
1

Hiding Images Within Images
Shumeet Baluja, Member, IEEE

Abstract—We present a system to hide a full color image inside another of the same size with minimal quality loss to either image. Deep
neural networks are simultaneously trained to create the hiding and revealing processes and are designed to specifically work as a pair.
The system is trained on images drawn randomly from the ImageNet database, and works well on natural images from a wide variety of
sources. Beyond demonstrating the successful application of deep learning to hiding images, we examine how the result is achieved and
apply numerous transformations to analyze if image quality in the host and hidden image can be maintained. These transformation range
from simple image manipulations to sophisticated machine learning-based adversaries. Two extensions to the basic system are
presented that mitigate the possibility of discovering the content of the hidden image. With these extensions, not only can the hidden
information be kept secure, but the system can be used to hide even more than a single image. Applications for this technology include
image authentication, digital watermarks, finding exact regions of image manipulation, and storing meta-information about image
rendering and content.

Index Terms—Information Hiding, Image Verification, Image Trust

F

1 INTRODUCTION

INFORMATION hiding is most commonly associated with
well publicized nefarious endeavors, such as secretly

planning and coordinating criminal activities through hidden
messages in images posted on public sites [1]–[3]. Beyond
the multitude of misuses, however, hiding information can
be used for practical positive applications as well. For exam-
ple, hidden images used as watermarks embed authorship
and copyright information without visually distorting the
image [4]. Other meta-information, such as motion vectors,
bounding boxes, extended-color and depth information for
each pixel can be hidden without noticeably changing the
appearance of the image. Perhaps even more timely, we
provide a way to handle the rapidly growing problem of fake
and partially altered images on popular social media and
news sites. By hiding invisible markers throughout an image,
even subtle alterations can be easily detected by analyzing
the reconstruction of the markers – all without compromising
the visual integrity of the viewed image [5].

The challenge of good information hiding arises because
embedding a message can alter the appearance and under-
lying statistics of the carrier (the host image). The amount
of alteration depends on two factors: first, the amount of
information that is to be hidden. The most common form
of information hiding has been hiding a relatively small
number of bits - for example for text messages [6]–[8].
The longer the message, the more the potential distortion.
Second, the amount of visible alteration depends on the
carrier image itself. Hiding information in the noisy, high-
frequency, regions of an image yields less humanly detectable
perturbations than hiding in the flat regions. Work on
estimating hiding capacity can be found in [9].

The most common hiding techniques manipulate the least
significant bits (LSB) of images - whether done uniformly or
adaptively [10], [11]. Though often not visually observable,
statistical analysis of the images can reveal whether the
resultant files have been altered. Other methods of hiding

• S.Baluja is with Google-AI, Google, Inc. Email: shumeet@google.com

Manuscript submitted June, 2018

Fig. 1. Samples from the full-image hiding system. From the left: host
image, hidden image, the container image (the container holds/hides the
hidden image within it while looking like the host), and the recovered
hidden image – this is extracted from only the container. The last two
columns are the errors for the container vs. host and reconstructed vs.
hidden images (enhanced 5×). The bottom two rows show examples of
larger reconstruction errors, likely due to the highly saturated colors that
were not well represented in the training set.

attempt to preserve the host images’ statistics by creating
and matching models either explicitly [12] or through deep
learning [13].

Though similar conceptually to steganography [1], [14]–
[19], five key differences set this work apart:

• The hidden information need not be encoded per-
fectly; small errors in the hidden image are acceptable.
It is possible to explicitly balance the reconstruction
quality of the visible and hidden images, see Figure 1.

2

Fig. 2. The three components of the full system. Left: Hidden-Image preparation. Center: Hiding the image in the host image. Right: Uncovering the
hidden image with the Reveal-Network; this is trained simultaneously, but is used by the receiver.

• The visible information need not be transmitted
perfectly. In steganographic systems, the hidden infor-
mation is “fragile” [8], such that small modifications
to the visible image may yield large errors in the
hidden message. In our system, local changes to the
visible image yield local changes to the hidden image.

