
9

Massively Parallel, Adaptive, Color Image Processing for Au-

tonomous Road Following

Todd M. Jochem and Shumeet Baluja

Carnegie Mellon University, USA

Abstract

In recent years, signi�cant progress has been made towards achieving autonomous roadway

navigation using video images. None of the systems developed take full advantage of all the

information in the 512 � 512 pixel, 30 frame/second color image sequence. This can be at-

tributed to the large amount of data which is present in the color video image stream (22.5

Mbytes/second) as well as the limited amount of computing resources available to the systems.

We have increased the computing power available to the system by using a data parallel com-

puter. Speci�cally, a single instruction, multiple data (SIMD) machine was used to develop

simple and e�cient parallel algorithms, largely based on connectionist techniques, which can

process every pixel in the incoming 30 frame/second, color video image stream. The system pre-

sented here uses substantially larger frames and processes them at faster rates than other color

road following systems. This is achievable through the use of algorithms speci�cally designed

for a �ne-grained parallel machine as opposed to ones ported from existing systems to parallel

architectures. The algorithms presented here were tested on 4K and 16K processor MasPar

MP-1 and on 4K, 8K, and 16K processor MasPar MP-2 parallel machines and were used to

drive Carnegie Mellon's testbed vehicle, the Navlab I, on paved roads near campus.

9.1 Introduction

In the past few years, the systems designed for autonomous roadway navigation using

video images have relied on a wide variety of di�erent techniques

[

Thorpe, 1990

]

. The

techniques range from neural network architectures that learn the appropriate road fea-

tures required for driving

[

Pomerleau, 1991

]

, to systems which �nd road lines and edges

based on prede�ned road models

[

Kluge, 1992

]

. Many of these systems have been able

to drive vehicles at high speeds, in tra�c, and on real highways. However, none of

these systems have been able to use all of the information present in 512x512 pixel, 30

frame/second color input image stream. This can be attributed to the limited computing

power available to the systems in the face of the sheer magnitude of the data presented

to them (22.5 Mbytes/second).

Several methods can be used to handle these large sets of data which occur in road

following tasks. One method is to use gray-scale images instead of color images. Gray-

scale images cut the amount of data which must be processed by two-thirds. However,



282 Jochem and Baluja

even at this lower data rate, processing every pixel is still extremely di�cult, and sub-

sampling

[

Crisman, 1990

]

and windowing techniques

[

Turk, 1988

]

are frequently used to

try to achieve frame rate processing on the incoming color data. Another method is

to preprocess the color image, projecting the 3D color data into a single value at each

pixel

[

Turk, 1988

]

. This method, like windowing, has the desired e�ect of reducing the

amount of data which must be processed by the system. De�ning regions of interest

and only processing the pixels within them is another possibility and has been explored

by

[

Kluge, 1992

]

and

[

Dickmanns, 1992

]

. A �nal method, and the method we chose to

use, is to increase the available computing power by using a massively parallel, single in-

struction, multiple data (SIMD) computer. The system uses substantially larger frames

and processes them at faster rates than other color road following systems. The improved

rates are achieved through the use of algorithms speci�cally designed for a �ne-grained

parallel machine. Although higher resolution does not directly lead to increased driving

accuracy, systems which can handle these resolutions at faster rates have a clear advan-

tage in other domains were �ne features are more important. It is our hope that the

rudimentary algorithms presented in this paper can be extend to other such vision tasks.

9.2 Overview of System

As is the case in nearly all vision system, a number of assumptions have been made about

the environment which simplify the problem. The assumptions relate to the road model,

operating conditions, and available sensors. Two assumptions which our system makes

are the de�ning road model and the relationship between the colors in each scene and

their placement within the color space. These assumptions will be described in greater

detail in the upcoming paragraphs.

The �rst assumption is that of a trapezoidal road model. In this model, the road

is described in the image as a region bounded by four edges. Two of these edges are

de�ned as the location where road and non-road meet while the other two are the top

and bottom of the image itself. These four edges constitute the trapezoid. The road

center line is de�ned to be the geometric line which bisects the trapezoid vertically. For

a graphic representation of this model see Figure 9.1. In addition, our system assumes

that the road remains a constant width through all of the input images. This constraint

means that although the trapezoid of the road may be skewed to the left or right, the top

and bottom edges remain a constant length. As the lookahead of our camera is small,

this assumption does not hinder performance. This issue will be returned to later.

Color clusters play an important role in our system. A color cluster is de�ned as the

group of pixels in the 3D (red, green, blue) color space which are closest to a particular



Massively Parallel, Adaptive, Color Image Processing for Autonomous Road Following 283

Road

Non-Road

Trapezoidal road model
superimposed on image.

Road center line.

Road/Non-Road edge

Figure 9.1

Trapezoidal road model.

central, or mean, pixel value. In our representation, closeness is de�ned by the sum of

squared di�erence between a pixel's red, green, and blue values and a central pixel's red,

green, and blue values.

An assumption, based on this concept, is that the colors in the image can be adequately

represented, or classi�ed, by a small (between 5 and 30) number of clusters. In our

system, the ability of a set of clusters to classify an image is measured by how well the

mean values of the clusters of the set can reconstruct the original input image. This will

be discussed further in Section 9.3.3. Our �nal assumption is that any particular cluster

can only correctly classify pixels in the road or the non-road portions of the image; it

cannot correctly classify pixels in both. Because the road and non-road pixels of typical

road images, when plotted in color space, form largely disjoint sets, and because of the

nature of the algorithm which partitions color space into clusters, this has proven to be

a reasonable assumption. (See Figure 9.3.)

The system we have developed is an iterative, three step procedure in which every pixel

in the input image is �rst classi�ed by a color cluster, then labeled as road or non-road,

and �nally used to �nd the center line of the road. The world coordinates of this line

are passed to the vehicle controller which guides the vehicle on the speci�ed path. This

process is supplemented by an initialization phase which occurs only once on the �rst

image the system processes. A high level view of the system architecture is shown in

Figure 9.2.



284 Jochem and Baluja

Input Image First
Image

Create
Clusters

Train
Perceptron

Classify
Pixels

Label
Pixels

Find Center
Line

Vehicle
Controller

Center Line
Coordinates

No

Yes

Figure 9.2

Block diagram of system architecture. Steps located inside the large black box are computed in parallel

on the processor array.

This system is pixel driven; thus all computation can be done very e�ciently on a

massively parallel processor array. Instead of mapping existing road following algorithms

to the processor array, we integrated algorithms which could exploit the tightly coupled

processor array and take advantage of the limited capabilities of the individual processors.

The resulting system is fully parallelized, and performs comparably to the state-of-the-

art.

Our system is composed of three main algorithms, all of which are parallelized on

the processor array. The three parts are a clustering algorithm, a combining al-

gorithm, and a road �nding algorithm. The clustering algorithm is an iterative

procedure which uses a parallel competitive learning implementation of the isodata clus-

tering algorithm

[

Ball, 1967

]

to �nd the mean red, green, and blue values for each color

cluster in the �rst input image. This will be described in greater detail in the next

section.

The combining algorithm uses a single perceptron which is trained to correctly de-

termine whether a pixel in the input image is a road pixel or a non-road pixel. This

is accomplished by using information derived from classi�cation of the pixel using the

means developed in the clustering algorithm. The clustering and combining network

representations will be described later.



Massively Parallel, Adaptive, Color Image Processing for Autonomous Road Following 285

Finally, after the road has been cohesively segmented from the input image, a technique

which extracts the center line of the road (or any safe path) from the input image is

needed. In our system, a parallelized Hough transform is applied in which the topology

of the processor array is used to determine the location of the center line of the road.

