
Continuous Selection of Optimized Traffic Light Schedules:
A Machine Learning Approach

Shumeet Baluja
Google Research

shumeet@google.com

Abstract—Machine learning-based optimization of traffic light
programs has been successfully employed to reduce emissions
and traffic delays. Due to the variability of traffic flows, it
is common practice to optimize multiple traffic light pro-
grams tailored for specific conditions and deploy them at pre-
determined times of the day or days of the week. We explore an
alternative to this manual set-interval methodology. We create
a system to automatically select the appropriate light controller
program in response to continuously changing conditions. We
analyze the current traffic density and close-time traffic pat-
terns and instantiate the correct pre-optimized light program
based on current conditions. Rather than creating a small
set of programs tailored for specific periods of the day, we
automatically create, and select from, an over-complete set of
light controllers. Based on historic observations, a combination
of machine learning approaches are used to find the best
representative set of traffic flows to model the system. From
these, multiple traffic-light controllers are created to address
each flow individually. Using the automated matching system,
we achieved reductions in both emissions and travel time over
previously optimized lights. We examine the robustness of
the system by ensuring that the system operates under large
amounts of variability in traffic.

Index Terms—Traffic Signal Timing, Stochastic Optimization,
Clustering, Case-Based Reasoning

1. Background and Motivation

Inefficient configuration of traffic lights remains a com-
mon problem in many urban areas – one of the largest com-
plaints of commuters in the Mountain View, California area
is the amount of traffic they face during the morning and
evening rush hours. The principal goal of this project was to
address one of the problem areas shown in Figure 1. In our
previous studies [1] [2], we focused on improving the timing
of seven lights.We used a variant of genetic algorithms with
a novel controller paradigm, based on the concept of signal-
micro-auctions, to demonstrate the potential for significant
reduction in wait times over the deployed lights schedules.
This same approach was recently extended to a system of
lights in the River North area of Chicago, Illinois [3].

In both the Chicago and Mountain View experiments, as
well as in many approaches found in the research literature,

Figure 1: Area to be optimized in Mountain View, Califor-
nia. Rush hour traffic flow (Google Maps with Traffic.)

it is assumed that the controller designer can a priori
determine and specify the number of unique optimized
light-controller programs required. Commonly, a separate
program is created for different periods of the day – each
of which has unique traffic flow characteristics (e.g. rush
hours, middle of day, night, weekends, etc.). For each period,
traffic flows are recorded and the light controllers optimized,
potentially independently, to handle the traffic flows most
associated with that time. Although there will naturally
be variation observed over the multiple days of recording
traffic, it is expected that the variation seen over multiple
recordings of the same period will be smaller than the vari-
ation recorded across time periods. Although theoretically
possible to create a single controller to handle the traffic
over the entire period, this often results in a larger and far
more complex controller. Further, some of the global, “full-
day”, controllers also receive as an input signal the time-
of-day, thereby implicitly creating different control schemes
for different times.

One of the observed weaknesses in the standard ap-
proach was the tacit assumption that we knew the best
divisions of times for which to model traffic. We noticed
that even among the seven lights, changing the divisions of
traffic times we chose to model resulted in very different
controllers. To address this pragmatic problem, in this pa-

per, we explore a novel alternative to the pre-determined
set-interval methodology. Instead, we create a system to
automatically adapt a set of traffic lights to continuously
changing conditions. Succinctly, the goal is to examine the
current traffic density and flow patterns, and then, based on
the results of that examination, to select the appropriate pre-
optimized light program. Unlike previous techniques which
divided the traffic patterns into a set number of categories
based on the time-of-day, we create an over-complete set of
traffic patterns to match from. We select a pre-optimized
program from the entire-set dynamically. This allows us
to automatically handle special conditions such as large-
scale events, accidents, and weather-related traffic changes.
A combination of machine learning approaches are used to
create a diverse set of traffic-light programs that can be
instantiated when traffic flow patterns are recognized. We
term this system “Match-Based Program Selection” 1.