• The orders of magnitude of the amount of information
to be hidden – there is a 1:1 ratio of hidden to
host information. In terms of bits per pixel, we are
attempting to encode 24bpp.

• We implicitly model the distribution of the statistics of
natural images rather than creating explicit models.
This is achieved through using a deep neural network
trained with a large set of host and hidden images.

• Given the amount of information that we hide, we do
not attempt to conceal the existence of a hidden mes-
sage. We do, however, present methods to obfuscate
the content of the hidden message.

These distinctions between our work and steganography
are important. Due to the amount of information hidden, we
cannot assume that the fact that there is hidden information
in the image can remain undetected. Nonetheless, we will
often refer to tools and techniques often used with steganog-
raphy to help understand and analyze our approach.

Aside from steganography, good examples of information
hiding in images have been explored in [20]–[22]. Notably,
in these studies, the authors have encoded extra information
about the visible image within the transmitted image, for
example color information in a gray-scale version of the same
image. By extracting the hidden information, the receiver
is able to convincingly reproduce the image’s colors. In our
experiments, we explore a generalization of this; we will hide
an entirely independent image into another.

Despite recent impressive results achieved by incorpo-
rating deep neural networks into finding the existence of
hidden messages (steganalysis) [13], [23]–[25], there have been
relatively fewer attempts to incorporate neural networks into
the hiding process itself [26]–[30]. Of these studies, some
have used deep neural networks (DNNs) to select which
LSBs to replace in an image with the binary representation
of a text message. Others have used DNNs to determine
which bits to extract from the container images. Recently, [31],

proposed a technique that uses a novel learning approach
with shallow neural networks to create a system to hide short
messages in images. Based on DCT coefficients, their method
initializes networks trained to embed messages in images
that are quite tolerant to common transformations, such as
rotation, inversion, and color transformations. Perhaps the
most advanced use of neural networks was done concur-
rently to the work presented here [32]–[35]. These systems
created DNNs trained with adversaries for hiding messages;
Generative-Adversarial-Networks (GANs) [36] were used to
provides an error signal based upon the discoverability of
the hidden message. These studies encoded relatively small
messages, more typical of standard steganographic studies,
and showed good resistance to existence discovery.

In this work, the neural network determines where to
place the hidden information, as well as how to compress
and represent it. As will be shown, the hidden image is
dispersed throughout the bits in surrounding pixels and
across all the color channels. A decoder network, that has
been simultaneously trained with the encoder, is used to
reveal the hidden image. The networks are trained only once
and are independent of the host and hidden images. They
also only work with each other, as they are trained as a pair.

In the next section, we will describe how the system
of neural networks is simultaneously trained to hide and
recover images. The basic system was originally presented
in [37]. An analysis of where the information is stored, and a
presentation of various methods for discovering the hidden
information is presented in Section 3. The presence of hidden
information can be discovered by training learning-based
detectors. To address this, in Section 4, we present two
methods to obscure the hidden information even when the
original, unaltered, cover image is publicly available. Beyond
making the hidden information more difficult to identify, we
also demonstrate how to embed more than a single image.

2 LEARNING TO HIDE FULL-SIZE IMAGES

Though information hiding is often conflated with cryp-
tography, in our approach, the closest analogue is image
compression through auto-encoding networks [38]–[46]. The
trained system, shown in Figure 2, learns to compress and

3

Fig. 3. Transformations made by the preparation network (3 examples
shown). Left: Original Color Images. Middle: three channels of information
extracted by the preparation network that are input into the hiding network
(other channels not shown). Right: zoom of the edge-detectors. In the
most easily recognizable example, the 2nd channel activates for high
frequency regions, e.g. textures and edges (shown enlarged (right)).

place the hidden image into the least noticeable portions of
the host image.

