
Shumeet Baluja
baluja@cs.cmu.edu

Justsystem Pittsburgh Research Center &
School of Computer Science, Carnegie Mellon University

Abstract
The genetic algorithm (GA) is a heuristic search procedure based on mechanisms
abstracted from population genetics. In a previous paper [Baluja & Caruana, 1995],
we showed that much simpler algorithms, such as hillclimbing and Population-
Based Incremental Learning (PBIL), perform comparably to GAs on an optimiza-
tion problem custom designed to benefit from the GA’s operators. This paper
extends these results in two directions. First, in a large-scale empirical comparison
of problems that have been reported in GA literature, we show that on many prob-
lems, simpler algorithms can perform significantly better than GAs. Second, we
describe when crossover is useful, and show how it can be incorporated into PBIL.

1 IMPLICIT VS. EXPLICIT SEARCH STATISTICS

Although there has recently been controversy in the genetic algorithm (GA) community as
to whether GAs should be used for static function optimization, a large amount of research
has been, and continues to be, conducted in this direction [De Jong, 1992]. Since much of
GA research focuses on optimization (most often in static environments), this study exam-
ines the performance of GAs in these domains.

In the standard GA, candidate solutions are encoded as fixed length binary vectors. The ini-
tial group of potential solutions is chosen randomly. At each generation, the fitness of each
solution is calculated; this is a measure of how well the solution optimizes the objective
function. The subsequent generation is created through a process of selection, recombina-
tion, and mutation. Recombination operators merge the information contained within pairs
of selected “parents” by placing random subsets of the information from both parents into
their respective positions in a member of the subsequent generation. The fitness propor-
tional selection works as selective pressure; higher fitness solution strings have a higher
probability of being selected for recombination. Mutations are used to help preserve diver-
sity in the population by introducing random changes into the solution strings. The GA
uses the population toimplicitly maintain statistics about the search space. The selection,
crossover, and mutation operators can be viewed as mechanisms of extracting the implicit
statistics from the population to choose the next set of points to sample. Details of GAs can
be found in [Goldberg, 1989] [Holland, 1975].

Population-based incremental learning (PBIL) is a combination of genetic algorithms and
competitive learning [Baluja, 1994]. The PBIL algorithm attempts toexplicitly maintain
statistics about the search space to decide where to sample next. The object of the algorithm
is to create a real valued probability vector which, when sampled, reveals high quality solu-
tion vectors with high probability. For example, if a good solution can be encoded as a
string of alternating 0’s and 1’s, a suitable final probability vector would be 0.01, 0.99,
0.01, 0.99, etc. The PBIL algorithm and parameters are shown in Figure 1.

Initially, the values of the probability vector are initialized to 0.5. Sampling from this vector
yields random solution vectors because the probability of generating a 1 or 0 is equal. As
search progresses, the values in the probability vector gradually shift to represent high eval-

Genetic Algorithms and Explicit Search Statistics

uation solution vectors through the following process. A number of solution vectors are
generated based upon the probabilities specified in the probability vector. The probability
vector is pushed towards the generated solution vector with the highest evaluation. After
the probability vector is updated, a new set of solution vectors is produced by sampling
from the updated probability vector, and the cycle is continued. As the search progresses,
entries in the probability vector move away from their initial settings of 0.5 towards either
0.0 or 1.0.

One key feature of theearly generations of genetic optimization is the parallelism in the
search; many diverse points are represented in the population of points during the early
generations. When the population is diverse, crossover can be an effective means of
search, since it provides a method to explore novel solutions by combining different mem-
bers of the population. Because PBIL uses a single probability vector, it may seem to have
less expressive power than a GA using a full population, since a GA can represent a large
number of points simultaneously. A traditional single population GA, however, would not
be able tomaintain a large number of points. Because of sampling errors, the population
will converge around a single point. This phenomenon is summarized below:

“... the theorem [Fundamental Theorem of Genetic Algorithms [Goldberg, 1989]], assumes
an infinitely large population size. In a finite size population, even when there is no selective
advantage for either of two competing alternatives... the population will converge to one
alternative or the other in finite time (De Jong, 1975; [Goldberg & Segrest, 1987]). This
problem of finite populations is so important that geneticists have given it a special name,
genetic drift. Stochastic errors tend to accumulate, ultimately causing the population to con-
verge to one alternative or another” [Goldberg & Richardson, 1987].