Recently, [9] used a clustering approach to automatically
find related time periods at both small and large intervals,
from time-of-day to seasons. The results of their work could
be used in conjunction with our results to help narrow the
set of timing schedules that are considered, based on similar
periods. A large body of related previous work includes the
SCAT and SCOOT systems [10]–[12]. Both of these systems
adapt and modify schedules in response to the current traffic
flows. Though similar in intent to our system, our approach
differs in key aspects. In our approach, we do not attempt
to modify the current schedule to adapt to the current traffic
flow; instead, we select from pre-optimized schedules that
are tailored to work well in similar traffic flows. Once
set during training, the light programs are not changed
dynamically. Second, we rely on a large, over-complete
set of light programs to find one that matches well to the
current traffic flow. By following this procedure, we hope to
simultaneously address both needs of (1) selecting from a
set of appropriate programs for specific days/times/seasons
as well as (2) adapting those programs to changing and/or
extraordinary conditions within those times.

Next, we will describe the data used for these exper-
iments. For this exploration, we created synthetic data,
modeled after the type of data that we gathered for the
Mountain View and Chicago studies. In Section 3, we
briefly review how, with a set of observed traffic flows,
the light timings are optimized using a stochastic search
procedure; this establishes a real baseline of performance.
Section 4 extends the procedure to optimize the lights for
multiple traffic conditions. Once the traffic lights have been
optimized for a large number of scenarios, a combination of
machine learning tools, such as clustering, feature reduction
and nearest-neighbor look-ups are used as the basis for the
Match-Based Program Selection. Details of how the final
system could be deployed and the experimental findings are
given in Section 5. We have observed significant reduction

1. To avoid potential confusion, it should be pointed out that rein-
forcement learning [4]–[8] encompasses a largely separate set of machine
learning techniques that have been used as alternatives to stochastic search
algorithms for creating the light controllers.

Figure 2: Top: Simulated roadway visualized in SUMO. 1-3 lanes
in each direction. Traffic-lights at each of the 9 intersections. Cars
can enter and exit in any of the 12 outer edges. Bottom: Expanded
versions of the simulated roadways.

in expected emissions and delays, while being agnostic to
the number of underlying distinct patterns in traffic.

2. Data and Simulations

In this study, we utilize a 9-light grid-based world within
the SUMO2 environment [13], see Figure 2. In the simula-
tions, cars enter and exit on any of the 12 edge segments.
The speed limit for each road segment was chosen inde-
pendently and randomly. Five types of car were instantiated
with differing settings for base acceleration, deceleration,
following distance, length, etc. The 9 light controllers em-
ploy fixed-time controllers that are independently optimized;
we will discuss the applicability to actuated controllers in
the context of future work.

In our previous experiments with real-user data, we de-
termined that modeling traffic density through anonymized
location tracks collected from opted-in Google/Android cell
phone users [14] provided a robust and reliable source of
flow information — an alternative to historic induction loop
sensor data. For this study, we simulated the collection of

2. SUMO was chosen because it is available to all researchers (open-
source), extensible, and allows for massively parallel scenario testing,
which was crucial for the O(105) simulations required for the experimental
results.

similar data: traffic density measurements of all the road
segments to be controlled were recorded during the entire
length of the simulations.

To test the limits of this approach, traffic flows were
constructed with variability beyond what would normally
be expected. This variability would render any single light
program (fixed or with induction-loops or other sensors)
sub-optimal. 100 independently generated probability distri-
butions, specifying the probability of each of the 12 external
edges being the origin and destination of the simulated
vehicles, were stochastically created.

To provide intuition to what these probability distribu-
tions represent, recall that commonly the day is divided into
semantically meaningful time intervals: rush-hour, night,
weekend, etc. Though overly simplified, each of these can
be thought of as having their own underlying probability
distribution of entrance and exit edges. In the morning rush
hour, the probability of entering on edge A and exiting
on edge B may be much higher than entering on edge A
in the evening rush hour. In fact, the entrance and exit
probabilities of edge A and edge B may be reversed between
the morning and evening rush-hours. This does not suggest
that all morning rush hours will look the same – only that in
aggregate the probability of entry and exits will be similar
for scenarios drawn from the same underlying probability
distribution. However, even small variations in sampling the
probability distribution can create drastic changes in the
traffic flows [15] [16] and where the traffic problems occur.
Therefore, each time a probability distribution is chosen for
sampling, it yields a unique traffic flow. Interestingly, when
scenarios are created by sampling a probability distribution,
they may yield a traffic flows that, when examined in isola-
tion, are difficult to ascertain which probability distribution
was used to generate it.

