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This paper des
ribes a ma
hine learning approa
h to build an eÆ
ient, a

urate and fast name

spotting system. Finding names in free text is an important task in addressing real-world text-

based appli
ations. Most previous approa
hes have been based on 
arefully hand-
rafted modules

en
oding linguisti
 knowledge spe
i�
 to the language and do
ument genre. Su
h approa
hes have

two drawba
ks: they require large amounts of time and linguisti
 expertise to develop, and they

are not easily portable to new languages and genres. This paper des
ribes an extensible system

whi
h automati
ally 
ombines weak eviden
e for name extra
tion. This eviden
e is gathered from

easily available sour
es: part-of-spee
h tagging, di
tionary lookups, and textual information su
h as


apitalization and pun
tuation. Individually, ea
h pie
e of eviden
e is insuÆ
ient for robust name

dete
tion. However, the 
ombination of eviden
e, through standard ma
hine learning te
hniques,

yields a system that a
hieves performan
e equivalent to the best existing hand-
rafted approa
hes.

Keywords:. information extra
tion, ma
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1. INTRODUCTION

Spotting named-entities in text 
an be an important 
omponent of tasks su
h as informa-

tion extra
tion and retrieval,

1

restoration of 
apitalization in single-
ase text, and spelling-


orre
tion | to avoid a

identally \
orre
ting" names that are mistaken as misspelled words.

Most previous resear
h e�orts in building named-entity systems have relied on the use of


arefully hand-
rafted rules. There are two impediments to their wide use. First, most of the

typi
al hand-
oded systems work well only in the spe
i�
 
ir
umstan
es envisioned by their

designers. However, both language and users' needs are likely to evolve over time. Se
ondly, it

is un
lear what additional resour
es would be required to adapt to other languages, do
ument

genres, or less well-behaved texts | su
h as ones that may have misspelled words, missing


ase information, or foreign words/phrases

[

Palmer and Day, 1997

℄

. Thus, it is desirable

that name spotting systems should not only be a

urate, but should fa
ilitate easy user

parameterization.

This paper presents a system for named-entity extra
tion that is automati
ally trained

to re
ognize named-entities using statisti
al eviden
e from a training set. This approa
h

has several advantages: �rst, it eliminates the need for expert language-spe
i�
 linguisti


knowledge. With the automated system, users only need to tag items that interest them.

If the users' needs 
hange, the system 
an re-learn from new data qui
kly. Se
ond, system

performan
e 
an be improved by in
reasing the amount of training data without requiring

expert knowledge. Third, if new knowledge sour
es be
ome available, they 
an easily be

integrated into the system as additional eviden
e.

1

A re
ent study on IR in a legal domain found a 20% improvement in pre
ision when users 
ould

spe
i�
ally sear
h for names

[

Thompson and Dozier, 1997

℄

.
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2. BACKGROUND AND PREVIOUS WORK

Previous work in this area has largely taken pla
e in the 
ontext of the Message Under-

standing Conferen
es (MUCs)

[

Grishman and Sundheim, 1995

℄

. In the 
ase of MUC, the

problem of �nding named-entities was broken up into three sub-problems: enamex, �nding

entity names (organizations, persons and lo
ations); timex, �nding temporal expressions

(dates and times); and numex, �nding numeri
al quantities (monetary values, per
entages,

et
.). However, as dis
ussed by Palmer and Day

[

Palmer and Day, 1997

℄

, the latter two tasks

are mu
h simpler than the �rst. In an analysis of the three tasks a
ross �ve languages, they

found that nearly all numex phrases 
ould be identi�ed reliably with a very small number of

patterns. Sin
e enamex has been suggested to be the most diÆ
ult of the three sub-tasks,

this paper 
on
entrates solely on name dete
tion.

Mu
h of the initial work on �nding names was based on either: (1) 
arefully hand-
rafted

regular expressions

[

Appelt et al., 1993; Appelt et al., 1995; Weis
hedel, 1995

℄

; (2) the use of

extensive spe
ialized resour
es su
h as large lists of geographi
 lo
ations, people and 
ompany

names, et
.