9.3 The Clustering Algorithm

If every pixel in the input road image is plotted in a three dimensional space with red,

green, and blue being the axes (the color space), clustering of pixels occurs. These

clusters often correspond to regions in the image. For example, in an image of a road

through a grassy �eld, two clusters would be expected in the color space, one cluster for

the road and one cluster for the grass. See Figure 9.3. If the mean color value of each

cluster were computed, the cluster centered around the road pixels would be gray while

the one centered around the grass would be green. By assigning all pixels in the input

image which are `closest' to the road mean as `road' and all those that are `closest' to

the grass mean as `non-road,' it is possible to segment the image so that the road can

be easily discriminated from the grass. The clustering algorithm implemented for this

system is more formally known as competitive learning, and is described with more

mathematical rigor in the next section. The implementation of this learning algorithm

in our system is detailed in Section 9.3.2.

9.3.1 Competitive Learning

Competitive learning is an unsupervised connectionist learning technique which attempts

to classify unlabeled training data into signi�cant clusters or classes in a feature space.

In this framework, many units compete to become active, or turn on, when presented

with input training data. The single unit which wins is allowed to `learn.' Because this

technique is unsupervised, it requires no teaching signal to tell the units what to learn.

The units �nd relevant features based on the correlation present in the unlabeled training

data.

A typical competitive learning network is composed of several output units, O

i

, which

are fully connected to each input through a connection weight. To �nd the activation

of the unit, the input activations, �

j

, are multiplied by the corresponding connection

weights, w

i;j

, and summed to produce an output activation. Mathematically,

O

i

=

X

j

w

i;j

�

j

= w

i

�

Note that w

i

� is the vector notation representation of the sum. The output unit which

has the largest activation is declared the winner. If weights for each unit are normalized,



286 Jochem and Baluja

0
50

100
150

200
250 0

50
100

150
200

250

0

50

100

150

200

250

300

Red

Green

B
lu

e

0
50

100
150

200
250 0

50
100

150
200

250

0

50

100

150

200

250

Red

Green

B
lu

e

0
50

100
150

200
250 0

50
100

150
200

250

0

50

100

150

200

250

300

Red

Green

B
lu

e

Figure 9.3

Color space for three typical road scenes.



Massively Parallel, Adaptive, Color Image Processing for Autonomous Road Following 287

then the winning unit, denoted with by i

�

, can be de�ned as the unit whose inputs most

closely match its weights. This can be expressed as:

j w

i

�

� � j�j w

i

� � j

Because the weights in each unit start out as random values, a method is needed to

train them. The intuitive idea is to learn weights which will allow the unit to correctly

classify some portion of the feature space. The technique that is typically used, and the

one used in our system, is to move the weights of the winning unit directly towards the

input pattern. This method is known as the standard competitive learning rule.

This rule can be expressed as:

�w

i

�

;j

= �(�

k

j

� w

i

�

;j

)

where � is the learning rate and k is the training pattern

[

Hertz, 1991

]

. We have adapted

the standard competitive learning rule to the parallel paradigm and have developed the

parallelized standard competitive learning rule. Mathematically speaking, this

rule can be expressed as:

�w

i

�

;j

=

�

u

u

X

k=0

(�

k

j

� w

i

�

;j

)

where u represents the total number of training patterns classi�ed by unit i. An impor-

tant feature to notice about the parallelized standard competitive learning rule is that

the contribution of each training pattern to the overall weight change can be computed

independently. This means that the contribution can be calculated concurrently for many

training patterns. It is this type of algorithm which can take advantage of a �ne-grained

parallel machine.

9.3.2 Pixel Clustering

Our system typically uses �ve clusters. These clusters are global structures which any of

the processors can access. We have also experimented with up to 30 clusters; however,

we have found that using only �ve provides a good balance between e�ectiveness and

computational load. The �rst step of the algorithm is to randomly initialize each color

cluster's mean red, green, and blue values to a number between 0 and 255. Next, the �rst

image of the color video stream is mapped, using a two dimensional hierarchical mapping

scheme (shown in Figure 9.4), onto the processor array. With each processor containing

a small block of the image, the clustering algorithm can be started. The clustering

algorithm is a two stage iterative process consisting of clustering and evaluation steps.



288 Jochem and Baluja

1 2 3 4

7 8

9 10 11 12

13 14 15 16

5 6

1 2

5 6

3 4

7 8

9 10

13 14

11 12

15 16

Two Dimensional Array of Data
Processor 1 Processor 2

Processor 3 Processor 4

Figure 9.4

Two dimensional hierarchical mapping takes a 2D array of data like an image and maps it onto the

processor array in a block-like fashion. (Image reproduced from MasPar MPDDL manual.)

In this algorithm, clustering is done with respect to a pixel's location in color space, not

in regard to whether the pixel represents road or non-road.

For every pixel on each processor, the cluster to which it is closest is determined.

`Closeness' is computed as the sum of squared di�erence between the current pixel's

red, green, and blue values and the mean red, green, and blue values of the cluster

to which it is being compared. The cluster for which the sum of squared di�erence is

smallest is the `closest' cluster and we say that the cluster classi�es that pixel. Each

processor has �ve winning cluster counters, one corresponding to each cluster. The value

of each winning cluster counter represents the number of pixels which are classi�ed by

the respective cluster on a particular processor. Because the clustering algorithm is

based on competitive learning, the red, green, and blue mean values of each cluster are

represented as weights on input connections to units in the competitive learning network.

Each unit represents one color space cluster. (From this point, the term cluster will be

used to identify the corresponding unit in the competitive learning network.) Learning

takes place by adjusting these weights to more accurately re
ect the actual mean red,

green, and blue values of the cluster in color space. This is accomplished by adjusting the

cluster weights toward the mean value of all pixels which the cluster has classi�ed. To

do this we must compute the di�erence between the current pixel value and the cluster

mean pixel value and then adjust the cluster mean by some proportion of the computed



Massively Parallel, Adaptive, Color Image Processing for Autonomous Road Following 289

di�erence. This is essentially the parallelized standard competitive learning rule.

For example, assume that a pixel with a color space location of (100, 90, 200) is closest

to a cluster with mean color space value of (110, 85, 175) and that it is the only pixel

which this cluster classi�ed. Remember, the 110, 85, and 175 are actually the weight

values of the closest color cluster. In order to make the cluster mean value more closely

match the pixel which it classi�es, the di�erence is �rst computed as (100-110, 90-85,

200-175) = (-10, 5, 25). Now we adjust the cluster weights by these values and the new

cluster mean is (110 + -10, 85 + 5, 175 + 25) = (100, 90, 200). This matches the pixel

value exactly. In reality, very seldom does a cluster only classify one pixel. In general,

the di�erence is the average di�erence of all pixels which were classi�ed by the cluster.

Through this iterative process we continually improve the location of each cluster's mean

to more accurately represent the pixels to which it is closest.

In our system, there can be many pixels on a processor that are classi�ed by each

cluster. For every pixel that a cluster classi�es, the di�erence described above is computed

and added to a local (processor based) di�erence accumulator for the cluster. In addition,

the local winning cluster accumulator that corresponds to the cluster is incremented. The

di�erence accumulator consists of three sums, each corresponding to the red, green and

blue di�erences. Once every pixel has been classi�ed and its di�erence computed and

stored, the values from all local winning cluster counters and di�erence accumulators

are summed using a global integer addition operator

1

and stored in global accumulators.