By using 100 independent probability distributions, we
are implying that for the full-system we are attempting
to model, there are 100 such underlying distributions (or
“unique time-periods”) that represent the expected traffic
flows. In reality, we expect fewer (e.g. rush-hours, week-
ends, nights, midday, etc), but if we can tackle the problem
of 100 scenarios, a smaller number can easily be handled.
Handling a large number of scenarios provides the ability
to model even uncommon situations that may have been
observed in the data collection phase. This is beneficial
as it allows us to expand the applicability of the system
simply by using more historic data, encompassing more
periods of the day, without sacrificing the performance at
peak times. Remember that in real-world deployment we
would not know the true number of the unique underlying
distributions that best represent the system. However, as we
will demonstrate, the exact number is not needed.

We simulated collecting data from 500 unique recording
sessions each of length 45 minutes. For each of the 500
recording sessions, one of the 100 distributions was uni-
formly randomly selected to be the underlying generating
distribution. No attempt was made to equalize the sampling
between the 100 probability distributions. For each session,
4,000 cars and paths were instantiated by randomly draw-

ing from the associated origin-destination distribution. As
expected, even among sessions drawn from the same under-
lying distribution, tremendous variability in the backups and
delays was created just by the randomized sampling.

With the data gathered, we now turn to establishing
a viable, realistic, baseline performance. The optimization
procedure used to find the baseline is described next.

3. Establishing a Realistic Baseline

No matter which algorithm is used for traffic light
control, each approach has numerous parameters that must
be specified to complete the program. With a simple fixed-
schedule controller, the length of the phase and offsets
of each light have a large impact on the performance of
the overall system. As mentioned earlier, many machine
learning approaches have been used in setting these param-
eters. Perhaps the most common approach seen in traffic
light optimization literature is the use of genetic algorithms
(GA) [17] to set the numeric and/or enumerable values
associated with traffic lights [18]–[21].

We also started our exploration of optimization tech-
niques with GAs and other evolutionary variants following
published research. Despite the prevalence of genetic algo-
rithms in this domain, we found that a much simpler mech-
anism, next-ascent stochastic hillclimbing (NASH) works as
effectively as GAs and is simpler to implement and faster in
practice. This counter-intuitive result has also been observed
by other researchers in exploring the trade-offs between ge-
netic algorithms and stochastic hillclimbing techniques [22].
This trend is especially pronounced in problems in which
mutation (as opposed to the genetic algorithm’s crossover
operator) is the main driver for improvement in the solution
— as we have found to be the case in these search-spaces.
The NASH algorithm is described below.

With any controller, we start by specifying the set of
parameters that can be modified. For the studies presented
here, the set of parameters is the concatenation of all the
parameters of all the lights considered (if there are 5 mod-
ifiable parameters in each of the controllers of 10 lights,
there are a total of 5 × 10 = 50 parameters in the set). At
the conclusion of the optimization process, the set of lights
are not constrained to have the same logic as each other
since each lights’ parameters are fully specified within the
parameter set. Once the set of parameters to be modified is
specified, NASH operates as follows.

1) A parameter is randomly chosen from the set and the
modification operator for that parameter is applied. In
the simplest case, if the parameter is a real number, it
is perturbed by a small amount (for example ±5%). If
the parameter can take on a set of distinct values, a
value other than the one currently selected is chosen.
Alternatively, instead of a single modification, multiple
parameters can be chosen and modified.

2) Once the parameter modifications are completed, the
schedule is then “repaired”, if needed. The repair pro-
cess ensures that the parameters are consistent with
each other and are set within the appropriate ranges. For

example, in the case of fixed-schedule light settings, we
may want to ensure that the overall cycle of the light
remains constant to keep all lights synchronized, but
the individual phase lengths can change. In this case,
once a phase length perturbation has been made, the
repair process ensures that the other phase lengths are
enlarged/reduced appropriately to compensate and keep
the overall cycle length constant.

3) Once any repairs are made, the new schedule is evalu-
ated with the desired objective function. The standard
objective functions that have been used in the literature
are minimizing the overall/average wait time, maxi-
mum wait time, emissions, stop time, or maximizing
throughput, speed, etc. For our studies, we set the
objective function to minimize total travel time.

4) If the perturbations improved the performance on the
objective function over the previous settings without
the perturbations, the perturbation is accepted, and
the schedule with the perturbation becomes the new
baseline.

5) If the perturbation has not performed as well on the
objective function, the set of perturbations is recorded
(so that they are not explored again together), the
perturbations are discarded from the schedule, and the
previous baseline remains unchanged.

The exact number of perturbations made in each iteration
is chosen stochastically. This process is iterated until either
a satisfactory solution is found or time expires.