[

Iwanska et al., 1995

℄

; (3) highly sophisti
ated rule-based linguisti
 approa
hes,

based on parsing

[

Morgan et al., 1995; Iwanska et al., 1995; Gaizauskas et al., 1995

℄

. Be
ause

these approa
hes rely on manually 
oded rules or large lists, su
h systems 
an be extremely

expensive to develop and maintain.

While a variety of name dete
tion algorithms have been proposed in the literature, in

this paper, we mention only those that in
orporate a strong ma
hine learning 
omponent.

The best known of these systems is nymble

[

Bikel et al., 1997

℄

, a statisti
al system based on

a Hidden Markov Model (HMM)

[

Rabiner, 1993

℄

. nymble is reported to have an F

1

s
ore of

93. While nymble's approa
h is e�e
tive, it requires large 
omputational resour
es. Another

system using ma
hine learning te
hniques with similar, but slightly lower performan
e, is

Alembi
, whi
h relies on rule sequen
es

[

Aberdeen et al., 1995

℄

.

3. KNOWLEDGE SOURCES USED

To determine whether a token is a name, the system uses eviden
e gathered from a

variety of sour
es. The main 
onsideration in de
iding whi
h information sour
es to use

is the diÆ
ulty asso
iated with 
reating and maintaining the appropriate resour
es. For

example, large, manually generated lists of people and business names are tedious to 
ompile

and require large amounts of maintenan
e. A se
ond 
onsideration is that the learned model

must be easily adaptable to di�erent genres of writing. For example, news-wire do
uments

display very di�erent 
hara
teristi
s from business or informal letters. Rapid adaptation to

di�erent genres requires that the model be easy to re-train, and that extensive genre-spe
i�


knowledge sour
es are not over-used. A �nal, pragmati
, 
hoi
e was to keep the learned

models extremely small. The knowledge sour
es that we use 
an be broadly divided into four


ategories. The 29 features derived from these knowledge sour
es are dis
ussed in subse
tions

below.

3.1. Word Level Features

Language- or genre-spe
i�
 
ues 
an sometimes be exploited to provide eviden
e for name

dete
tion. For instan
e, in English, names typi
ally begin with a 
apital letter. Not only are

these 
ues 
omputationally inexpensive, as shown in Se
tion 5, they 
an be surprisingly reli-

able. The following word-level features were 
hosen as potentially useful sour
es of eviden
e.

The system automati
ally learns whi
h of these features 
orrelate strongly with names: (1)
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all-upper
ase, (2) initial-
aps, (3) all-numbers, (4) alphanumeri
, (5) single-
har, (6) single-s

(if the token is the 
hara
ter \s"), and (7) single-i (if the token is the 
hara
ter \I").

Individually, none of the lo
al word-level features are very e�e
tive: the strongest indi-

vidual feature is all-
aps ; it 
ags 474 tokens in the training set (whi
h 
onsists of a total of

50,416 tokens, of whi
h 3,632 are names). Of these, 449 are a
tually names, the rest being

non-name a
ronyms su
h as \CEO" and \PC", yielding an F-s
ore

2

of only 21 (Pre
ision

= 94; Re
all = 12). initial-
aps is similar, 
agging 5,650 words, of whi
h 3,572 are names,

leading to an F-s
ore of 82 (Pre
ision = 73; Re
all = 94). Note that not all 
apitalized

words are names, and that not all names are 
apitalized (e.g., \van Gogh"). This problem


an be parti
ularly a
ute in some foreign languages su
h as Chinese, whi
h does not have


apitalization, in Spanish where lo
ation names are often not 
apitalized, and in German,

where all nouns are 
apitalized.