The full system is a series of three networks that are
trained as a single, large, network (Figure 2). The first
component, the Preparation-Network, prepares the image to
be hidden. The main function of this network is to transform
the RGB-pixels of the hidden image into features that can be
used by the Hiding-Network 1. These features are not a priori
specified; they are learned. An analysis of the transformations
done by the preparation network revealed ones that are
commonly useful for compressing images, such as edges and
orthogonal components [47]. See Figure 3.

The actual embedding of the hidden image into the host
image is done by the Hiding-Network. The Hiding-Network
receives the output of the Preparation-Network and the host
image as input. The input is formatted as anN×N pixel field
(for our studies, N = 200), with depth concatenated RGB
channels of the host image and the transformed channels
of the hidden image. The output of this network is the
Container image (N ×N , RGB pixels). The container image
should appear as similar to the host as possible, while also
containing enough information to recreate the hidden image.

The third component, the Reveal-Network, is responsible
for extracting the hidden image from the container. Though
this network is used only by the receiver, all three compo-
nents are trained as a single network. This pairs the sender
and receiver sides of the communication to work exclusively
with each other.

The basis of this approach borrows heavily from auto-
encoding networks [38] in which a network internally creates
a compressed representation of the image [39]. In this
system, instead of simply encoding a single image through a
bottleneck for compression, two images are combined such
that the intermediate representation (the container image)
appears similar to the host image. The system is trained by
reducing the following error: (H and S are the host and
hidden images respectively, β is their weighting):

L(H,H ′, S, S′) = ||H−H′||+ β||S− S′|| (1)

The form of error propagation is vital (see Figure 4).
Notice that the error ||H−H′|| does not change the weights

1. The function of the preparation network and the hiding network
can be combined into a single network. However, training with this
division resulted in a faster training and easier analysis.

Fig. 4. The three component networks are trained as a single network,
thereby pairing the encoding and decoding portions to work exclusively
with each other. The first error term 1 affects the Preparation and Hiding
component networks. Error term 2 affects all 3 components. S is the
hidden image, H is the host image.

of the Reveal-Network. The Reveal-Network does not need
to be able to reconstruct the host image; it needs to only
recover the hidden image from the container. In contrast, all
of the networks are trained with the signal from β||S− S′||
since each portion of the network is responsible for holding
and forwarding information about the hidden image. By
propagating this error signal to both the Preparation and
Hiding networks, the representations formed early in the
system encode information about the hidden image.

30 neural architectures and training hyper-parameter
were used to find the best network for the task. The final
network employed is given in Table 1. Similar architectures
revealed approximately the same performance with visu-
ally indiscernible differences. All images, both input and
output, are 200 × 200 pixels, with 3-channel depth (RGB).
Networks were trained with ADAM [48] and weights were
initialized with variance scaling (0.1). Batch-Normalization
was not used. All experiments were implemented using
TensorFlow [49] with default parameters, except as specified
above.

Results from the best of the 30 networks are shown in
Figure 1. Unless reported otherwise, β = 0.75 (the other
two settings of β tried, 1.0 and 1.25, revealed nearly visually
identical reconstruction performance. The network trained
with 0.75 gave a small quantitative benefit in the networks
we trained). Quantitatively, the average color error, per RGB
channel, for the host image was 2.4 (out of a possible 256) and
3.4 (/256) on the hidden. This was measured on two test sets:
those from the ImageNet challenge (’validation’ images) and
the second composed of 200 cell-phone and DSLR photos.
None of the test images were used in training.

3 WHERE IS THE HIDDEN IMAGE ENCODED?

The primary focus of this paper is to concretely demonstrate
that it is possible to encode a large amount of information
in an image with limited visually noticeable artifacts. How-
ever, no explicit attempt has been made to actively hide
the existence of that information from machine detection.
Though we cannot expect to completely hide the fact that
1/2 of the information is part of a hidden message, measures
can be taken to make it more difficult to discover. First, we
must determine where the information of the hidden image
resides.