NASH is used to create the light schedules based upon
a set of gathered data. NASH was allowed to modify each
light’s phase and offset timings independently. Recall that
with real data, it would be impossible to ascertain the
exact number of underlying distributions that generated the
scenarios (if we had this information, we would ideally
select scenarios from each distribution for training). Instead,
to reflect real usage, the training scenarios for NASH were
randomly selected from the set of 500. This is typical of
the majority of real-world light optimization work where
the data is gathered over a limited set of days/scenarios and
is then used to optimize the timings. It mirrors what was
done in our studies of Mountain View and Chicago [1].

Once the light programs were optimized, all 500 sce-
narios were again simulated and the density of flows on
each road segment were recorded (as specified previously).
Optimization of the programs yielded significant reduction
in emissions and travel times over the SUMO default. These
optimized lights provide a strong baseline of performance
to which improvements will be measured in the rest of this
study. The results, after optimization, are shown in Figure 3.

4. Clustering for Program Selection

In the last section, we created a traffic light program
that works well, on average, over many of the scenarios
encountered. Next, we will create specific controller rules to
work well on many individual scenarios. First, we describe
how to select the set of scenarios to use for training the

less ← emissions → more
Figure 3: Histogram of relative emissions for NASH-optimized
lights (blue/darker) vs. SUMO default (orange/lighter) on all 500
scenarios. Notice (1) There is significant variability across the
overall emissions across the different scenarios (220%). (2) The
overall left shift of the histogram for the optimized timings (NASH
optimized): this reflects the substantial decrease in emissions.
Similar graphs were obtained for time (not shown).

individual controllers. Next, we explain the procedure to
recognize which scenario the currently observed flow of
traffic most closely resembles – and thereby which set of
light controllers should be instantiated.

We re-examine the 500 scenarios to cluster them into
similar groups. In this study, we know which underlying
probability distribution generated each of the scenarios;
however, with real data, neither the underlying probability
distributions nor even their number are known. Therefore,
to realistically design this system, we need to perform this
clustering with no knowledge other than the observed traffic
flows. The clustering approach groups like-scenarios so that
they can be tractably handled. The stochastic nature of the
sampling, coupled with the chaotic nature of traffic flows,
may yield clusters that are different than the underlying
generating distributions. Nonetheless, as long as the clusters
are grouped with respect to similarity, matching to the
underlying generators is not necessary. The clustering steps
are given in detail:

1) Using the optimized lights described in Section 3,
the density of traffic for each of the 500 simulated
scenarios is measured. Specifically, the number of ve-
hicles on each directional-road-segment is recorded for
9 non-overlapping 100-second periods (15 min.). This
characterizes the traffic conditions in any 15-minute
interval by a time-series of traffic densities on each
road segment. To be specific, for our experiments, with
9 entries for each of the 48 road segments in the
map, the result is a 432 dimensional vector. Intuitively,
when two traffic conditions are similar in their traffic
distributions, they should be close in this simplified
feature space as well. From the 432 dimensions, we
further sub-select only those that exhibit high variance
across the 500 scenarios and discard the rest. This
is a simple form of feature subset selection to find
discriminative features [23], [24].

2) Using the selected measurements in Step (1), the full
500× 500 matrix of correlations between all scenarios
is calculated. This reveals, for each pair of scenarios,
how similar the density of traffic on the road segments
is, when measured over the 15 minute intervals.

3) The scenarios are clustered into C clusters; the
similarity between clusters is specified by the
correlation matrix. Numerous clustering procedures
were explored, a procedure similar to Learning Vector
Quantization (LVQ) was finally employed [25].
Briefly, in LVQ, C points are randomly placed in
the high-dimensional feature space (of the selected
features). Each scenario is assigned its closest point,
c (from C). Then, simultaneously, all of the C points
are moved closer to the centroid of their matched
scenarios. The procedure is repeated until the points
no longer move. Note that with real data, we will not
know the correct number of clusters. Overestimating
|C| will not degrade performance since information
will be be present, but duplicated. As the effects of
underestimating the number are less certain, we study
the performance with |C| = 10, 50, 100.