Diversity in the population is crucial for GAs. By maintaining a population of solutions,
the GA is able—in theory at least—to maintain samples in many different regions. Cross-
over is used to merge these different solutions. A necessary (although not sufficient) con-
dition for crossover to work well is diversity in the population. When diversity is lost,
crossover begins to behave like a mutation operator that is sensitive to the convergence of
the value of each bit [Eshelman, 1991]. If all individuals in the population converge at

****** Initialize Probability Vector *****
for i :=1 to LENGTH do P[i] = 0.5;

while (NOT termination condition)
 ***** Generate Samples *****
for i :=1 to SAMPLES do

sample_vectors[i] := generate_sample_vector_according_to_probabilities (P);
evaluations[i] := evaluate(sample_vectors[i]);

best_vector := find_vector_with_best_evaluation (sample_vectors, evaluations);
worst_vector := find_vector_with_worst_evaluation (sample_vectors, evaluations);

***** Update Probability Vector Towards Best Solution *****
for i :=1 to LENGTH do

P[i] := P[i] * (1.0 - LR) + best_vector[i] * (LR);

***** Update Probability Vector Away from Worst Solution *****
for i :=1 to LENGTH do

if (best_vector[i] ≠ worst_vector[i]) then
P[i] := P[i] * (1.0 - NEGATIVE_LR) + best_vector[i] * (NEGATIVE_LR);

PBIL: USER DEFINED CONSTANTS (Values Used in this Study):
SAMPLES: the number of vectors generated before update of the probability vector (100).
LR: the learning rate, how fast to exploit the search performed (0.1).
NEGATIVE_LR: negative learning rate, how much to learn from negative examples (PBIL1=0.0, PBIL2= 0.075).
LENGTH: the number of bits in a generated vector (problem specific).

Figure 1: PBIL1/PBIL2 algorithm for a binary alphabet. PBIL2 includes shaded region. Mutations not shown.

some bit position, crossover leaves those bits unaltered. At bit positions where individuals
have not converged, crossover will effectively mutate values in those positions. Therefore,
crossover creates new individuals that differ from the individuals it combines only at the
bit positions where the mated individuals disagree. This is analogous to PBIL which cre-
ates new trials that differ mainly in positions where prior good performers have disagreed.

As an example of how the PBIL algorithm works, we can examine the values in the prob-
ability vector through multiple generations. Consider the following maximization prob-
lem: 1.0/|(366503875925.0 - X)|, 0≤ X < 240. Note that 366503875925 is represented in
binary as a string of 20 pairs of alternating ‘01’. The evolution of the probability vector is
shown in Figure 2. Note that the most significant bits are pinned to either 0 or 1 very
quickly, while the least significant bits are pinned last. This is because during the early
portions of the search, the most significant bits yield more information about high evalua-
tion regions of the search space than the least significant bits.

2 AN EMPIRICAL COMPARISON

This section provides a summary of the results obtained from a large scale empirical com-
parison of seven iterative and evolution-based optimization heuristics. Thirty-four static
optimization problems, spanning six sets of problem classes which are commonly
explored in the genetic algorithm literature, are examined. The search spaces in these
problems range from 2128 to 22040. The results indicate that, on many problems, using
standard GAs for optimizing static functions does not yield a benefit, in terms of the final
answer obtained, over simple hillclimbing or PBIL. Recently, there have been other stud-
ies which have examined the performance of GAs in comparison to hillclimbing on a few
problems; they have shown similar results [Davis, 1991][Juels & Wattenberg, 1996].

Three variants of Multiple-Restart Stochastic Hillclimbing (MRSH) are explored in this
paper. The first version, MRSH-1, maintains a list of the position of the bit flips which
were attempted without improvement. These bit flips are not attempted again until a better
solution is found. When a better solution is found, the list is emptied. If the list becomes as
large as the solution encoding, MRSH-1 is restarted at a random solution with an empty
list. MRSH-2 and MRSH-3 allow moves to regions of higher and equal evaluation. In
MRSH-2, the number of evaluations before restart depends upon the length of the encoded
solution. MRSH-2 allows 10*(length of solution) evaluations without improvement before
search is restarted. When a solution with a higher evaluation is found, the count is reset. In
MRSH-3, after the total number of iterations is specified, restart is forced 5 times during
search, at equally spaced intervals.