(See Appendix .3 for an overview of the MasPar MP-1 and Appendix .4 for a description

of the actual operators used.) Now, the appropriate adjustments to the cluster weights

are calculated. This is done by dividing each weight's di�erence value stored in the

global di�erence accumulator for a particular cluster by the number of pixels that were

classi�ed by the cluster, given by the value in the global winning cluster counter. This

value is essentially the average di�erence between this cluster's current weights and all

pixels that it classi�ed.

The only problem left to overcome is handling clusters which did not classify any

pixels. This is a common occurrence in the �rst clustering iteration, as the weights are

randomly initialized and can be set to values in the remote corners of the color space.

To rectify this, instead of �nding the cluster which is closest to a pixel value, we �nd

the cluster which is closest to the one that did not classify any pixels. The sum of the

squared di�erence between the weight (mean) values of these two clusters' is computed

as described above. This di�erence is used to adjust the cluster which classi�ed no

pixels. This intuitive heuristic brings the remote clusters to more promising locations,

and because the di�erence is computed before cluster weights are updated, two clusters

1

More speci�cally, the MasPar MPL reduceAdd32() function is used.



290 Jochem and Baluja

90.0

80.0

70.0

60.0

50.0

30.0

5.0 10.0 15.0 20.0 25.0

40.0

E
rr

or
 P

er
 P

ix
el

Number of Clusters

(S
um

 o
f 

rg
b 

su
m

 o
f 

sq
ua

re
d 

di
ff

er
en

ce
s)

Figure 9.5

As the number of clusters increases, error in reconstruction decreases.

cannot have the exact same location. Although the method is very simple, it works well

in our domain. Another method of handling this problem is moving the empty cluster

toward the cluster which classi�ed the most pixels. This could have the e�ect of breaking

up large clusters into smaller, more accurate ones.

Although the clustering algorithm described here uses �ve clusters, we have evaluated

system performance using up to 30 clusters. (See Figure 9.5.) As is expected, as the

number of clusters increases, the classi�cation becomes more exact, and the �nal error

in reconstruction is reduced. (Image reconstruction is discussed in the next section.)

The trade-o� associated with a lower reconstruction error (i.e. better classi�cation) is

the time involved in processing more clusters. This will be discussed in further detail in

section 9.7.

Finally, all cluster weights are updated using the computed adjustments. Upon comple-

tion, the evaluation stage of the algorithm is entered. Note that typically, in competitive

learning, the mean value is not adjusted by the entire computed di�erence, but rather,



Massively Parallel, Adaptive, Color Image Processing for Autonomous Road Following 291

by a fraction of the di�erence. This fraction is known as the learning rate. When the

learning rate is 1.0, as it is in our case, the competitive learning algorithm reduces to the

isodata clustering algorithm.

9.3.3 Evaluation

In order to determine when the clustering process should stop (i.e. when the cluster

weights have converged) a cluster evaluation process must be employed. We have devel-

oped a technique which allows the system to perform self evaluation. This technique is

based on the ability of the cluster weights to accurately reproduce, or reconstruct, the

input image. The self evaluation process begins by classifying every pixel in the input

image according to the most recently updated cluster weights. As in the clustering stage,

classi�cation is done locally on each processor on the distributed input image using the

previously described closeness measure. Once the closest cluster has been found, the

pixel is assigned the red, green, and blue mean values of this cluster. (Remember, the

mean values are described by the cluster's weights.) Next, the squared di�erence be-

tween the pixel's assigned value, given by the closest cluster mean, and its actual value,

given by the pixel's value in the original input image, is computed and stored in local

accumulators. After the squared di�erences have been calculated and stored for all pixels

on each processor, a global average squared di�erence value is computed using a global


oating point addition operator

2

and knowledge of the input image size. If the change

between the current average squared di�erence and the previous clustering iteration's

average squared di�erence for each of the red, green, and blue bands is su�ciently small,

clustering ends and the combining algorithm described in the next section begins. If the

change in the average squared di�erence is not yet su�ciently small, the clustering cycle

described in the preceding paragraphs repeats using the current cluster weights. The

evolution of the reconstructed image as competitive units learn cluster means is shown

in Figure 9.6.

More rigorously, the evaluation process looks at the rate of change, or slope, of average

squared di�erence values. When this slope becomes lower than a user supplied threshold

for all three color bands, a minima is said to have been reached, and any further attempts

at clustering could yield only minimal improvement. It is important to understand that

the rate of change of the average squared di�erence between actual and reconstructed

images is used instead of simply the average squared di�erence because the rate of change

represents the amount of learning that is taking place. If only the average squared di�er-

ence was used, it would be di�cult for the system to determine when to end clustering,

as the average squared di�erence does not re
ect how much learning is taking place. Al-

2

More speci�cally, the MasPar MPL reduceAddf() function is used.



292 Jochem and Baluja

Original Input Image After 1 Training Iteration

After 2 Training Iterations After 3 Training Iterations

After 8 Training Iterations After 12 Training Iterations

Figure 9.6

Evolution of the reconstructed image as competitive units learn. As the clusters move in the color

space, they more accurately represent the actual colors of the pixels.



Massively Parallel, Adaptive, Color Image Processing for Autonomous Road Following 293

though a predetermined lower bound of the average squared di�erence could be used to

terminate learning, the lower bound value depends upon the number of clusters available

to the system. With additional clusters, more colors can be independently represented.

Independent representation of colors allows for a more accurate image reconstruction and

a lower average squared di�erence between actual and reconstructed images. By using

the rate of change of the average squared di�erence, the system can always converge to

a locally (in the color space) good solution, regardless of how many clusters are available

for it to use. It has been our experience that approximately 20 cluster-evaluate iterations

are necessary for proper clustering of the initial input image.

In the current implementation of our system, the clustering algorithm is run on only

the initial image of the color video stream. The correct cluster means may change in sub-

sequent images. Nonetheless, through our experimentation on paved roads near campus,

we have found that the change is too small to cause system performance degradation.

This di�ers from results by

[

Crisman, 1990

]

and is potentially due to the greater number

of pixels which are used to form the color clusters and the robustness of our combining

algorithm. We have not yet looked deeply at this di�erence and it remains open for

future study.

9.4 The Combining Algorithm

In order to determine where the road is located in the input image, it is necessary to

separate the road from its surroundings. Although it is easy to assume that a single

cluster will always classify the road, as the road is almost uniformly gray, and the rest of

the clusters will classify non-road, this is not the case in practice. For example, consider

the case of a shadow across the road. In this circumstance, two or more clusters converge

to areas in the color space that corresponded to the brightly lit road, the shadowed

road, and possibly to the minute color variations in the transition between light and

shadow. Since di�erent clusters classify the roadway in this example, a technique must

be found to unify this information. No matter if a road pixel is in sunlight or shade,

it should be correctly classi�ed as part of the road. As with the clustering algorithm,

the combining algorithm uni�es the di�erent clusters of the same type in a distributed

manner by using every pixel in the input image. Another feature of this algorithm, similar

to the clustering algorithm, is its self evaluatory nature. In order to fully understand the

combining algorithm, rudimentary knowledge of Arti�cial Neural Networks is needed.

An overview is provided in the following section.



294 Jochem and Baluja

x1

x2

x3 wi*xi

n

i = 0

w1

w2

w3

wn

xn

Weighted Connections

Activation Function

Output

Σ

Figure 9.7

The arti�cial neuron works as follows:

the summation of the incoming (weights * activation) values is put through the activation function in

the neuron. In the above case, this is a sigmoid. The output of the neuron, which can be fed to other

neurons, is the value returned from the activation function. The x's can either be other neurons or

inputs from the outside world.

