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Abstract

We present a neural network-based face detection system. A retinally
connected neural network examines small windows of an image, and
decides whether each window contains a face. The system arbitrates
between multiple networks to improve performance over a single network.
We use a bootstrap algorithm for training, which adds false detections
into the training set as training progresses. This eliminates the difficult
task of manually selecting non-face training examples, which must be
chosen to span the entire space of non-face images. Comparisons with
another state-of-the-art face detection system are presented; our system
has better performance in terms of detection and false-positive rates.

1 INTRODUCTION

In this paper, we present a neural network-based algorithm to detect frontal views of faces
in gray-scale images. The algorithms and training methods are general, and can be applied
to other views of faces, as well as to similar object and pattern recognition problems.

Training a neural network for the face detection task is challenging because of the difficulty
in characterizing prototypical “non-face” images. Unlike in face recognition, where the
classes to be discriminated are different faces, in face detection, the two classes to be
discriminated are “images containing faces” and “images not containing faces”. It is easy
to get a representative sample of images which contain faces, but much harder to get a
representative sample of those which do not. The size of the training set for the second
class can grow very quickly.

We avoid the problem of using a huge training set of non-faces by selectively adding images
to the training set as training progresses [Sung and Poggio, 1994]. This “bootstrapping”
method reduces the size of the training set needed. Detailed descriptions of this training
method, along with the network architecture are given in Section 2. In Section 3 the
performance of the system is examined. We find that the system is able to detect 92.9% of
faces with an acceptable number of false positives. Section 4 compares this system with a
similar system. Conclusions and directions for future research are presented in Section 5.

2 DESCRIPTION OF THE SYSTEM

Our system consists of two major parts: a set of neural network-based filters, and a system
to combine the filter outputs. Below, we describe the design and training of the filters,



which scan the input image for faces. This is followed by descriptions of algorithms for
arbitrating among multiple networks and for merging multiple overlapping detections.

2.1 STAGE ONE: A NEURAL NETWORK-BASED FILTER

The first component of our system is a filter that receives as input a small square region of
the image, and generates an output ranging from 1 to -1, signifying the presence or absence
of a face, respectively. To detect faces anywhere in the input, the filter must be applied at
every location in the image. To allow detection of faces larger than the window size, the
input image is repeatedly reduced in size (by subsampling), and the filter is applied at each
size. The set of scaled input images is known as an “image pyramid”, and is illustrated in
Figure 1. The filter itself must have some invariance to position and scale. The amount
of invariance in the filter determines the number of scales and positions at which the filter
must be applied.

With these points in mind, we can give the filtering algorithm (see Figure 1). It consists
of two main steps: a preprocessing step, followed by a forward pass through a neural
network. The preprocessing consists of lighting correction, which equalizes the intensity
values across the window, followed by histogram equalization, which expands the range of
intensities in the window [Sung and Poggio, 1994]. The preprocessed window is used as
the input to the neural network. The network has retinal connections to its input layer; the
receptive fields of each hidden unit are shown in the figure. Although the figure shows a
single hidden unit for each subregion of the input, these units can be replicated. Similar
architectures are commonly used in speech and character recognition tasks [Waibel et al.,
1989, Le Cun et al., 1989].
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Figure 1: The basic algorithm used for face detection.

Examples of output from a single filter are shown in Figure 2. In the figure, each box
represents the position and size of a window to which the neural network gave a positive
response. The network has some invariance to position and scale, which results in multiple
boxes around some faces. Note that there are some false detections; we present methods to
eliminate them in Section 2.2. We next describe the training of the network which generated
this output.

2.1.1 Training Stage One

To train a neural network to serve as an accurate filter, a large number of face and non-face
images are needed. Nearly 1050 face examples were gathered from face databases at CMU
and Harvard. The images contained faces of various sizes, orientations, positions, and
intensities. The eyes and upper lip of each face were located manually, and these points
were used to normalize each face to the same scale, orientation, and position. A 20-by-20
pixel region containing the face is extracted and preprocessed (by apply lighting correction
and histogram equalization). In the training set, 15 faces were created from each original
image, by slightly rotating (up to 10�), scaling (90%–110%), translating (up to half a pixel),
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Figure 2: Images with all
the above threshold detec-
tions indicated by boxes.

Figure 3: Example face im-
ages, randomly mirrored, ro-
tated, translated, and scaled
by small amounts.

and mirroring each face. A few example images are shown in Figure 3.

It is difficult to collect a representative set of non-faces. Instead of collecting the images
before training is started, the images are collected during training, as follows [Sung and
Poggio, 1994]:

1. Create 1000 non-face images using random pixel intensities.

2. Train a neural network to produce an output of 1 for the face examples, and -1 for
the non-face examples.

3. Run the system on an image of scenery which contains no faces. Collect subimages
in which the network incorrectly identifies a face (an output activation> 0).