Two variants of the standard GA are tested in this study. The first, termed SGA, has the
following parameters: Two-Point crossover, with a crossover rate of 100% (% of times
crossover occurs, otherwise the individuals are copied without crossover), mutation proba-
bility of 0.001 per bit, population size of 100, and elitist selection (the best solution in gen-

Figure 2: Evolution of the probability vector over successive generations. White represents a high
probability of generating a 1, black represents a high probability of generating a 0. Intermediate grey represents
probabilities close to 0.5 - equal chances of generating a 0 or 1. Bit 0 is the most significant, bit 40 the least.

0 100 200 300 400 500 600

0

5

10

15

20

25

30

35

40

Generation

B
it P

osition

eration N replaces the worst solution in generation N+1). The second GA used, termed
GA-Scale, uses the same parameters except: uniform crossover with a crossover rate of
80% and the fitness of the worst member in a generation is subtracted from the fitnesses of
each member of the generation before the probabilities of selection are determined.

Two variants of PBIL are tested. Both move the probability vector towards the best exam-
ple in each generated population. PBIL2 also moves the probability vector away from the
worst example in each generation. Both variants are shown in Figure 1. A small mutation,
analogous to the mutation used in genetic algorithms, is also used in both PBILs. The
mutation is directly applied to the probability vector.

The results obtained in this study shouldnot be considered to be state-of-the-art. The
problem encodings were chosen to be easily reproducible and to allow easy comparison
with other studies. Alternate encodings may yield superior results. In addition, no prob-
lem-specific information was used for any of the algorithms. Problem-specific informa-
tion, when available, could help all of the algorithms examined.

All of the variables in the problems were encoded in binary, either with standard Gray-
code or base-2 representation. The variables were represented in non-overlapping, contig-
uous regions within the solution encoding. The results reported are the best evaluations
found through the search of each algorithm, averaged over at least 20 independent runs per
algorithm per problem; the results for GA-SCALE and PBIL2 algorithms are the average
of at least 50 runs. All algorithms were given 200,000 evaluations per run. In each run, the
GA and PBIL algorithms were given 2000 generations, with 100 function evaluations per
generation. In each run, the MRSH algorithms were restarted in random locations as many
times as needed until 200,000 evaluations were performed. The best answer found in the
200,000 evaluations was returned as the answer found in the run.

Brief notes about the encodings are given below. Since the numerical results are not useful
without the exact problems,relative results are provided in Table I. For most of the prob-
lems, exact results and encodings are in [Baluja, 1995]. To measure the significance of the
difference between the results obtained by PBIL2 and GA-SCALE, the Mann-Whitney
test is used. This is a non-parametric equivalent to the standard two-sample pooledt-tests.

• TSP: 128, 200 & 255 city problems were tried. The “sort” encoding [Syswerda, 1989]
was used. The last problem was tried with the encoding in binary and Gray-Code.

• Jobshop: Two standard JS problems were tried with two encodings. The first encoding is
described in [Fanget. al, 1993]. The second encoding is described in [Baluja, 1995]. An addi-
tional, randomly generated, problem was also tried with the second encoding.

• Knapsack: Problem 1&2: a unique element is represented by each bit. Problem 3&4: there
are 8 and 32 copies of each element respectively. The encoding specified the number of copies of
each element to include. Each element is assigned a “value” and “weight”. Object: maximize
value while staying under pre-specified weight.

• Bin-Packing/Equal Piles: The solution is encoded in a bit vector of lengthM * log2N (N
bins, M elem.). Each element is assigned a substring of length log2N, which specifies a bin.
Object: pack the given bins as tightly as possible. Because of the large variation in results which is
found by varying the number of bins and elements, the results from 8 problems are reported.

• Neural-Network Weight Optimization: Problem 1&2: identify the parity of 7 inputs. Prob-
lem 3&4: determine whether a point falls within the middle of 3 concentric squares. For problems
3&4, 5 extra inputs, which contained noise, were used. The networks had 8 inputs (including
bias), 5 hidden units, and 1 output. The network was fully connected between sequential layers.

• Numerical Function Optimization (F1-F3): Problems 1&2: the variables in the first por-
tions of the solution string have a large influence on the quality of the rest of the solution. In the
third problem, each variable can be set independently. See [Baluja, 1995] for details.

• Graph Coloring: Select 1 of 4 colors for nodes of a partially connected graph such that con-
nected nodes are not the same color. The graphs used were not necessarily planar.