9.4.1 Arti�cial Neural Networks

At the heart of the combining algorithm is a single, global perceptron with a hyperbolic

tangent activation function. A perceptron is a connectionist building block used to form

Arti�cial Neural Networks (ANN). A perceptron is loosely based upon the design of a

single biological neuron. The key features of each of these simulated neurons are the

inputs, the activation function, and the output. A model of a simple neuron is shown in

Figure 9.7. The inputs to each neuron are multiplied by connection weights giving a net

total input. This net input is passed through a non-linear activation function, typically

the sigmoid or hyperbolic tangent function, which maps the in�nitely ranging (in theory)

net input to a value between certain limits. We have chosen to use the hyperbolic

tangent activation function because, in practice, the symmetry of this function allows

an inactive unit (with -1 activation) to contribute to the net input of units to which

it has connections. This mapping is also know as `squashing' and allows the network

to internally represent a wide range of inputs with a small set of values. `Squashing'

contributes to the network's ability to generalize. Once the `squashed' value has been

computed, it can either be interpreted as the output of the network, or used as input to

another neuron.

A simple ANN is composed of three layers; the input layer, the hidden layer and the



Massively Parallel, Adaptive, Color Image Processing for Autonomous Road Following 295

weighted connections

input layer hidden layer output layer

neurons

inputs

Figure 9.8

Shown is a fully connected three layer ANN. Each of the connections can change its weight

independently.

output layer. Between the layers of units are connections containing weights. These

weights serve to propagate signals through the network. (See Figure 9.8.) Given any

set of inputs and outputs, and a su�ciently large network, a set of connection weights

exist which can correctly map the network's input to the desired output. The process

of �nding the correct weights is known as `training the network.' Typically, the network

is trained using a technique called backpropagation.

[

Rumelhart, 1986

]

Backpropagation

can be thought of as gradient descent in the connection weight space. Once the network

has been trained, given any set of inputs which are similar to those on which it was

trained, it will be able to reproduce associated outputs by propagating the input signal

forward through each connection until the output layer is reached.

Arti�cial neural networks were chosen as the learning tool in our system because of

their ability to generalize. If ANN's are not over-trained and are su�ciently large, after

training, they should be able to generalize to input patterns which have not yet been

encountered. Although the output may not be exactly what is desired, it should not be

a catastrophic failure either, as would be the case with many non-learning techniques.

Therefore, in training the ANN, it is important to get a diverse sample group which

gives a good representation of the input data which might be seen by the network during



296 Jochem and Baluja

simulation.

9.4.2 The Combining Perceptron

The combining perceptron in our system is trained, by modifying its input weights, to

di�erentiate road pixels from non-road pixels using information derived from knowledge

of which clusters correctly and incorrectly classify a pixel in the input image. The

output of the perceptron can be thought of as the `certainty' of a particular pixel having

a characteristic road color. The perceptron has one input weight for each cluster as well

as a bias weight which is always set to 1.0. (Having a bias weight is a standard technique

used in perceptron training.) It is important to note that the same global perceptron is

used for all pixels on every processor.

Alternatively, probabilistic methods which take into account cluster size and location

could be used to di�erentiate between road and non-road clusters. This approach has

been explored by

[

Crisman, 1990

]

and will be discussed in greater detail in section 9.8.

In order to bootstrap the system, the road region in the initial image is outlined by

the user. From this original image, we can determine which colors should be classi�ed

as road and which as non-road. The outline also determines the trapezoidal road model.

Because we are using a two dimensional mapping, the left and right edges of the outlined

region can be superimposed onto the processor array. Processors which lie on these edges

are marked, and ones which are between the left and right edges are said to contain road

pixels while those outside the edges contain non-road pixels. This interaction only occurs

once. The algorithm automatically proceeds to classify each pixel in the input image

using the clusters previously formed. After a pixel has been classi�ed, if it is located

on a road processor (i.e. within the user de�ned road region), the perceptron is given

a target activation value of 1.0. If it is not, the perceptron is given a target activation

value of -1.0.

The input activation to each connection weight of the perceptron is determined by the

following simple rule: if the connection weight is the one associated with the cluster that

correctly classi�ed the pixel, it is given an input activation value of 1.0, otherwise it is

given an input activation value of -1.0. (See Figure 9.9.) Next, each input activation is

multiplied by its corresponding connection weight. These products are summed together

and this value is passed through the perceptron's activation function which yields its

output activation. This process is known as forward propagation. The di�erence, or error,

between the output activation and the target activation is computed. This error, along

with the input activation to each connection, is used in the Least Mean Square learning

rule

[

Widrow, 1960

]

, so that each connection's weight adjustment can be computed.

These adjustments are stored in a local accumulator. After all pixels have been processed,

the local connection adjustments are summed using the global 
oating point addition



Massively Parallel, Adaptive, Color Image Processing for Autonomous Road Following 297

operator and the average adjustment for each connection weight is calculated by dividing

the sums by the number of pixels in the image. Each connection weight is then modi�ed

by its computed average adjustment value.

As with the clustering algorithm, a method has been developed which allows the

system to determine when learning should be stopped. Using this method, the output

activation of the perceptron along with the di�erence between the target and actual

output activation is calculated and stored, as before, for every pixel in the input image.

After all pixels have been processed, the average pixel error is computed and compared

to the average error from the previous perceptron training iteration. If this di�erence is

su�ciently small, learning is halted. If it is not, another iteration of perceptron training is

commenced using the new perceptron connection weights (See Figure 9.10.) The reasons

for using this method of self evaluation are similar to those for the clustering algorithm

but in this case we are measuring the rate of learning of the perceptron instead of the

clusters. After perceptron training is completed, when pixels which are part of the road

are shown to the system, they will be classi�ed uniformly as road, regardless of which

individual cluster correctly classi�ed them. In our case, the output of the perceptron for

a road pixel is near 1.0 while the output for a non-road pixel is close to -1.0.

9.5 The Road Finding Algorithm

In order for the system to successfully navigate the vehicle, it must �nd the correct

path to follow. We will assume that a safe path is down the middle of the road. (By

�nding the center line of the road, o�sets can be computed to drive on the left or right

sides as needed. Because our test path is a paved, three meter wide, unlined road,

simply �nding the center line is su�cient.) The technique that our system employs is a

parallelized version of a Hough transform. (See Appendix .1 for an introduction to Hough

transforms.) Hough transforms and related techniques are not new to the �eld of Parallel

Computing, but because our work crosses traditional boundaries, (those between Parallel

Computing, Arti�cial Neural Networks, and Robot Navigation) a detailed description of

our algorithm, and how it relates to the domain of autonomous roadway navigation,

is warranted. We use the topology of the processor array (a two dimensional grid) to

simulate the parameters of the Hough space and determine the location of the center line

of the road by searching for the most likely combination of all possible parameters. The

parameters which we are trying to �nd are the intersection column of the center line and

the top row of the image and the angle of the center line with respect to the top row.

The �rst step of the road �nding algorithm is to assign each processor in the array a

probability of being road. This is done by averaging the perceptron output activation



298 Jochem and Baluja

Red Green Blue

W W W W

CL #1 CL #2 CL #3 CL #N

Trained Weight

Data Flow

Outputs a value between 1 (road) and -1 (non-road)

Perceptron

Figure 9.9

System Architecture.

Every input pixel is classi�ed in parallel by competitive learning units (CL #1-N). The winning unit,

determined by the Winner-Take-All units (denoted with a W), has its output activation set to 1.0 while

all others are set to -1.0. Again in parallel, a perceptron classi�es this combination of inputs as either

road or non-road.