4. Select up to 250 of these subimages at random, and add them into the training set.
Go to step 2.

Some examples of non-faces that are collected during training are shown in Figure 4. We
used 120 images for collecting negative examples in this bootstrapping manner. A typical
training run selects approximately 8000 non-face images from the 146,212,178 subimages
that are available at all locations and scales in the scenery images.

Figure 4: Some non-face examples which are collected during training.

2.2 STAGE TWO: ARBITRATION AND MERGING OVERLAPPING
DETECTIONS

The examples in Figure 2 showed that just one network cannot eliminate all false detections.
To reduce the number of false positives, we apply two networks, and use arbitration to
produce the final decision. Each network is trained in a similar manner, with random
initial weights, random initial non-face images, and random permutations of the order of
presentation of the scenery images. The detection and false positive rates of the individual
networks are quite close. However, because of different training conditions and because
of self-selection of negative training examples, the networks will have different biases and
will make different errors.

For the work presented here, we used very simple arbitration strategies. Each detection
by a filter at a particular position and scale is recorded in an image pyramid. One way to



combine two such pyramids is by ANDing. This strategy signals a detection only if both
networks detect a face at precisely the same scale and position. This ensures that, if a
particular false detection is made by only one network, the combined output will not have
that error. The disadvantage is that if an actual face is detected by only one network, it will
be lost in the combination. Similar heuristics, such as ORing the outputs, were also tried.

Further heuristics (applied either before or after the arbitration step) can be used to improve
the performance of the system. Note that in Figure 2, most faces are detected at multiple
nearby positions or scales, while false detections often occur at single locations. At each
location in an image pyramid representing detections, the number of detections within a
specified neighborhood of that location can be counted. If the number is above a threshold,
then that location is classified as a face. These detections are then collapsed down to a
single point, located at their centroid. When this is done before arbitration, the centroid
locations rather than the actual outputs from the networks are ANDed together.

If we further assume that a position is correctly identified as a face, then all other detections
which overlap it are likely to be errors, and can therefore be eliminated. There are relatively
few cases in which this heuristic fails; however, one such case is illustrated in the left two
faces in Figure 2B, in which one face partially occludes another. Together, the steps of
combining multiple detections and eliminating overlapping detections will be referred to as
merging detections. In the next section, we show that by merging detections and arbitrating
among multiple networks, we can reduce the false detection rate significantly.

3 EMPIRICAL RESULTS

A large number of experiments were performed to evaluate the system. Because of space
restrictions only a few results are reported here; further results are presented in [Rowley et
al., 1995]. We first show an analysis of which features the neural network is using to detect
faces, and then present the error rates of the system over two large test sets.

3.1 SENSITIVITY ANALYSIS

In order to determine which part of the input image the network uses to decide whether
the input is a face, we performed a sensitivity analysis using the method of [Baluja and
Pomerleau, 1995]. We collected a test set of face images (based on the training database, but
with different randomized scales, translations, and rotations than were used for training),
and used a set of negative examples collected during the training of an earlier version of
the system. Each of the 20-by-20 pixel input images was divided into 100 two-by-two
pixel subimages. For each subimage in turn, we went through the test set, replacing that
subimage with random noise, and tested the neural network. The sum of squared errors
made by the network is an indication of how important that portion of the image is for the
detection task. Plots of the error rates for two networks we developed are shown in Figure 5.
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axis) on a small test resulting from
adding noise to various portions of
the input image (horizontal plane),
for two networks. Network 1 uses
two sets of the hidden units illus-
trated in Figure 1, while network 2
uses three sets.

The networks rely most heavily on the eyes, then on the nose, and then on the mouth
(Figure 5). Anecdotally, we have seen this behavior on several real test images: the
network’s accuracy decreases more when an eye is occluded than when the mouth is
occluded. Further, when both eyes of a face are occluded, it is rarely detected.



3.2 TESTING

The system was tested on two large sets of images. Test Set A was collected at CMU, and
consists of 42 scanned photographs, newspaper pictures, images collected from the World
Wide Web, and digitized television pictures. Test set B consists of 23 images provided
by Sung and Poggio; it was used in [Sung and Poggio, 1994] to measure the accuracy
of their system. These test sets require the system to analyze 22,053,124 and 9,678,084
windows, respectively. Table 1 shows the performance for the two networks working alone,
the effect of overlap elimination and collapsing multiple detections, and the results of using
ANDing and ORing for arbitration. Each system has a better false positive rate (but a worse
detection rate) on Test Set A than on Test Set B, because of differences in the types of
images in the two sets. Note that for systems using arbitration, the ratio of false detections
to windows examined is extremely low, ranging from 1 in 146,638 to 1 in 5,513,281,
depending on the type of arbitration used. Figure 6 shows some example output images
from the system, produced by merging the detections from networks 1 and 2, and ANDing
the results. Using another neural network to arbitrate among the two networks gives about
the same performance as the simpler schemes presented above [Rowley et al., 1995].