At the completion of Step 3, the clusters have been
created. Given these clusters, we now optimize the lights
settings to the traffic flows for each cluster. For each cluster,
c, where c ∈ C, we find the scenario, s, where s ∈ c, that is
closest to the c’s centroid. With s, the light programs for all
9 lights are trained from scratch to reduce emissions (or
reduce delays, etc) just on the particular scenario, s. This
yields a specialized light setting, Lc. Exactly as before, the
system of lights is trained using NASH. More scenarios that
were assigned to cluster c can be used in training Lc, at
the expense of extra computation. At the completion of this
step, |C| specialized lights settings (each for 9 lights) are
created: one for each cluster.

We now have |C| light programs (Lc) — each optimized
to a particular cluster/scenario. Each Lc is tested on all
500 scenarios, not just those in it own cluster c. Why
test each against all 500 scenarios? It is tempting to
assume that scenarios in cluster c will perform best with
light setting Lc; however, due to the stochastic nature of
training, it is possible that local minima may have been
encountered in training and that other light settings have
superior performance. Usually these are from clusters that
share many similar attributes. Further, some scenarios
may have traffic densities that are not well represented
by their assigned cluster. At the completion of these
500 × C simulations, each scenario from the 500 is now
assigned the single light setting (Ls) that best reduced
emissions. Next, we describe how these are used in practice.

5. Experiments

Upon completion of the procedure detailed in the pre-
vious section, we have a repository of 500 scenarios and
the traffic-light program (from the set of 10,50 or 100 of

TABLE 1: Relative reduction in emissions and travel-time
on 1000 scenarios using Match-Based Program-Selection.
Consistent 10-12% improvement. This is measured over
previously optimized timings. The lower portion of the table
provides the number of scenarios that were improved, made
worse, or stayed the same using the Match-Based-Program
Selection.

O
pt

im
iz

ed
B

as
el

in
e

C=100 C=50 C=10

Emissions (CO2, mg) 100% 90.6% 91.9% 91.7%
Travel Time (sec.) 100% 87.7% 89.4% 89.2%

Scenarios Improved 900 884 925
Tied 18 23 31

Worse 82 93 44

them depending on the experiment) that work best with each.
In deployment, every 15 minutes, 432 traffic-density mea-
surements across all the road segments are recorded. These
are obtained by examining patterns in Android cell phone
usage (or alternatively, any mechanical or camera-based
“standard” sensors can be used). From these measurements,
data extraction proceeds in a straightforward adaptation of
the method described earlier:

• Data Collection: 432 traffic density measurements are
recorded.

• Data Reduction: The same high-variance dimensions
found in Step (1) are extracted and the rest discarded.

• Find Best Match: Based on the extracted features, the
the most similar k scenarios out of the the 500 are
found. This is done via a k-nearest neighbor search on
the high-variance-dimensions of the 432-dimensional
vector using an L2-Euclidean distance metric.

• Deployment of the new Program: As in standard
k-nearest-neighbor lookup, from these k matches,
the associated best light settings are tabulated. The
setting with the most votes (weighted by the scenario’s
closeness) are deployed to the 9-lights. (In our
experiments, 1 ≤ k ≤ 10, revealed similar, good,
performance).

To fairly test our system, we can no longer use the
500 scenarios from which we developed the model. In-
stead, 1,000 new scenarios were created. As before, the
scenarios were generated by uniformly sampling one of the
100 distributions of origin/destination pairs. Then, the 1,000
scenarios were simulated with the above procedure instan-
tiated to control the lights. No knowledge of the probability
distributions used to generate each scenario was given to
the system; all similarity measurements were directly based
on observation of traffic flows — reflecting how the system
would be deployed.

Table 1 compares the performance of the baseline

less ← emissions → more
Figure 4: Histogram of emissions of trials with and without
Match-Based Selection. The baseline (orange/lighter) is a
previously optimized light schedule. Note histogram’s shift
to the left (lower emissions) with matching (blue/darker),
indicating significant reduction emissions. Similar graphs
were seen with trip-completion times.

NASH-optimized lights with those that used the match-
based light switching to instantiate a new program after
15 minutes of observation. The reduction in CO2 emissions
and travel times, compared to the single NASH-optimized
baseline are given (reductions in CO are similar).

Table 1 also shows the number of scenarios that had an
overall reduction in emissions and a lower average travel
time. Approximately 90% of the scenarios were improved.
This is also reflected in Figure 4, where there is a large shift
to the left (lower emissions) when the clustering approach
was used.