Massively Parallel, Adaptive, Color Image Processing for Autonomous Road Following 299

After 1 Training Iteration After 2 Training Iterations

After 3 Training Iterations After 4 Training Iterations

After 5 Training Iterations After 6 Training Iterations

Figure 9.10

As the perceptron learns, its output better classi�es road and non-road. The white pixels represent

on-road, while the black o�-road.



300 Jochem and Baluja

values of all pixels within a particular processor, as de�ned by the two dimensional

hierarchical mapping scheme, and scaling them to a value between 0 and 255. Because

the output of the perceptron can be thought of as the `certainty' of a pixel belonging

to the road, the average perceptron output for a processor is related to how many road

pixels the processor contains. A higher average value indicates more road pixels while a

lower value indicates the processor contains many non-road pixels. Processors which lie

on road edges are expected to have intermediate values while ones within the edges are

expected to have high average values. In this formulation, 0 represents non-road and 255

represents road. See Appendix .2 for details about alternative pixel averaging techniques.

Because the road edges were marked in the combining algorithm and because we use

a two dimensional hierarchical mapping, it is easy to compute how wide, in terms of

processors, the road is at each row in the processor array. (See Figure 9.11.) We will

assume that the width of the physical road is constant and that perspective e�ects cause

the same amount of foreshortening in all images that the system evaluates. More pre-

cisely, once we determine that the road is 4 processors wide in the �rst row, 6 processors

wide in the second, 9 in the third, etc., these road width values for each row are held

constant for all future images. Because the camera lookahead is kept small, this is a

reasonable assumption. If the camera lookahead was large, problems would arise in the

case of sharp curves and hills in the road; the �xed width assumption of each row de�ned

by the trapezoidal road model would no longer be valid.

The next step is to center a contiguous, horizontal, summation convolution kernel on

every processor in the array. (A summation convolution is de�ned as one in which all

values marked by the kernel are added together. The kernel speci�es howmany processors

are to be included in the summation.) The width of this convolution kernel is given by

the road width for the row in which the processor is located as determined in the previous

paragraph. The convolution kernel is implemented using local, synchronized, neighbor-

to-neighbor communications functions

3

and can therefore be computed very quickly.

Because the convolution kernel is larger for rows lower in the processor array, not all

processors shift their data at the same time. This slight load imbalance has proven to be

insigni�cant. By using this summation convolution kernel, we have essentially computed

the likelihood that the road center line passes through each processor. Processors which

are near the actual road center line have larger convolution values than ones which are

o�set from the actual center because the convolution kernel does not extend onto non-

road processors. The convolution kernel for processors which are o�set from the actual

road center will include processors which have low probability of being road because the

underlying pixels have been classi�ed as non-road. The convolution process is shown in

3

More speci�cally, the MasPar MPL xnet() functions are used.



Massively Parallel, Adaptive, Color Image Processing for Autonomous Road Following 301

7
7
8
9

10
10
10

12
12
14
14
15
15
16
17
17
19
19
19
20
21
22
22
24

Convolution kernel widths for each
row of the processor array. The
widths are determined at start-up
from the initial image of the road.

Figure 9.11

Convolution kernels for di�erent rows centered on the actual center line of the road superimposed on

the processor array. Arrows indicate the direction of travel of the convolution summation.

Figure 9.11.

Finding the road's center line can be thought of as �nding the line through the processor

array which passes through processors which contain the largest aggregate center line

likelihoods. This is equivalent to �nding the maximum accumulator value in a classical

Hough transform where the intersection column and intersection angle are the axes of the

Hough accumulator. To parallelize this Hough transform, we can shift certain rows of the

processor array in a predetermined manner and then sum vertically up each column of

the array. The shifting gives us the di�erent intersection angles and �nding the maximum

vertical summation allows us to determine the intersection of the center line with the top

row of the image.

For example, before the �rst shift takes place, a vertical summation of the center line

likelihoods up the columns of the processor array is done. In this preshifted con�guration,

the maximum column summation value will specify the most likely vertical center line.

The column in which the maximum value is found will determine the intersection of the

center line with the top row of the input image. Similar statements hold for all shifts

and summations.

The shifting pattern is designed so that after the �rst shift, the row center line likeli-

hood in the bottom half of the processor array will be one column to the east from its

original position. After the second shift, the bottom third will be two columns to the



302 Jochem and Baluja

0 Shifts 1 Shift

4 Shifts 5 Shifts

2 Shifts

3 Shifts

Figure 9.12

Original center line data after 0 through 5 shifts. X's in processors represent non-valid data. The

shading represents di�erent columns and does not signify any road features.

east, the middle third will be one column to the east and the top third will still have not

moved. This pattern can continue until the value of the middle processor in the bottom

row has been shifted to the east edge of the processor array. This will happen after 32

shifts in either direction. In practice, this many shifts is not required as the extreme

curves which are represented by many of the shifts do not occur in typical road images.

(See Figure 9.12.) Shifting to the west is done concurrently in a similar manner.

This shifting represents examining the di�erent center line intersection angles in the

Hough accumulator. Because of the way the values are shifted, vertical binary addition

up the columns of the processor array can be used to compute the center line intersection

and angle parameters. (In this context, binary addition does not refer to binary number

addition, but rather to summing using a binary tree of processors.) By �nding the

maximum vertical summation across all east and west shifts, the precise intersection and

angle can be found very e�ciently. (See Figure 9.13.) Once the intersection column and

angle of the center line have been found, the geometric center line of the road can be



Massively Parallel, Adaptive, Color Image Processing for Autonomous Road Following 303

Potential center lines in unshifted array. Potential center lines in shifted array.

Figure 9.13

After shifting, center lines which were originally angled, are aligned vertically. Summation up the

columns of the processor array can then determine the most likely intersection angle and column.

computed. This geometric description of the center line is passed to the vehicle controller

for transformation into the global reference frame and is used to guide the vehicle. This

algorithm, while perhaps the hardest to understand, takes full advantage of the tightly

coupled processor array. One note about this algorithm: it does not take into account

the orientation of the camera when computing the shift parameters. It assumes that the

camera is aligned with the road in all axis except for pitch (up and down). If the camera

is in any orientation other than this, the shifted image will not accurately resemble the

actual road. In reality the camera is not aligned in this manner, but the deviation is

small enough that it does not degrade system performance.

9.6 Runtime Processing

Once all clusters and the perceptron have been trained, the system is ready for use

either in simulation or to physically control the vehicle. Input images are received by

the processor array and pixel classi�cation occurs using the precomputed cluster means.

The perceptron uses this classi�cation to determine if the pixel is part of the road.

The perceptron's output is supplied to the road �nding algorithm which determines the

center line location. The center line location is transformed onto the ground plane and is

passed to the vehicle controller which guides the vehicle. (At this point, because learning



304 Jochem and Baluja

Number of Size of Color Image

Processors 1024x1024 512x512 256x256 128x128 64x64

4K MP-1 3.1 11.0 30.6 55.4 69.4

4K MP-2 8.2 25.7 55.4 77.8 86.5

8K MP-2 12.4 25.4 34.3 37.5 na

16K MP-1 9.2 20.0 28.3 31.6 na

16K MP-2 18.5 30.0 35.5 37.2 na

Table 9.1

System performance in terms of color frames processed per second.

is complete, the iterative forms of the clustering and combining algorithms are no longer

necessary.)

9.7 Results

The results obtained, both in simulation and driving the vehicle, were very encouraging.