3 EXPLICITLY PRESERVING DIVERSITY

Although the results in the previous section showed that PBIL often outperformed GAs
and hillclimbing, PBIL may not surpass GAs at all population sizes. As the population
size increases, the observed behavior of a GA more closely approximates the ideal behav-
ior predicted by theory [Holland, 1975]. The population may contain sufficient samples
from distinct regions for crossover to effectively combine “building blocks” from multiple
solutions. However, the desire to minimize the total number of function evaluations often
prohibits the use of large enough populations to make crossover behave ideally.

One method of avoiding the cost of using a very large population is to use a parallel GA
(pGA). Many studies have found pGAs to be very effective for preserving diversity for
function optimization [Cohoon etal., 1988][Whitley etal., 1990]. In the pGA, a collection
of independent GAs, each maintaining separate populations, communicate with each other

Table I: Summary of Empirical Results - Relative Ranks (1=best, 7=worst).

Encod-
ing

Length
(bits) M

R
S

H
 1

M
R

S
H

 2

M
R

S
H

 3

P
B

IL
 1

P
B

IL
 2

S
G

A

G
A

S
ca

le

M
R

S
H

 B
E

S
T

P
B

IL
 B

E
S

T

G
A

 B
E

S
T Confi-

dence
(GA-Scale

≠
PBIL2)

TSP 128 city (binary) 896 6 3 4 2 1 7 5 • > 99%

TSP 200 city (binary) 1600 5 4 3 2 1 7 6 • > 99%

TSP 255 city (binary) 2040 5 1 2 4 3 7 6 • > 99%

TSP 255 city (Gray-Code) 2040 5 1 2 4 3 7 6 • > 99%

Jobshop 10x10 (Fang) 500 7 5 6 2 1 4 3 • > 99%

Jobshop 20x5 (Fang) 500 7 6 5 2 1 4 3 • > 99%

Jobshop 10x10 (Baluja) 700 7 5 6 3 1 4 2 • 93%

Jobshop 20x5 (Baluja) 700 7 5 4 2 1 6 3 • > 99%

Jobshop 20x5 - random. (Baluja) 700 7 5 4 2 1 6 3 • > 99%

Knapsack (512 elem., 1 copy) 512 5 7 6 2 1 4 3 • > 99%

Knapsack (2000 elem., 1 copy) 2000 4 5 6 1 3 7 2 • > 99%

Knapsack (100 elem., 8 copies) 300 4 5 6 3 2 7 1 • Not Avail.

Knapsack (120 elem., 32 copies) 600 4 5 6 2 1 7 3 • > 99%

Bin (2 bins, 1600 elements) 1600 1 5 6 3 4 7 2 • 97%

Bin (2 bins, 128 elements) 128 1 3 7 4 2 5 6 • > 99%

Bin (4 bins, 512 elements) 1024 4 3 5 6 7 2 1 • > 99%

Bin (8 bins, 128 elements) 384 6 5 7 2 1 4 3 • > 99%

Bin (16 bins,128 elements) 512 7 5 6 3 1 2 4 • > 99%

Bin (32 bins, 128 elements) 640 5 6 7 3 1 4 2 • 96%

Bin (32 bins, 256 elements) 1280 2 4 5 6 7 3 1 • > 99%

Bin (64 bins, 128 elements) 768 4 6 7 3 1 5 2 • > 99%

Neural Net PARITY 7 (binary) 368 5 5 7 2 1 4 3 • > 99%

Neural Net PARITY 7 (gray) 368 5 6 7 2 1 3 4 • > 99%

Neural Net SQUARE (binary) 368 5 6 7 2 1 3 4 • > 99%

Neural Net SQUARE (gray) 368 4 2 7 1 3 5 6 • > 99%

F1 (Encoded in Binary) 900 5 6 7 3 1 2 4 • > 99%

F1 (Encoded in Gray Code) 900 5 6 7 2 1 3 4 • > 99%

F2 (Encoded in Binary) 900 5 6 7 2 1 4 3 • > 99%

F2 (Encoded in Gray Code) 900 5 4 6 2 1 7 3 • > 99%

F3 (Encoded in Binary) 900 6 5 7 2 1 4 3 • > 99%

F3 (Encoded in Gray Code) 900 1 1 1 5 4 7 6 • > 99%

G.Color - 200 node, 1000 connx. 400 6 2 1 4 3 7 5 • > 99%

G.Color - 200 node, 2000 connx. 400 6 1 2 5 3 7 4 • > 99%

G.Color - 400 node, 8000 connx. 800 5 1 2 4 3 7 6 • > 99%

TOTAL (34 Problems) 8 23 3

via infrequent inter-population (as opposed to intra-population) matings. pGAs suffer less
from premature convergence than single population GAs. Although the individual popula-
tions typically converge, different populations converge to different solutions, thus pre-
serving diversity across the populations. Inter-population mating permits crossover to
combine solutions found in different regions of the search space.