For English text, 
apitalization, in 
onjun
tion with reliable end-of-senten
e boundary

dete
tion, is an ex
ellent indi
ator for names. Unfortunately, as dis
ussed in

[

Reynar and

Ratnaparkhi, 1997; Palmer and Hearst, 1994

℄

, determining senten
e boundaries is diÆ
ult

sin
e 
ommon boundaries su
h as periods, question- and ex
lamation-marks 
an o

ur in

many di�erent 
ontexts. For example, these pun
tuation marks, when used in quotations or

inside parentheses do not mark the end of a senten
e. Additionally, periods are 
ommonly

used in abbreviations, as de
imal points, and in ellipses. While the system does not expli
itly


ontain rules for senten
e boundary analysis, as we will show, it learns suÆ
ient 
ontextual


ues to a

ount for most senten
e boundaries.

3.2. Di
tionary Look-Up

A simple heuristi
 for determining whether a parti
ular token is a name is to 
he
k

whether it 
an be found in a di
tionary. Sin
e most names are not valid English words, this

approa
h 
an help identify potential names. The di
tionary used in this study 
ontained

45,402 words

3

. Of these words, 6,784 had their initial letters 
apitalized, and were dis
arded

as names. The remaining 38,618 tokens 
ontained multiple morphologi
al variants of the

same word (further de
reasing the number of unique root forms). Finally, sin
e a number of

English names are also part of the regular vo
abulary (e.g., \mark", \baker" and \stone"),

name dete
tion using only eviden
e from the di
tionary is not very reliable: the F-s
ore for

the di
tionary module alone on our training set was only 64.

3.3. Part-of-Spee
h Tagger

Part-of-Spee
h (POS) tags 
an be used by other modules to reason about the roles and

relative importan
e of words/tokens in various 
ontexts. In this system, we used the Brill

tagger for POS tagging

4

. Brill reports approximately 97% to 98% overall a

ura
y for words

in the WSJ 
orpus for the tagger

[

Brill, 1994; Brill, 1995

℄

. Its performan
e is lower on the

named-entity task. On our training data, the tagger obtained an F-s
ore of only 83 (P = 81,

2

Performan
e on the name dete
tion task is typi
ally measured by the F

�

s
ore

[

van Rijsbergen, 1979

℄

,

whi
h is a 
ombination of the Pre
ision (P) and Re
all (R) measures used in IR. The F

�

s
ore is de�ned to

be:

(�

2

+1)�R�P

�

2

�P+R

, where � is usually set to 1. Studies have shown that, on average, the F

1

s
ore for manually

�nding names in text is approximately 96

[

Grishman and Sundheim, 1995

℄

. In 
omparison, the F

1

s
ores for

many manually 
rafted systems are often between 90 and 92

[

Iwanska et al., 1995; Gaizauskas et al., 1995;

Borkovsky, 1995; Sundheim, 1995

℄

.

3

The di
tionary used in the system was the standard spelling di
tionary available on most Unix systems.

4

Version 1.1, with 148 lexi
al rules and 283 
ontextual rules, trained on a Wall Street Journal (WSJ)


orpus from the Linguisti
 Data Consortium with a lexi
on of 93,696 words.
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R = 86); Aberdeen et al.

[

Aberdeen et al., 1995

℄

report 
onsistent results. The following POS

tags were used as features by the ma
hine learning 
omponent of our system: (1) determiner,

(2) foreign-word, (if the token is one that the tagger has not seen), (3) preposition, (4)

adje
tive, (5) noun, (6) proper-noun, (7) personal-pronoun, (8) possessive-pronoun, (9) verb,

(10) WH-pronoun (whi
h, what, et
.), (11) unknown-POS.

3.4. Pun
tuation

For robust determination of name or not-name, our system must be able to 
apture

synta
ti
 information surrounding the word to be 
lassi�ed. As mentioned earlier, 
ontex-

tual information is ne
essary to disambiguate 
apitalization 
ues that o

ur due to senten
e

boundaries. Context around the 
andidate token in
ludes surrounding pun
tuation. The sys-

tem's 
lassi�er learns to exploit synta
ti
 regularities automati
ally from the training data.

Se
tion 5 dis
usses the e�e
ts of varying the size of this 
ontextual window. We 
onsider

the following pun
tuation marks: (1) 
omma; (2) period; (3) ex
lamation mark; (4) question

mark; (5) semi-
olon; (6) 
olon; (7) plus or minus sign; (8) apostrophe; (9) left parenthesis;

(10) right parenthesis.