The simulation results in terms of color frames processed per second are summarized in

Table 9.1. These results represent average actual processing speed, in terms of frames

processed per second, measured when running our system on the speci�ed machine with

the set image size. As the number of pixels increased, the frames processed per second

decreased in a roughly linear fashion. The slight irregularity is due to the convolution

kernel in the road �nding algorithm. It is also interesting to note that the 16K MasPar

machines did signi�cantly worse than the 4K machines as the image size decreased.

Again, this is due to the convolution kernel in the road �nding algorithm. We believe

that this is not a load imbalance problem but rather a side e�ect of having a physically

larger array topology. Because of the extra width of the processor array, more local

neighbor-to-neighbor communication operations are required to compute the summation

convolution. As the image size was decreased, these operations came to dominate the

processing time.

We are very pleased with the fact that frame rate computation was achieved on a

4K MasPar MP-1 machine for the 256x256 pixel image case and on a 16K MasPar MP-2

for the 512x512 pixel image case. Although our ultimate goal is to develop algorithms

which can process 512x512 color image streams at frame rate on our 4K MasPar MP-1,

we are excited about the results of our initial experiments. Clearly, �ne-grained SIMD

machines can provide a bene�t in real world vision tasks such as autonomous navigation.

On test runs of our testbed vehicle, the Navlab I, the system has been able to suc-



Massively Parallel, Adaptive, Color Image Processing for Autonomous Road Following 305

cessfully navigate the vehicle on a paved road using 128x128 images. At present, the

major bottleneck is the slow digitization and communication hardware that is supplying

the MasPar with images. This bottleneck limits the image size to 128x128 and the cycle

time to approximately 2.5 Hz. Even so, the system has consistently driven the vehi-

cle in a robust manner over the entire 600 meter path. For comparison, other systems

that have been developed are ALVINN, which processes 30x32 images at 10 Hz (4 times

slower) and SCARF, which processed 60x64 images on a 10 cell Warp supercomputer at

1/3 Hz (32 times slower)

[

Crisman, 1990

] [

Crisman, 1991

]

. These �gures include image

digitization time and slow-downs are computed based on pixels processed per second.

A better comparison of processing speed may actually be the time processing the

image, not including image acquisition. As an example of this, consider the SCARF

system which was also implemented on a parallel machine. For this system running on

the Warp machine, a 60x64 images could be processed in one second.

[

Crisman, 1991

]

Comparing this to our system (running on a 4K MP-1) processing 64x64 images at 69.4

Hz yields a 74 times speed improvement. For a 1024x1024 image, a 846 times speedup is

achievable. On a 16K MP-2, for 128x128 images, processing is 158 times faster and for

the 1024x1024 case on this machine, a speedup of over 5000 can be realized. Speedups

are computed based on pixels processed per second. Results of this order were expected

as we designed algorithms for the �ne-grained parallel machines on which they ran.

The trade-o� between the number of clusters the system employs and the frame rate

is shown in Figure 9.14. This graph shows how the frame rate decreases with an increase

in the number of clusters for three di�erently sized images. Because we are interested in

achieving frame rate cycling speed, and due to the minimal driving performance improve-

ment achieved by using more clusters, it was determined that 5 clusters were su�cient

for our needs.

Finally, the performance �gures quoted in the table do not include image acquisition

time. At present, using a VME based digitizer, image acquisition consumes a signi�cant

amount of time and limits our driving speed to about 10 m.p.h. Although our system is

capable of driving at much faster speeds, it is disappointing that actual driving results

are limited by supporting hardware de�ciencies. This problem once again underscores

the need for high performance I/O devices to supply parallel machines with data. To

remedy this problem, a 512x512 pixel, color, frame-rate digitizer and interface is being

built for our 4K MasPar MP-1. This hardware will deliver images to the processor array

with very low latency and allow us to run the system at rates predicted in the simulation

results and drive the vehicle at much faster speeds.



306 Jochem and Baluja

F
ra

m
es

 P
er

 S
ec

on
d

70.0

60.0

50.0

40.0

30.0

20.0

10.0

10.0 20.05.0 15.0 25.0

64x64

128x128

256x256

Number of Clusters

Figure 9.14

As the number of clusters increases, it becomes much harder to achieve frame-rate computation.



Massively Parallel, Adaptive, Color Image Processing for Autonomous Road Following 307

9.8 Other Related Systems

Our system compares very well with any road following system in use today in terms

of processing speed. Three competitive high performance systems are the ALVINN and

MANIAC systems

[

Pomerleau, 1991

] [

Jochem, 1993

]

, developed at Carnegie Mellon Uni-

versity, and the system designed by the VaMoRs group in Munich, Germany. Like ours,

the ALVINN and MANIAC systems are neurally based. However, both use reduced res-

olution (30x32) preprocessed color images. They cycles at about 10 frames per second,

using SPARC based processors, and ALVINN has driven for over 22 miles at speeds of up

to 55 m.p.h. (88 km/hr). A system which is founded in very di�erent techniques is the

one being developed by the VaMoRs group

[

Dickmanns, 1992

]

. This system, which uses

strong road and vehicle models to predict where road features will appear in upcoming

images, processes monochrome images on custom hardware at speeds near frame rate,

but uses a windowing system to track the features so that not every pixel is processed.

This system has been able to successfully drive on the German Autobahn at speeds

around 80km/hr.

Various other systems have been developed that use color data and include the VITS

system developed at Martin Marietta

[

Turk, 1988

]

and SCARF developed by

[

Crisman,

1990

]

at Carnegie Mellon University. The VITS system used a linear combination of the

red and blue color bands to segment the road from non-road. The segmented image was

thresholded and back-projected onto the ground plane. The vehicle was steered toward

the center of this back-projected region. This system was able to drive Martin Marietta's

testbed vehicle, the ALV, at speeds up to 20km/hr on straight, single lane roads found

at the test site.

Perhaps most closely related to our system is SCARF. Like our system, SCARF uses

color images to develop clusters in color space. These images are greatly reduced; typi-

cally 30x32 or 60x64 pixels. The techniques for developing these clusters, however, are

very di�erent from the one implemented in our system. SCARF uses Bayesian prob-

ability theory and a Gaussian distribution assumption to create and use color clusters

to segment incoming color images. The clusters are recreated for every input image by

using a strong road model and known road and non-road data as seed points for the

new cluster means. The computational load of SCARF is higher than that of our system

because of the Bayesian and Gaussian computations and, partially because of this load,

the system was able to drive at speeds of less than 10 m.p.h. The most closely related

part of our system and SCARF is the Hough transform based road �nding algorithm.

Because the Hough algorithmmaps very well to �nding single lane roads, it was adapted

to the parallel framework of our system. Although the implementation of the Hough

algorithm is di�erent, the main concept remains the same. Finally, it should be noted



308 Jochem and Baluja

that the SCARF's objectives were not limited to autonomous road following; other tasks

it performed include intersection detection and per-image updating of the color cluster

means. SCARF needed to be smarter because it took a signi�cant amount of time to

process a single image.