We would expect that employing multiple PBIL evolutions, parallel PBIL (pPBIL), has
the potential to yield performance improvements similar to those achieved in pGAs. Mul-
tiple PBIL evolutions are simulated by using multiple probability vectors to generate solu-
tions. To keep the evolutions independent, each probability vector is only updated with
solutions which are generated by sampling it.

The benefit of parallel populations (beyond just multiple runs) is in using crossover to
combine dissimilar solutions. There are many ways of introducing crossover into PBIL.
The method which is used here is to sample two probability vectors for the creation of
each solution vector, see Figure 3. The figure shows the algorithm with uniform crossover;
nonetheless, many other crossover operators can be used.

The randomized nature of crossover often yields unproductive results. If crossover is to be
used, it is important to simulate the crossover operation many times. Therefore, crossover
is used to create each member of the population (this is in contrast to crossing over the
probability vectors once, and generating the entire population from the newly created
probability vector). More details on integrating crossover and PBIL, and its use in combi-
natorial problems in robotic surgery can be found in [Baluja & Simon, 1996].

Results with using pPBIL in comparison to PBIL, GA, and pGA are shown in Table II. For
many of the problems explored here, parallel versions of GAs and PBIL work better than
the sequential versions, and the parallel PBIL models work better than the parallel GA
models. In each of these experiments, the parameters were hand-tuned for each algo-
rithms. In every case, the GA was given at least twice as many function evaluations as
PBIL. The crossover operator was chosen by trying several operators on the GA, and
selecting the best one. The same crossover operator was then used for PBIL. For the pGA
and pPBIL experiments, 10 subpopulations were always used.

Table II: Sequential & Parallel, GA & PBIL, Avg. 25 runs

Problem (Minimize or Maximize Solution) GA pGA PBIL pPBIL

TSP - 128 city (minimize tour length) 3256 2832 1718 1344

TSP - 200 city (minimize tour length) 14501 11633 6993 5012

Numerical Optim. Highly Correlated Parameters - Base-2 Code (max)0.15 0.30 0.19 0.30

Numerical Optim. Highly Correlated Parameters - Gray Code (max)0.18 0.31 0.18 1.6

Numerical Optim. Independent Parameters - Base-2 Code (max) 0.68 2.91 0.71 4.45

Numerical Optim. Independent Parameters - Gray Code (max) 8.33 8.33 8.33 8.33

Checkerboard (Problem with many maxima, see [Baluja, 1994]) (max)1119 1150 1206 1256

***** Generate Samples With Two Probability Vectors*****
for i :=1 to SAMPLES do

vector1 := generate_sample_vector_with_probabilities (P1);
vector2 := generate_sample_vector_with_probabilities (P2);
for j := 1 to LENGTH_do

if (random (2) = 0) sample_vector[i][j] := vector1[j]
else sample_vector[i][j] := vector2[j]

evaluations[i] := Evaluate_Solution (sample[i]);
best_vector := best_evaluation (sample_vectors, evaluations);

***** Update Both Probability Vectors Towards Best Solution *****
for i :=1 to LENGTH do

P1[i] := P1[i] * (1.0 - LR) + best_vector[i] * (LR);
P2[i] := P2[i] * (1.0 - LR) + best_vector[i] * (LR);

Figure 3: Generating samples based
on two probability vectors. Shown
with uniform crossover [Syswerda,
1989] (50% chance of using
probability vector 1 or vector 2 for
each bit position). Every 100
generations, each population makes
a local copy of another population’s
probability vector (to replace
vector2). In these experiments, there
are a total of 10 subpopulations.

4 SUMMARY & CONCLUSIONS

PBIL was examined on a very large set of problems drawn from the GA literature. The
effectiveness of PBIL for finding good solutions for static optimization functions was
compared with a variety of GA and hillclimbing techniques. Second, Parallel-PBIL was
introduced. pPBIL is designed to explicitly preserve diversity by using multiple parallel
evolutions. Methods for reintroducing crossover into pPBIL were given.