Despite the large variability in the distributions of flows,
and the number of unique underlying probability distri-
butions (100) that were employed to generate the traffic
flows, the results were very encouraging across all settings
of |C|. For example, though there was a large mismatch
between the number of clusters hypothesized when we set
|C| = 10 and the actual number of underlying probability
distributions, the system modeled a sufficient amount of the
underlying variability to yield improvement in the majority
of test scenarios (Table 1, last column). This resulted in
substantial average savings across all scenarios.

6. Discussion and Future Work

Unlike many previous studies, we do not change light
programs based on set times. Additionally, we do not tune
programs on-the-fly to adapt to changing conditions. Instead,
we continuously monitor the traffic flow to select a light
program, from a large set of pre-optimized light programs,
that works best for the observed traffic conditions. The
approach is fully data-driven and, as such, requires an
extensive number of simulations to not only optimize a large
set of light programs, but also to assign each program to the
traffic flows that is best suited to handle.

In the first step of this study, we set the light controllers
such that the program instantiated worked well across a
wide variety of traffic flows. Though this, itself, provided
a substantial benefit over default settings, we then tried to
optimize the controllers to more specific traffic flows. To
find out which traffic flows were best representative of those
seen, we used a clustering approach, with the appropriate
feature selection mechanisms, to group the observed traffic
flows and optimized the parameters for each cluster. In
deployment, the current traffic flows is matched to the
previously seen clusters, and the associated light program
instantiated.

Improved performance in both emissions and travel time
is consistently obtained over the previously optimized lights
by matching observed traffic densities to similar scenarios
and then instantiating the known good light setting for that
scenario. Intuitively, each scenario serves as a fingerprint
to which observed densities are matched. The most similar
related approaches comes from the field of Case-Based
Reasoning, see [26]–[28].

This paper incorporated machine learning into the proce-
dure of light-program selection. This works in conjunction
with related machine learning approaches that are used
for the individual light program optimization. By using
the clustering approach to match current flows to those
previously seen, we can expand the applicability of the op-
timized system by simply collecting more historic data that
encompasses more periods of the day, without sacrificing
the performance at peak times.

There are five immediate next steps. The most important
is moving beyond the synthetic data – scaling and testing
this system on city traffic data is paramount. Using the
synthetic data, we were able to more thoroughly examine
the effects of number of clusters, the clustering procedures
and the optimization schemes. The experimental results were
encouraging: the large number of underlying distributions
that were successfully modeled is promising for the vari-
ations expected in real data. Second, we presented a new
approach to adapting traffic light schedules - simply select-
ing the best one from a set of pre-optimized programs. This
should be quantitatively compared to previous approaches,
such as those that rely on adaptation of existing schedules.
Third, employing this system with lights triggered by exter-
nal (e.g. induction-loop/camera) sensors is readily possible,
though we will need to address the potential challenges
in measuring similar traffic flows, as the variations in ex-
pected flows within any single program may be substantially
different with actuated controllers than with non-actuated
controllers. Fourth, though the computational requirements
for this study were immense, with well over 20,000 sim-
ulations performed, there is room for further experiments.
Ablative studies and determining the effects of non-uniform
distribution sampling should be conducted. This can be done
in simulation prior to collecting real data. The fifth avenue
for future work is the most speculative. In this work, we used
a system to discretely select between light controllers. The
method for determining similarity was easily implemented:
k-nearest neighbors with an L2 distance. An alternative is

to use tools such as deep neural networks to not only model
and match the traffic flows to previously seen examples,
but also to potentially weight and mix multiple controller
settings to best address the current traffic flows.

References

[1] M. Covell, S. Baluja, and R. Sukthankar, “Micro-auction based traffic
light control,” in ITSC-2015, 2015.

[2] S. Baluja, M. Covell, and R. Sukthankar, “Approximating the ef-
fects of installed traffic lights:a behaviorist approach based on travel
tracks,” in IEEE Intelligent Transportation Systems Conference-2015,
2015.

[3] ——, “Traffic lights with auction-based controllers: Algorithms
and real-world data,” CoRR, vol. abs/1702.01205, 2017. [Online].
Available: http://arxiv.org/abs/1702.01205

[4] M. Wiering, “Multi-agent reinforcement learning for traffic light
control,” in ICML, 2000, pp. 1151–1158.

[5] I. Arel, C. Liu, T. Urbanik, and A. Kohls, “Reinforcement learning-
based multi-agent system for network traffic signal control,” Intelli-
gent Transport Systems, IET, vol. 4, no. 2, pp. 128–135, 2010.