9.9 Future Work

We feel that the most limiting aspect of the current system is the model used to determine

the center line of the road. Because the model de�nes the road to be a trapezoidal region

which is bisected by the center line, errors in driving can occur when the actual road does

not match this model. A commonly occurring situation when the road di�ers from the

model is during sharp curves. The best trapezoidal region is �t to the data and a center

line is found. Unfortunately, when this center line is driven, it causes the vehicle to `cut

the corner.' Although the system will quickly recover, this is not desirable behavior. We

believe that by using a di�erent road model this problem can be solved. We propose

to use a road model based on the turn radius of the road ahead. By using this model,

roads with arbitrarily curvature can be properly represented. Instead of driving along a

straight line projected onto the ground plane, the vehicle will follow the arc determined

by the most likely turn radius. This model can be implemented as a parallelized Hough

transform in much the same way as the current trapezoidal model. The only di�erence

will be the shift amounts of each row of the processor array at each time step. By

using this model, we feel better driving performance can be obtained without sacri�cing

computational speed.

Another area of future research is the e�ect of changing lighting conditions on the

performance of our algorithms. We assume the �rst image our system processes will

contain a representative sample of all color variations which will be seen during naviga-

tion. Because of this assumption we are susceptible to errors caused by severe changes in

lighting conditions that appear in later images. If the clusters which are learned during

the competitive learning training process cannot adequately classify later images, the

perceptron which combines all the clusters' output into a road or non-road classi�cation,

may receive incorrect information which will lead to misclassi�cation. Although we have

found that this e�ect can be ignored going from sunlight to fairly heavy shade, it is

important to realize that the lighting condition is not the only parameter which controls

a cluster's ability to correctly classify data. Another important parameter is the num-

ber of clusters which are available to the system. If many clusters are available, �ner

discrimination is possible. Essentially this means that the color space is better covered

by the clusters. In a statistical sense, when many clusters are available, the covariance



Massively Parallel, Adaptive, Color Image Processing for Autonomous Road Following 309

of any particular cluster will be less than that of a cluster belonging to a smaller cluster

set. Intuitively, a smaller covariance implies that the mean value of a cluster (or any

data set) better represents all the data which is classi�ed as being part of that data set.

If many clusters are available, it is reasonable to assume that a wider range of lighting

conditions can be tolerated since it is more likely that some of the clusters developed

in the original learning process are speci�c to more areas in the color space relative to

clusters developed when few are available. Our results do support the notion that better

coverage is possible when more clusters are available (See Figure 9.5.), but a more inter-

esting idea that can be explored is that of dynamically adding, removing, or adapting

clusters as lighting conditions change. Of course, the addition of clusters must be traded

with computation speed, but, perhaps more importantly, this type of algorithm would

allow new clusters to be developed when current clusters do not adequately classify the

scene. When new clusters arise in color space, or current ones simply shift, new clusters

could be formed which better represent the new color space. The SCARF system used

a similar technique, but instead of adding, removing, or adapting clusters when needed,

new clusters were created for every image using a predictive model of the road as an

aid to classi�cation. A system incorporating an adaptive cluster management algorithm

could likely handle extreme shifts in lighting conditions and robustly drive in a wider

range of operating scenarios.

Finally, we feel that it may be possible to completely eliminate the color clusters from

our system. Because the road and non-road clusters in color space form two nearly

disjoint sets, a plane could be used to discriminate between road and non-road pixels.

To learn this plane, the perceptron, or possibly a small neural network, would take as

input the red, green, and blue values of a pixel and learn to produce at its output a 1.0

if the pixel is part of the road and a -1.0 if it is not. In theory, a perceptron with a

thresholding activation function could accomplish this task, but because the road and

non-road sets come very close to each other in the low intensity regions of the color space,

a larger neural network may be needed for proper discrimination.

9.10 Conclusions

Our system has shown that �ne-grained SIMD machines can be e�ectively and e�ciently

used in real world vision tasks to achieve robust performance. By designing algorithms for

speci�c parallel architectures, the resulting system can achieve higher performance than if

the algorithms were simply ported to the parallel machine from a serial implementation.

The system described in this paper uses substantially larger frames and processes them

at faster rates than other color road following systems. The algorithms presented here



310 Jochem and Baluja

were tested on 4K and 16K processor MasPar MP-1 and on 4K, 8K, and 16K processor

MasPar MP-2 parallel machines and were used to drive Carnegie Mellon's testbed vehicle,

the Navlab I, on paved roads near campus. The goal that our work has strived toward

is processing 512x512 pixel color images at frame rate in an autonomous road following

system. Our results have shown that in this domain, with the appropriate mapping of

algorithm to architecture, frame rate processing is achievable. Most importantly, our

results work in the real world and not simply in simulation.

9.11 Acknowledgments

We would like to thank Dr. Edward Delp and his sta� in the Parallel Processing Lab at

Purdue University for allowing us access to their 16K MasPar MP-1. Their machine was

purchased in part though NSF award number CDA-9015696. Performance tests on the

MP-2's were conducted for us by Philip Ho of MasPar Computer. We greatly appreciate

his help. Also, we would like to thank Bill Ross, JimMoody and Dean Pomerleau for their

help in installing our new 4K MP-1 on the Navlab I. Thanks are also due to Bill Ross,

Chuck Thorpe, Jon Webb, Jill Crisman, and Dean Pomerleau who served as editors for

this chapter. Their varied perspectives helped unify the autonomous navigation, parallel

computing and connectionist ideas. This work was partially supported by an ARPA

Research Assistantship in High Performance Computing administered by the Institute

for Advanced Computer Studies, University of Maryland and by ARPA, under contracts

\Perception for Outdoor Navigation" (contract number DACA76-89-C-0014, monitored

by the US Army Topographic Engineering Center) and \Unmanned Ground Vehicle

System" (contract number DAAE07-90-C-R059, monitored by TACOM).

.1 Hough Transform

The Hough Transform was �rst developed as a technique for �nding curves in the plane

(or in space) when little is known about the curve's spatial location. Every point which

is potentially a member of the curve is considered. (A common way of �nding potential

points is through the use of an edge detection algorithm.) Once a point has been found,

all possible parameter sets of curves passing through the point are determined. For

example, the parameter set for a line in Cartesian space is (m, b). For a circle it could be

(x, y, r) where x and y are the location of the center of the circle and r is the circle's radius.

After a possible parameter set has been determined, a location in an accumulator which

corresponds to the set is incremented. Once all potential points have been considered,

the accumulator is searched for a maxima. The maxima will give the parameter set for



Massively Parallel, Adaptive, Color Image Processing for Autonomous Road Following 311

Y

m

b

(m1, b1)

b = -mx1 + y1
b = -mx2 + y2

X

(x1, y1)

(x2, y2)

The equation of this line has
slope m1 and intercept b1.

Figure .15

Transformation from Cartesian space to Hough Space.

the most likely curve.

The classic example describing the Hough Transform deals with �nding lines in images.

In this example, you are given the location of all possible edge points. The task is to �nd

the lines to which these edge points belong. The general idea is to map points in (x, y)

space to locations in a (m, b) space accumulator where (m, b) are determined by:

Y = mX + b

This equation is simply that of a line in the plane. For every (x, y) edge point,

all possible (m, b) points are computed. The (m, b) location in the accumulator is

incremented. In the accumulator, the (m, b) points that are found for a particular, �xed,

(x, y) are also a line in the accumulator that is described by:

b = �mX + Y

See Figure .15 for a graphical representation of the Hough Space.

.2 Alternative Pixel Averaging

An alternative method of �nding one average `certainty' value of the pixels in each

processor is to average the red, green, and blue pixel values respectively for each pixel

represented in the processor. This could be done when the image is �rst mapped onto the



312 Jochem and Baluja

processor array. The average pixel value could then be fed to the competitive learning

units which would determine the closest matching cluster, and �nally to the perceptron

which would create a road or non-road output `certainty.' Extending this analysis, there

are 2 alternatives to the method of learning which can be used, with 2 corresponding

alternatives for simulation of the network. (See Figure .16.) Each of the combinations

represents trade-o�s between speed and accuracy of color clusters versus actual image

colors.