With regard to the empirical results, it should be noted that it is incorrect to say that one
procedure will always perform better than another. The resultsdo not indicate that PBIL
will always outperform a GA. For example, we have presented problems on which GAs
work better. Further, on problems such as binpacking, the relative results can change dras-
tically depending upon the number of bins and elements. The conclusion which should be
reached from these results is that algorithms, like PBIL and MRSH, which are much sim-
pler than GAs, can outperform standard GAs on many problems of interest.

The PBIL algorithm presented here is very simple and should serve as a prototype for
future study. Three directions for future study are presented here. First, the most obvious
extension to PBIL is to track more detailed statistics, such as pair-wise covariances of bit
positions in high-evaluation vectors. Preliminary work in this area has been conducted,
and the results are very promising. Second, another extension is to quickly determine
which probability vectors, in the pPBIL model, are unlikely to yield promising answers;
methods such as Hoeffding Races may be adapted here [Maron & Moore, 1994]. Third,
the manner in which the updates to the probability vector occur is similar to the weight
update rules used in Learning Vector Quantization (LVQ). Many of the heuristics used in
LVQ can be incorporated into the PBIL algorithm.

Perhaps the most important contribution of the PBIL algorithm is a novel way of examin-
ing GAs. In many previous studies of the GA, the GA was examined at a micro-level, ana-
lyzing the preservation of building blocks and frequency of sampling hyperplanes. In this
study, the statistics at the population level were examined. In the standard GA, the popula-
tion serves toimplicitly maintain statistics about the search space. The selection and cross-
over mechanisms are ways of extracting these statistics from the population. PBIL’s
population does not maintain the information that is carried from one generation to the
next. The statistics of the search areexplicitly kept in the probability vector.

References
Baluja, S. (1995) “An Empirical Comparison of Seven Iterative and Evolutionary Function Optimization Heuristics,” CMU-CS-

95-193. Available via. http://www.cs.cmu.edu/~baluja.
Baluja, S. (1994) “Population-Based Incremental Learning”. Carnegie Mellon University. Technical Report. CMU-CS-94-163.
Baluja, S. & Caruana, R. (1995) “Removing the Genetics from the Standard Genetic Algorithm”,Inter.Conf. Mach. Learning-12.
Baluja, S. & Simon, D. (1996) “Evolution-Based Methods for Selecting Point Data for Object Localization: Applications to

Computer Assisted Surgery”. CMU-CS-96 -183.
Cohoon, J., Hedge, S., Martin, W., Richards, D., (1988) “Distributed Genetic Algorithms for the Floor Plan Design Problem,”

School of Engineering and Applied Science, Computer Science Dept., University of Virginia, TR-88-12.
Davis, L.J. (1991) “Bit-Climbing, Representational Bias and Test Suite Design”.International Conf. on Genetic Algorithms 4.
De Jong, K. (1975)An Analysis of the Behavior of a Class of Genetic Adaptive Systems. Ph.D. Dissertation.
De Jong, K. (1993) “Genetic Algorithms are NOT Function Optimizers”. In Whitley (ed.)Foundations of GAs-2. 5-17.
Eshelman, L.J. (1991) “The CHC Adaptive Search Algorithm,” in Rawlings (ed.)Foundations of GAs-1. 265-283.
Fang, H.L, Ross, P., Corne, D. (1993) “A Promising Genetic Algorithm Approach to Job-Shop Scheduling, Rescheduling, and

Open- Shop Scheduling Problems”. In Forrest, S.International Conference on Genetic Algorithms 5.
Goldberg, D.E. (1989)Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley.
Goldberg & Richardson (1987) “Genetic Algorithms with Sharing for Multimodal Function Optimization” -Proceedings of the

Second International Conference on Genetic Algorithms.
Holland, J. H. (1975)Adaptation in Natural and Artificial Systems. Ann Arbor: The University of Michigan Press.
Juels, A. & Wattenberg, M. (1994) “Stochastic Hillclimbing as a Baseline Method for Evaluating Genetic Algorithms”NIPS 8.
Maron, O. & Moore, A.(1994) “Hoeffding Races:Accelerating Model Selection for Classification and Function Approx.”NIPS 6
Mitchell, M., Holland, J. & Forrest, S. (1994) “When will a Genetic Algorithm Outperform Hill Climbing”NIPS 6.
Syswerda, G. (1989) “Uniform Crossover in Genetic Algorithms,”International Conference on Genetic Algorithms 3.2-9.
Whitley, D., & Starkweather, T. “Genitor II: A Distributed Genetic Algorithm”.JETAI 2: 189-214.