4. SYSTEM ARCHITECTURE

The name spotting system 
onsists of two 
omponents: a tokenizer and a 
lassi�er. The

tokenizer 
onverts text into a set of features based on the knowledge sour
es presented in

the previous se
tion; these are used by the 
lassi�er, a de
ision tree 
onstru
ted from the

training data based on information theory (C4.5

[

Quinlan, 1992

℄

).

4.1. Tokenizer

The tokenizer reads free-form text and 
reates tokens 
onsisting of either words or sele
ted

pun
tuation marks. A feature ve
tor of 29 elements is 
al
ulated for ea
h su
h token, based

on the knowledge sour
es des
ribed in Se
tion 3. All of the features, when used, en
ode

binary variables, (i.e., initial-
aps is set to +1 if the token begins with a 
apital letter, and

-1 otherwise). As des
ribed in Se
tion 5, some of the experiments do not use all of the

knowledge sour
es. If a knowledge sour
e was not used, all of its features were set to 0.

Sin
e the 
lassi�er does not expli
itly model synta
ti
 patterns in the text, the de
ision

tree learner must ne
essarily indu
e a large number of synta
ti
 patterns to take into a

ount

the variations in the numbers of tokens that 
an appear in a parti
ular synta
ti
 role. One

approa
h to dealing with this problem would be to 
ollapse adja
ent synta
ti
 tokens from

the same 
ategory into one single token. This would present the learning system with far

fewer patterns to learn and potentially improve results.

5

4.2. De
ision Tree Classi�er

The 
lassi�er pro
esses eviden
e about the 
andidate token and its 
ontext. No feature,

by itself, is suÆ
ient for robust 
lassi�
ation. The goal of the 
lassi�er is to automati
ally


ombine all of the eviden
e to determine whether the 
andidate token is a name. Perhaps the

5

As we will dis
uss in Se
tion 5, we tried a limited version of this method of 
ollapsing patterns and

did indeed see a small improvement in performan
e. However, this 
omes about at the expense of pro
essing

speed, and will not be dis
ussed at length here.
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Rule 39:


omma-1 = +1

word-in-di
t-2 = -1

initial-
aps-2 = +1

noun-3 = -1

-> named-entity [97.8%℄

Rule 91:

unknown-pos-1 = -1

proper-noun-2 = +1

all-upper
ase-2 = +1

-> named-entity [97.2%℄

Rule 47:

adje
tive-1 = -1

word-in-di
t-2 = -1

initial-
aps-2 = +1

verb-3 = +1

-> named-entity [95.8%℄

Rule 121:

proper-noun-2 = +1

word-in-di
t-2 = -1

initial-
aps-2 = +1

-> named-entity [95.3%℄

Rule 82:

determiner-1 = -1

adje
tive-1 = -1

word-in-di
t-1 = +1

proper-noun-2 = +1

word-in-di
t-2 = -1

initial-
aps-2 = -1

alphanumeri
-2 = -1


omma-3 = -1

-> named-entity [94.4%℄

Rule 60:

proper-noun-1 = +1

proper-noun-2 = -1

initial-
aps-2 = +1

-> named-entity [93.9%℄

Rule 66:

all-upper
ase-2 = +1

single-
har-2 = -1


olon-3 = -1

right-paren-3 = -1

-> named-entity [93.7%℄

Rule 118:

period-1 = -1

question-1 = -1

proper-noun-2 = +1

initial-
aps-2 = +1

single-i-3 = -1

-> named-entity [92.8%℄

Rule 58:

word-in-di
t-1 = +1

initial-
aps-2 = +1

-> named-entity [89.3%℄

Rule 34:

proper-noun-1 = +1

word-in-di
t-1 = +1

all-numbers-2 = +1

-> named-entity [84.3%℄

Rule 30:

word-in-di
t-1 = +1

initial-
aps-1 = +1

preposition-2 = +1

word-in-di
t-3 = +1

initial-
aps-3 = +1

-> named-entity [75.9%℄

Figure 1. Sample rules for spotting named-entities generated by C4.5. The 
ontext 
onsid-

ered here is one token to the left and one token to the right. For example, given three tokens in

order, token-1 token-2 token-3, the 
ontext in this 
ase are token-1 and token-3; token-2 is the token

under 
onsideration. To illustrate, Rule #47 states that if the pre
eding word is not an adje
tive,

the 
urrent token is not in the di
tionary, has an initial upper-
ase letter, and the following word is

a verb, the token under 
onsideration is a named-entity (if none of the pre
eding rules apply).
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simplest approa
h is to treat these features as inputs to a statisti
al regression or ma
hine

learning pro
edure. The output, or target variable, is the manually-
oded label identifying

whether the token is a name. Figure 1 shows some of the rules that C4.5 
ame up with based

on our data set.

5. EXPERIMENTAL RESULTS

All of the experiments reported here were 
ondu
ted using a training set of 100 randomly-

sele
ted Reuters news arti
les, 
ontaining 50,416 tokens, of whi
h 44,013 were words (the rest

were pun
tuation). The training set in
luded 3,632 names, with 1552 distin
t names. The

results reported in this se
tion were obtained by running the system on a test set of 25

additional arti
les (these arti
les had never been seen by the system). These test arti
les


ontained a total of 13,507 tokens, of whi
h 11,811 were words, and 1048 were labeled by the


oders as names.

Se
tion 3 dis
ussed baseline performan
e for ea
h of the individual modules. One simple

\learning" approa
h would be for the system to 
onstru
t a list of names en
ountered in the

training set and mat
h 
andidate tokens against this list during testing. However, as pointed

out in

[

Palmer and Day, 1997

℄

, this is unlikely to signi�
antly help in name dete
tion. Our

observations 
on�rmed this hypothesis: the test set 
ontained 1048 names (of whi
h 441 were

unique). Of these 1048 names, only 110 names had appeared in the training set; therefore,

the system 
annot simply rely on a list of names built during training.

In this se
tion, we present some of the experimental results with our system. The exper-

imental pro
edure was as follows: (1) the manually labeled data was divided into three sets,

training, validation, and testing ; (2) the training set was used for indu
ing the de
ision tree;

(3) the validation set was used to prevent over-�tting of the data; (4) when the validation

set error was minimized, training was stopped, and the results were measured on the testing

set. To ensure that idiosyn
rasies in any data-set splitting did not a�e
t our results, repeated

tests are required to a

urately estimate the system's performan
e; hen
e, ea
h experiment

was repeated 5 times, using di�erent parts of the data-set for training and validation. In

ea
h experiment, 80 arti
les were used for training, and 20 for validation. All of the results

presented are measured on the performan
e of the network on an entirely separate testing

set of 25 arti
les.

In the �rst set of three experiments, we examined how the di
tionary, part-of-spee
h and

word-level knowledge sour
es perform when used independently of ea
h other. (Note that

the pun
tuation knowledge sour
e is always used in these experiments.) We also examine

the e�e
t of 
ontext. The �rst line of Table 1 shows the performan
e of the part-of-spee
h

tagger with only the part-of-spee
h information for the word to be 
lassi�ed. The se
ond

line shows the performan
e when given 
ontext information; the part-of-spee
h information

for one word before and after the word to be 
lassi�ed is given. The third and fourth lines

show similar 
ontext information for 2 and 6 words before and after the word to be 
lassi�ed,

respe
tively. Note that the 
ontext is taken without regard to senten
e boundaries.

6

For

simpli
ity, the number of words examined before and after the 
andidate token were kept the

same; however, this is not a requirement for the algorithm. The remainder of Table 1 examines

the performan
e of using the part-of-spee
h tagger, the di
tionary variables and the word-

level features independently. Note that although none of these performs well independently,

their performan
e improves when 
ontext is in
reased.