.3 The MasPar MP-1

The hardware used to perform the test runs was the MasPar MP-1. This is a massively

parallel computer, consisting of an Array Control Unit (ACU) and a two dimensional

array of processing elements (PE's). The array size is 64 x 64, for a total of 4096

processing elements. The ACU has 1 Mbyte of RAM with up to 4 Gbyte of virtual

instruction memory. The ACU is used to control the PE array and to perform instruction

on data which is not located on the PE's dedicated memory. Each PE has 16 Kilobytes

of dedicated RAM. The MasPar is a Single Instruction Multiple Data (SIMD) machine.

Put simply, this means that each PE receives the same instruction simultaneously from

the ACU. Through control statements, processors can be either active or non-active.

The PE's which are members of the active set will execute the instruction they receive

from the ACU on local data. Those which are not members of the active set will do

nothing

[

MasPar, 1992

]

.

The processors can be accessed either through relative addressing mode (from other

processors) or absolute addressing. Further, they have two modes of numbering for

identi�cation. They can either be accessed by x,y coordinates or by row-major ordering.

The programming language used was the MasPar Parallel Application Language (MPL).

This is an extended set of Kernighan and Ritchie C with extra directives for controlling

the PE array and parallel data structures. The images were generated with the MasPar

MPDDL library. Appendix from

[

Baluja, 1993

]

.

.4 MasPar Programming Language

The following function de�nitions are more precisely speci�ed in

[

MasPar, 1992

]

and are

provided here in a condensed form for your convenience.

1. reduceAdd32 (integer variable): This functions takes a distributed integer vari-

able as input and returns the integer sum of it across all (active) processor elements.



Massively Parallel, Adaptive, Color Image Processing for Autonomous Road Following 313

Training is with actual pixel values.
Simulation is with average pixel values.

The pixel values used for simulation may not
be consistent with learned clusters because
clusters were trained with actual pixel
values and simulation is done with average
pixel values.

Only outputs road or non-road for each 
processor because during simulation input pixels
are averaged before being classified and labeled.
This means only one output value will be
produced by the perceptron.

Average RGB Values Actual RGB Values

A
ct

ua
l R

G
B

 V
al

ue
s 

A
ve

ra
ge

 R
G

B
 v

al
ue

s

SI
M

U
L

A
T

IO
N

Training is with average pixel values.
Simulation is with average pixel values.

The colors used for training and simulation
may not exist in the image because both use
average pixel values.

Only outputs road or non-road for each 
processor because during simulation input pixels 
are averaged before being classified and labeled.
This means only one output value will be 
produced by the perceptron.

Requires the least processing time.

Training is with average pixel values.
Simulation is with actual pixel values.

The pixel values used for simulation may not
be consistent with learned clusters because 
clusters were trained with average pixel 
values and simulation is done with actual pixel
values.

Outputs a continuum of values between road
and non-road because averaging is not done
until the perceptron has labeled all pixels on
the processor.

Training is with actual pixel values.
Simulation is with actual pixel values.

The colors used for training and simulation 
exist in the image.

Outputs a continuum of values between road 
and non-road because averaging is not done 
until the perceptron has labeled all pixels on 
the processor.

Requires the most processing time.

TRAINING

(This corresponds to our system.)

Figure .16

This chart compares where averaging is performed.

`Avg. RGB Values' indicates that pixel values are averaged before being presented to the system,

e�ectively being preprocessed, reducing the amount of data. `Avg. Perceptron Values' indicates that

averaging is done after each pixel has been propagated through the system and has produced a `certainty'

value. The `Learning' axis indicates which process takes place during the training phase of the system.

The `Simulation' axis indicate which process takes place after the clustering and combining algorithms

have learned. Our system uses the con�guration shown in the bottom right corner.



314 Jochem and Baluja

2. reduceAddf (SP 
oating point variable): This functions takes a distributed

single precision 
oating point variable as input and returns the single precision


oating point sum of it across all (active) processor elements.

3. xnetfN,S,E,W,NE,NW,SE,SWg[num].variable: The xnet construct allows ac-

tive processor elements to communicate with other processor elements which are a

�xed distance, num, away in the speci�ed direction. The variable argument in the

construct determines which variable is communicated.



Bibliography

[

Ball, 1967

]

Ball, G. H. and Hall, D. J., \A Clustering Technique for Summarizing Multivariate Data,"

Behavioral Science, Vol. 12, pp. 153-155, March 1967.

[

Ballard, 1982

]

Ballard, D. H. and Brown, C. M. \Computer Vision," Prentice-Hall, 1982. pp. 123-124.

[

Baluja, 1993

]

Baluja, S., Pomerleau, D.A., and Jochem, T.M. \Towards Automated Arti�cial Evolution

for Computer Generated Images," paper in progress.

[

Crisman, 1991

]

Crisman, J. D. and Webb, J. \The Warp Machine on Navlab," IEEE Transactions on

Pattern Analysis and Machine Intelligence, Vol. 13, No. 5, pp. 451-465, May 1991.

[

Crisman, 1990

]

Crisman, J. D. \Color Vision for the Detection of Unstructured Roads and Intersec-

tions," Ph.D. Thesis, Electrical and Computer Engineering Department, Carnegie Mellon Univer-

sity, Pittsburgh, PA, USA, May, 1990.

[

Dickmanns, 1992

]

Dickmanns, E. D. and Mysliwetz, B.D. \Recursive 3-D Road and Relative Ego-State

Recognition." IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 14, pp.

199-213, May 1992.

[

Hertz, 1991

]

Hertz, J., Krogh, A., and Palmer, R.G. \Introduction to the Theory of Neural Computa-

tion," Addison-Wesley, 1991. pp. 217-221.

[

Jochem, 1993

]

Jochem, T.M., Pomerleau, D.A., Thorpe, C.E. \MANIAC: A Next Generation Neurally

Based Autonomous Road Follower," In Proceedings of IAS-3, Feb. 1993, Pittsburgh, PA, USA.

[

Kluge, 1992

]

Kluge, K. and Thorpe, C.E. \Representation and Recovery of Road Geometry in YARF,"

In Proceedings of the Intelligent Vehicles `92 Symposium. June, 1992.

[

MasPar, 1992

]

MasPar Programming Language Reference Manual, Software Version 3.0, July, 1992,

MasPar Computer Corporation.

[

Pomerleau, 1991

]

Pomerleau, D.A. \E�cient Training of Arti�cial Neural Networks for Autonomous

Navigation," Neural Computation 3:1, Terrence Sejnowski (Ed).

[

Rumelhart, 1986

]

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. \Learning Internal Represen-

tations by Error Propagation," in Rumelhart, D. E. and McClelland, J. L. Parallel Distributed

Processing: Explorations in the Microstructure of Cognition, MIT Press.

[

Thorpe, 1990

]

Thorpe, C.E., editor, \Vision and Navigation: The Carnegie Mellon Navlab," Kluwer

Academic Publishers.

[

Turk, 1988

]

Turk, M. A., Morgenthaler, D. G., Gremban, K. D., and Marra, M. \VITS - A Vision

System for Autonomous Land Vehicle Navigation," IEEE Transactions on Pattern Analysis and

Machine Intelligence, Vol. 10, No. 3, May 1988.

[

Widrow, 1960

]

Widrow, B. and Ho�, M.E. \Adaptive Circuit Switching," In 1960 IRE WESCON

Convention Record, part 4, pp. 96-104. New York: IRE.