[6] B. Abdulhai, R. Pringle, and G. J. Karakoulas, “Reinforcement learn-
ing for true adaptive traffic signal control,” Journal of Transportation
Engineering, vol. 129, no. 3, pp. 278–285, 2003.

[7] K. Dresner and P. Stone, “Traffic intersections of the future,” in AAAI-
2006, 2006, pp. 1593–1596.

[8] D. E. Moriarty and P. Langley, “Learning cooperative lane selection
strategies for highways,” in AAAI/IAAI,1998, 1998, pp. 684–691.

[9] E. M. Almannaa M. and R. H.A., “A novel clustering algorithm for
traffic operational analysis,” in 97th Transportation Research Board
Annual Meeting, 2018.

[10] J. Luk, “Two traffic-responsive area traffic control methods: Scat and
scoot,” Traffic engineering & control, vol. 25, no. 1, 1984.

[11] C. Kergaye, A. Stevanovic, and P. T. Martin, “An evaluation of scoot
and scats through microsimulation,” in International Conference on
Application of Advanced Technologies in Transportation, Transporta-
tion and Development Institute, Athens, Greece, 2008.

[12] A. Stevanovic, C. Kergaye, and P. T. Martin, “Scoot and scats: A
closer look into their operations,” in 88th Annual Meeting of the
Transportation Research Board. Washington DC, 2009.

[13] D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker, “Recent de-
velopment and applications of SUMO - simulation of urban mobility,”
Int. J. On Advances in Systems and Measurements, vol. 5, 2012.

[14] D. Barth, “The bright side of sitting in traffic: Crowdsourc-
ing road congestion data,” http://googleblog.blogspot.com/2009/08/-
bright-side-of-sitting-in-traffic.html, 2009.

[15] T. Nagatani, “The physics of traffic jams,” Reports on progress in
physics, vol. 65, no. 9, p. 1331, 2002.

[16] T. Li, “Nonlinear dynamics of traffic jams,” Physica D: Nonlinear
Phenomena, vol. 207, no. 1-2, pp. 41–51, 2005.

[17] D. E. Goldberg, Genetic Algorithms in Search, Optimization and
Machine Learning. Addison-Wesley Longman Publishing Co., Inc.,
1989.

[18] J. J. Sanchez, M. Galan, and E. Rubio, “Genetic algorithms and cellu-
lar automata: a new architecture for traffic light cycles optimization,”
in Congress on Evolutionary Comp., vol. 2. IEEE, 2004, pp. 1668–
1674.

[19] B. Park, C. J. Messer, and T. Urbanik II, “Enhanced genetic algorithm
for signal-timing optimization of oversaturated intersections,” Trans-
portation Research Record: Journal of the Transportation Research
Board, vol. 1727, no. 1, pp. 32–41, 2000.

[20] A. M. Turky, M. S. Ahmad, and M. Z. M. Yusoff, “The use of genetic
algorithm for traffic light and pedestrian crossing control,” Int. J.
Comput. Sci. Netw. Security, vol. 9, no. 2, pp. 88–96, 2009.

[21] T. Kalganova, G. Russell, and A. Cumming, “Multiple traffic signal
control using a genetic algorithm,” in Artificial Neural Nets and
Genetic Algorithms. Springer, 1999, pp. 220–228.

[22] A. Juels and M. Wattenberg, “Stochastic hillclimbing as a baseline
method for evaluating genetic algorithms,” in NIPS, 1995.

[23] R. Kohavi and G. H. John, “Wrappers for feature subset selection,”
Artificial intelligence, vol. 97, no. 1-2, pp. 273–324, 1997.

[24] P. Mitra, C. Murthy, and S. K. Pal, “Unsupervised feature selection
using feature similarity,” IEEE transactions on pattern analysis and
machine intelligence, vol. 24, no. 3, pp. 301–312, 2002.

[25] T. Kohonen, “Learning vector quantization,” in Handbook of Brain
Theory and Neural Networks, 1995.

[26] A. Kofod-Petersen, O. J. Andersen, and A. Aamodt, “Case-based
reasoning for improving traffic flow in urban intersections,” in Case-
Based Reasoning Res. and Dev. Springer, 2014, pp. 215–229.

[27] D. B. Leake, Case-Based Reasoning: Experiences, lessons and future
directions. MIT press, 1996.

[28] J. Kolodner, Case-based reasoning. Morgan Kaufmann, 2014.