6

A token, su
h as a period, whi
h may, or may not, indi
ate a senten
e boundary, is part of the 
ontext,

and thus enables the system to eventually learn about rules for 
apitalizing the �rst word of a senten
e.
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Table 1. Performan
e of Individual Knowledge Sour
es and the E�e
ts of Context. (Aver-

aged over 5 runs)

KNOWLEDGE Context A

ura
y

SOURCES words Re
all Pre
. F

1

POS 0 0.855 0.814 83.3

POS 1 0.857 0.802 82.8

POS 2 0.854 0.818 83.5

POS 6 0.862 0.808 83.7

Di
t. 0 0.910 0.483 62.8

Di
t. 1 0.915 0.480 62.9

Di
t. 2 0.911 0.489 63.6

Di
t. 6 0.918 0.476 62.6

Word-Lev. 0 0.983 0.637 77.3

Word-Lev. 1 0.981 0.640 77.4

Word-Lev. 2 0.981 0.613 75.4

Word-Lev. 6 0.980 0.627 76.4

In the next set of three experiments, we examined all the pair-wise 
ombinations of the

knowledge sour
es. Note that the di
tionary features 
ombined with the word-level features

performs almost as well as the word-level features 
ombined with the part-of-spee
h tagging.

However, the di
tionary and part-of-spee
h tagging do not perform as well. This suggests

that the word level features 
ontain information that is not 
ontained in either of the other

two sour
es. These results are summarized in Table 2.

The �nal experiment uses all of the knowledge sour
es. As 
an be seen by 
omparing

the results shown in Tables 2 and 3, there is little di�eren
e between the performan
e of a

system whi
h uses only the part-of-spee
h tagger and the word-level features, and a system

whi
h uses these knowledge sour
es in addition to the di
tionary.

To better understand how ea
h individual feature a�e
ts the performan
e of the 
lassi�er,

we 
an examine the weights for ea
h of the features using linear regression.

7

The magnitude

of these weights indi
ate how mu
h importan
e is given to ea
h input. A positive weight

implies that the respe
tive feature is positively 
orrelated with the 
andidate token being a

name; negative weights are negatively 
orrelated in the same manner

8

.

Figures 2 and 3 depi
t the weight values in a trained per
eptron with 
ontext of 0

and 1 respe
tively. Several attributes of these �gures should be noti
ed. First, in the no


ontext 
ase, the features whi
h are most indi
ative of names are those whi
h a

ount for


apitalization. As demonstrated in Se
tion 3 the POS tagging for proper nouns is not very

reliable. This is re
e
ted by the only medium weight given to the proper noun tag by the


lassi�er. Also noti
e that the POS-tagger's label of noun and adje
tive are indi
ative of

proper names for the system. This suggests that the proper-name dete
tion of the tagger

7

In other experiments not reported here, we also trained a per
eptron using the same data set and

obtained similar results to those obtained using de
ision trees. The relative weights obtained from the linear

regression as indi
ated by the trained per
eptron are useful for gaining an insight into the problem.

8

Note that the graphs are shown for training runs do not use a bias unit

[

Hertz et al., 1991

℄

.
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Table 2. Performan
e of Combining Knowledge Sour
es and the E�e
ts of Context. (Aver-

aged over 5 runs)

KNOWLEDGE Context A

ura
y

SOURCES words(0{6) Re
all Pre
. F

1

Di
t. & POS 0 0.646 0.831 72.6

Di
t. & POS 1 0.760 0.780 76.9

Di
t. & POS 2 0.822 0.774 79.7

Di
t. & POS 6 0.752 0.777 76.4

Di
t. & Word-Lev. 0 0.639 0.929 75.7

Di
t. & Word-Lev. 1 0.931 0.910 92.0

Di
t. & Word-Lev. 2 0.949 0.911 93.9

Di
t. & Word-Lev. 6 0.941 0.912 92.6

POS & Word-Lev. 0 0.906 0.912 90.8

POS & Word-Lev. 1 0.911 0.901 90.5

POS & Word-Lev. 2 0.932 0.918 92.4

POS & Word-Lev. 6 0.923 0.883 90.2

Table 3. Using All Knowledge Sour
es and the E�e
ts of Context. (Averaged over 5 runs)