Table 1: Detection and Error Rates

Test Set A Test Set B
# miss / Detect rate # miss / Detect rate

Type System False detects / Rate False detects / Rate

0) Ideal System 0/169 100.0% 0/155 100.0%
0 0/22053124 0 0/9678084

Single
network,
no
heuristics

1) Network 1 (52 hidden
units, 2905 connections)

17 89.9% 11 92.9%
507 1/43497 353 1/27417

2) Network 2 (78 hidden
units, 4357 connections)

20 88.2% 10 93.5%
385 1/57281 347 1/27891

Single
network,
with
heuristics

3) Network 1! merge
detections

24 85.8% 12 92.3%
222 1/99338 126 1/76810

4) Network 2! merge
detections

27 84.0% 13 91.6%
179 1/123202 123 1/78684

Arbitrating
among
two
networks

5) Networks 1 and 2! AND
! merge detections

52 69.2% 34 78.1%
4 1/5513281 3 1/3226028

6) Networks 1 and 2!
merge detections! AND

36 78.7% 20 87.1%
15 1/1470208 15 1/645206

7) Networks 1 and 2!
merge! OR! merge

26 84.6% 11 92.9%
90 1/245035 64 1/151220

4 COMPARISON TO OTHER SYSTEMS
[Sung and Poggio, 1994] reports a face-detection system based on clustering techniques.
Their system, like ours, passes a small window over all portions of the image, and determines
whether a face exists in each window. Their system uses a supervised clustering method
with six “face” and six “non-face” clusters. Two distance metrics measure the distance of
an input image to the prototype clusters. The first metric measures the “partial” distance
between the test pattern and the cluster’s 75 most significant eigenvectors. The second
distance metric is the Euclidean distance between the test pattern and its projection in
the 75 dimensional subspace. These distance measures have close ties with Principal
Components Analysis (PCA), as described in [Sung and Poggio, 1994]. The last step in
their system is to use either a perceptron or a neural network with a hidden layer, trained
to classify points using the two distances to each of the clusters (a total of 24 inputs).
Their system is trained with 4000 positive examples, and nearly 47500 negative examples
collected in the “bootstrap” manner. In comparison, our system uses approximately 16000
positive examples and 8000 negative examples.

Table 2 shows the accuracy of their system on Test Set B, along with the results of our



Q: 5/5/0 R: 4/4/1

O: 1/1/0 P: 1/1/0

N: 2/1/0
M: 3/3/0

L: 1/1/0

K: 9/9/0

G: 1/1/0
I: 1/1/0

J: 1/1/0
F: 11/11/0

E: 1/1/0

H: 1/1/0

D: 8/7/1

A: 1/1/0

B: 4/2/0
C: 9/9/0

Figure 6: Output produced by System 6 in Table 1. For each image, three numbers are shown:
the number of faces in the image, the number of faces detected correctly, and the number of false
detections. Some notes on specific images: Although the system was not trained on hand-drawn
faces, it detects them in K and R. One false detect is present in both D and R. Faces are missed in D
(removed because a false detect overlapped it), B (one due to occlusion, and one due to large angle),
and in N (babies with fingers in their mouths are not well represented in training data). Images B,
D, F, K, L, and M were provided by Sung and Poggio at MIT. Images A, G, O, and P were scanned
from photographs, image R was obtained with a CCD camera, images J and N were scanned from
newspapers, images H, I, and Q were scanned from printed photographs, and image C was obtained
off of the World Wide Web. Images P and B correspond to Figures 2A and 2B.



system using a variety of arbitration heuristics. In [Sung and Poggio, 1994], only 149 faces
were labelled in the test set, while we labelled 155 (some are difficult for either system to
detect). The number of missed faces is therefore six more than the values listed in their
paper. Also note that [Sung and Poggio, 1994] check a slightly smaller number of windows
over the entire test set; this is taken into account when computing the false detection rates.
The table shows that we can achieve higher detection rates with fewer false detections.

Table 2: Comparison of [Sung and Poggio, 1994] and Our System on Test Set B

Missed Detect False
System faces rate detects Rate

5) Networks 1 and 2! AND! merge 34 78.1% 3 1/3226028
6) Networks 1 and 2! merge! AND 20 87.1% 15 1/645206
7) Networks 1 and 2! merge! OR! merge 11 92.9% 64 1/151220
[Sung and Poggio, 1994] (Multi-layer network) 36 76.8% 5 1/1929655
[Sung and Poggio, 1994] (Perceptron) 28 81.9% 13 1/742175

5 CONCLUSIONS AND FUTURE RESEARCH

Our algorithm can detect up to 92.9% of faces in a set of test images with an acceptable
number of false positives. This is a higher detection rate than [Sung and Poggio, 1994]. The
system can be made more conservative by varying the arbitration heuristics or thresholds.

Currently, the system does not use temporal coherence to focus attention on particular
portions of the image. In motion sequences, the location of a face in one frame is a strong
predictor of the location of a face in next frame. Standard tracking methods can be applied to
focus the detector’s attention. The system’s accuracy might be improved with more positive
examples for training, by using separate networks to recognize different head orientations,
or by applying more sophisticated image preprocessing and normalization techniques.
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