely, or oth-
erwise missed its designated exit;speed-deviation is
the difference between desired and actual velocities, inte-
grated over the entire run;lane-deviation is the de-
viation from the center of a lane, integrated over the entire
run;dist-traveled is the length of the run, in meters
(an incremental reward for partial completion). The coef-
ficients used in the evaluation function were set by hand.
It should be noted that varying these coefficients, even by
an order of magnitude, revealed similar results, in terms
of missed exits, collisions, speed deviation and lateral han-
dling (See [13] for details).

While the evaluation function is a reasonable measure
of performance, it is important to note that there can be
cases when a “good” driver becomes involved in unavoid-
able crashes; conversely, favorable circumstances may en-
able “bad” vehicles to score well on an easy scenario. To
minimize the effects of such cases, we tested each PBIL
string in the population on a set of four scenarios. These
scenarios varied in traffic density and also included some
pathological cases such as broken-down vehicles obstruct-
ing one or more lanes.

6. Results
We performed a series of experiments using a variety

of population sizes, evaluation functions and initial condi-
tions. The evaluation of vehicles using the learned parame-
ters in each case were found to be consistent. This indicates
that our algorithms are tolerant of small changes in evalua-
tion function and environmental conditions, and that PBIL

-10000

-5000

0
1000

Evaluation

0

10

20

30

40

Generation

0

20

40

60

80

Number of Cars

-10000

-5000

0
1000

Evaluation

Figure 7: 3-D Histogram showing increase of high-scoring
PBIL strings over successive generations. Population size
is 100 cars in each generation.

is reliably able to optimize parameter sets in this domain.
Figure 7 shows the results of one such evolutionary experi-
ment with a population size of 100. For more experiments,
which have been conducted with a variety of initial starting
conditions and evaluation functions, see [13].

These 3-D histograms display the distribution of vehi-
cles scoring a certain evaluation for each generation. It is
clear that as the parameters evolve in successive genera-
tions, the average performance of vehicles increases and
the variance of evaluations within a generation decreases.
In the experiments with population size 100, good perfor-
mance of some vehicles in the population is achieved early
(by generation 5) although consistently good evaluations
are not observed until generation 15. The number of ve-
hicles scoring poor evaluations drops rapidly until genera-
tion 10, after which there are only occasional low scores.
The PBIL strings converge to a stable set of parameters
and by the last generation, the majority of the PBIL ve-
hicles are able to circle the track, take the proper exit, and
avoid crashes in all four scenarios. Figures 8 and 9 show
the progress of the vehicles in greater detail.

7. Conclusion and Future Directions

Our experiments have demonstrated: (1) The potential
for intelligent behavior in the tactical driving domain us-
ing a set of distributed reasoning modules. (2) The abil-
ity of evolutionary algorithms to automatically configure a
collectionof these modules for addressing theircombined
task.

In this study, we used a very simple evaluation function.
By introducing alternative objective functions, we plan to
extend this study in at least two directions. First, for au-
tomated highways, we would like the cars to exhibit altru-
istic behavior. In a collection of PBIL vehicles, optimiz-
ing asharedevaluation function (such as highway through-

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70

of

 n
ea

r-
cr

as
he

s

Generations

Figure 8: Number of crashes summed over all vehicles in a
population, as a function of generation. Note that all vehi-
cles in the later generations avoid crashes.

put) may encourage cooperation. Second, we are develop-
ing reasoning objects to address additional complications
which will arise when these vehicles are deployed in the
real world, such as complex vehicle dynamics and noisy
sensors.

8. Acknowledgements
The authors would like to acknowledge the valuable dis-

cussions with Dean Pomerleau and Chuck Thorpe which
helped to shape this work. Thanks also to Gita Sukthankar,
for the data processing scripts. This work was partially sup-
ported by the Automated Highway System project, under
agreement DTFH61-94-X-00001.

References

[1] S. Baluja. Population-based incremental learning: A
method for integrating genetic search based function opti-
mization and competitive learning. Technical Report CMU-
CS-94-163, Carnegie Mellon University, 1994.

[2] J. Cremer, J. Kearney, Y. Papelis, and R. Romano. The soft-
ware architecture for scenario control in the Iowa driving
simulator. InProceedings of the 4th Computer Generated
Forces and Behavioral Representation, 1994.

[3] E. Dickmanns and A. Zapp. A curvature-based scheme
for improving road vehicle guidance by computer vision.
In Proceedings of the SPIE Conference on Mobile Robots,
1986.

[4] L. Eshelman. The CHC adaptive search algorithm: How to
have safe search when engaging in nontraditional genetic re-
combination. InFoundations of Genetic Algorithms, pages
265–283. Morgan Kaufmann Publishers, 1991.

[5] K. Gardels. Automatic car controls for electronic high-
ways. Technical Report GMR-276, General Motors Re-
search Labs, June 1960.

0

20

40

60

80

100

120

140

160

0 10 20 30 40 50 60 70

of

 e
xi

ts
 m

is
se

d

Generations

Figure 9: Number of missed exits summed over all vehicles
in a population, as a function of generation. Note that all
vehicles in the later generations make their desired exits.

[6] D. Goldberg. Genetic Algorithms in Search, Optimization,
and Machine Learning. Addison-Wesley, Reading, MA,
1989.

[7] I. Masaki, editor.Vision-Based Vehicle Guidance. Springer-
Verlag, 1992.

[8] J. Michon. A critical view of driver behavior models:
What do we know, what should we do? In L. Evans and
R. Schwing, editors,Human Behavior and Traffic Safety.
Plenum, 1985.

[9] D. Pomerleau.Neural Network Perception for Mobile Robot
Guidance. PhD thesis, Carnegie Mellon University, Febru-
ary 1992.

[10] A. Ram, R. Arkin, G. Boone, and M. Pearce. Using ge-
netic algorithms to learn reactive control parameters for
autonomous robotic navigation.Adaptive Behavior, 2(3),
1994.

[11] D. Reece.Selective Perception for Robot Driving. PhD the-
sis, Carnegie Mellon University, May 1992.

[12] J. Rillings and R. Betsold. Advanced driver informa-
tion systems.IEEE Transactions on Vehicular Technology,
40(1), 1991.

[13] R. Sukthankar.Situation Awareness for Driving in Traffic.
PhD thesis, Carnegie Mellon University, January 1997.

[14] R. Sukthankar, J. Hancock, and C. Thorpe. Tactical-level
simulation for intelligent transportation systems. To appear
in Journal on Mathematical and Computer Modeling, 1997.
Special Issue on ITS.

[15] C. Thorpe, M. Hebert, T. Kanade, and S. Shafer. Vision and
navigation for the Carnegie Mellon Navlab.IEEE Transac-
tions on PAMI, 10(3), 1988.