KNOWLEDGE Context A

ura
y

SOURCES words(0{6) Re
all Pre
. F

1

ALL 0 0.932 0.899 91.5

ALL 1 0.941 0.923 93.2

ALL 2 0.942 0.931 93.1

ALL 6 0.937 0.924 93.0

sometimes misses nouns and adje
tives whi
h should be labeled as names. The largest features

against proper names are whether the word exists in the di
tionary and whether it is a single


hara
ter. It is also interesting to note the 
ontext that it is developed in the 1 token


ontext 
ase. Sin
e all of training arti
les 
ame from the Reuters news-wire stories, the


lassi�ers learned to exploit domain-spe
i�
 idiosyn
rasies. For example, the news arti
les

always 
ontain the token (Reuters), where \Reuters" is 
agged as a name in the training set;

the 
lassi�er learns to tag 
andidate tokens with parentheses on either side as names. See

Figure 3 for the weights on the features, and Figure 4 for an example news arti
le.

Finally, it is promising to note that although there are many input features, the system

automati
ally ignores the irrelevant features. When porting the system to other languages

or genres, it may not be obvious whi
h features to use. The system allows us to add many

potential features from whi
h the relevant ones are automati
ally sele
ted.

As mentioned earlier, the variability in language makes the number of synta
ti
 patterns

that the system has to learn be mu
h larger than 
an be learned using the very limited

amount of training data we had available. In order to learn the synta
ti
 
ontext of greatest
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Table 4. A Cas
aded Pro
essing Model Seems to Give Improved Performan
e.

Algorithm CONTEXT

0 1 2 6

One-Pass 91.50 93.20 93.70 93.05

Cas
aded 92.06 95.22 95.00 94.75

NEW YORK (Reuters) - Hotel real estate investment trust

Patriot Ameri
an Hospitality In
. said Tuesday it had agreed to a
quire

Interstate Hotels Corp, a hotel management 
ompany, in a 
ash and sto
k

transa
tion valued at $2.1 billion, in
luding the assumption of $785 million

of Interstate debt.

Interstate's portfolio in
ludes 40 owned hotels and resorts, primarily

ups
ale, full-servi
e fa
ilities, leases for 90 hotels, and management-servi
e

agreements for 92 hotels.

On 
ompletion of the Interstate deal and its pending a
quisitions of

Wyndham Hotel Corp. and WHG Resorts and Casinos In
., Patriot's portfolio

will 
onsist of 455 owned, leased, managed, fran
hised or servi
ed properties

with about 103,000 rooms.

A definitive agreement between Patriot and Interstate values Interstate at

$37.50 per share. Patriot will pay 
ash for 40 per
ent of Interstate's

shares, and will ex
hange Patriot paired shares for the rest. Paired shares

trade jointly for real estate investment trusts and their paired operating


ompanies.

Patriot said it expe
ts the transa
tion to be about 8 per
ent a

retive to

its funds from operations.

It said the agreement had been approved by the boards of Interstate and

Wyndham Patriot said it did not expe
t the deal to delay the 
losing if its

transa
tion with Wyndham, whi
h is to 
lose by year-end.

Figure 4. This example illustrates some of the mistakes that the system (with a 
ontext

of one) 
an make on diÆ
ult news stories. Underlined words indi
ate names that were su

essfully

dete
ted; itali
ized words mark tokens that were mis
lassi�ed as names; and bold words are names

that were not found. See the text for details.


on
ern here, that surrounding the pla
ement of named-entities in text, we 
arried out some

preliminary experiments of folding multiple named tokens into a single one. In training,

sequen
es of adja
ent named entities were 
ollapsed into a single token. In testing, adja
ent

tokens that were 
lassi�ed as nouns by the POS tagger were 
ollapsed into a single token.

Using su
h a 
as
aded pro
essing model resulted in improved �gures, with the system's

performan
e now beginning to mat
h the best reported F

1

s
ores, either by ma
hine or by

humans. Table 4 shows these results. It should be emphasized that these are preliminary,

and we are looking at ways in whi
h synta
ti
 patterns 
an be better 
ompressed, for both

training and usage.

The pre
eding dis
ussion, along with the experimental results reported in Tables 1, 2,
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and 3, has identi�ed some of the bene�ts and drawba
ks of our approa
h. We 
an also

gain insight into the system's performan
e on the name dete
tion task by examining spe
i�


failure 
ases. Figure 4 presents the system's output on a diÆ
ult news story. The underlined

words are names that were su

essfully dete
ted; itali
ized words mark tokens that were

mis
lassi�ed as names; and bold words are names that were missed. In this example, the

system failed to �nd two names (\Interstate" and \Patriot"), and mis
lassi�ed the word

\ups
ale" as a name. It should be noted that the word \ups
ale" does not appear in the

system's di
tionary, while both of the names, \Interstate" and \Patriot" do. However, the

latter errors are not simply 
aused by di
tionary 
onfusion: although the words \Interstate"

and \Patriot" o

ur multiple times in this do
ument, they are 
orre
tly tagged in every other

instan
e. Some insights into this failure are given by the feature weightings in Figure 3: when

the system is restri
ted to a 
ontext of one word, it learns that 
apitalized tokens are likely

to be names | but not when these tokens also appear in the di
tionary and are pre
eded by

a period (rudimentary end-of-senten
e dete
tion).

6. APPLICATIONS: A BROWSING INTERFACE TO THE WWW

As an immediate appli
ation of this te
hnology, we implemented a spe
ialized interfa
e

for reading news arti
les on the WWW. The name spotting te
hnology was built into a proxy

whi
h �ltered the textual data of all do
uments requested by a browser. In addition, one

of our 
olleagues implemented a system whi
h, when given a named entity, attempts to �nd

the \oÆ
ial" home page of that entity.

9

This appli
ation also highlighted another important

aspe
t of our approa
h. Sin
e our system does not use a detailed parse of the text, it is

very fast. This is an important fa
tor in user a

eptan
e; the fa
t that the proxy does not

impose any noti
eable delays in serving pages is very important. A s
reen shot of news arti
le

served using the proxy is shown in Figure 6. As 
an be seen, almost all the named-entities

in the do
ument were 
orre
tly identi�ed, and if a \home page" 
ould be found for them,

a hyperlink to that page was generated and inserted in the text automati
ally . We believe

that a ma
hine learning approa
h su
h as the one des
ribed here 
an be, and will be, used in

the future to allow users to intera
tively mark text and images of interest, and the browsers

will automati
ally learn to �lter in
oming pages and highlight portions of interest to the

individual reader.

7. CONCLUSIONS AND FUTURE WORK

This paper presents a high-performan
e name extra
tion system based on ma
hine learn-

ing te
hniques. Although it a
hieves performan
e 
omparable to the best name dete
tion

systems, the system does not rely on hand-
rafted rules or large manually 
reated databases

of names. This paper also presents an analysis of the value of di�erent knowledge sour
es.

Di�erent 
ombinations of knowledge sour
es 
an yield widely varying results. To design larger

systems whi
h address more 
omplex tasks, it is important to determine whi
h knowledge

sour
es provide the best dis
rimination power, and whi
h are redundant.

In future work, we hope to extend this system to other tasks. For example, we plan to

ful�ll the 
omplete MUC task spe
i�
ations, whi
h in
ludes name-spotting and 
ategorizing

the names as people-names, lo
ation-names and organization-names. On
e a potential name

9

This is similar in fun
tionality to pages su
h as ahoy and others that attempt to do the same thing.
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has been identi�ed, there are several 
ues that 
an be exploited to determine to whi
h of

these three 
ategories it belongs. Additionally, we plan to explore hybrid systems where our

approa
h is used in 
onjun
tion with traditional parsing te
hniques.
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Figure 6. A s
reen shot of the browser interfa
e built using the name spotting te
hnology

des
ribed in this paper (this one implemented using a 
ontext window of 1 word for speed).