4

TABLE 1
Network Architectures

Network Input Hidden
(size, stride, depth, activation) Output Notes

Preparation 200×200×3→
(Image to Hide)

→ 2D-Conv (4× 4, 1× 1, 50, relu)
→ 2D-Conv (4× 4, 1× 1, 50, relu)
→ 2D-Conv (4× 4, 1× 1, 50, relu)
→ 2D-Conv (2× 2, 1× 1, 30, relu)
→ 2D-Conv (2× 2, 1× 1, 7, tanh)→

→200×200×7
(Transformed
Hide Image)

A variety of output di-
mensions were tried (5-12).
Most yielded similar per-
formance to the 7 channel
version shown here.

Hiding

200×200×3 +
200×200×7→

(Host Image &
Transformed
Hide Image)

→ 2D-Conv (4× 4, 1× 1, 50, relu)
→ 2D-Conv (4× 4, 1× 1, 50, relu)
→ 2D-Conv (4× 4, 1× 1, 50, relu)
→ 2D-Conv (4× 4, 1× 1, 50, relu)
→ 2D-Conv (2× 2, 1× 1, 30, relu)
→ 2D-Conv (2× 2, 1× 1, 3, tanh)→

→200×200×3
(Container
Image)

The output should appear
similar to the original host
image.

Reveal 200×200×3→
(Container Image)

→ 2D-Conv (4× 4, 1× 1, 100, relu)
→ 2D-Conv (4× 4, 1× 1, 100, relu)
→ 2D-Conv (4× 4, 1× 1, 50, relu)
→ 2D-Conv (2× 2, 1× 1, 3, tanh)→

→200×200×3
(Reconstructed
Hidden Image)

This network resides with
the receiver. This decoded
output should appear simi-
lar to the hidden image.

Fig. 5. ROC curves: True Positive Rate vs. False Positive Rate for
StegExpose when detecting images embedded via DNNs.

Is the network simply hiding the information about the
hidden image in the least significant bits of the host image?
Tools exist to find hidden information in the LSBs; a publicly
available steganalysis toolkit, StegExpose, was used to test
the reliance on LSBs for our hidden images [50]–[52]. Per
the description of the tool: “StegExpose rating algorithm is
derived from an intelligent and thoroughly tested combination of
pre-existing pixel based steganalysis methods including Sample
Pairs by Dumitrescu (2003), RS Analysis by Fridrich (2001),
Chi Square Attack by Westfeld (2000) and Primary Sets by
Dumitrescu (2002)” [50]. In addition to the default settings
(threshold=0.2), the threshold was varied throughout a large
range. The ROC curve is shown in Figure 5. Note the little
variation beyond random guessing (green line).

StegExpose would have been able to find the information
if it were simply placed in the LSB bits. We turn to a second
method to find where the information is stored. The images
used in the study are composed, at each pixel, of 24 bits
(8 × (R,G,B)). If we flip the first bit of the R channel of
all the pixels in the container image (H ′), we can measure
its effects on the reconstructions on the container image
itself and also, by propagating the modified image through
reveal network, on the reconstruction of the hidden image.
See Figure 6. The top half of the figure (container image)

Fig. 6. Sensitivity to Bits in the Container Image. (Left:) Control case, the
container image. Changing a bit in the container image obviously has no
effect on other bits. (Right): However, that same bit flip in the container
image has effects across all color bands in the recovered hidden image.
For example, if we want to measure the effect of flipping the 2nd bit in
the Blue channel, we would look at the marked entries (marked with *).

should be considered the “control”; the upper left bar-chart
shows that the effects of changing a bit in the Red channel
of the container only has an effect on the red-channel in
the container, and that the magnitude is proportional to the
significance of the bit. This is exactly as expected and holds
true for the Green and Blue channels as well (the diagonal).

Next, lets examine the effects that changing a bit in the
container image has on the reconstructed hidden image. See

5

Fig. 7. How far does the effect of changing a pixel in the container image
reach when decoding the hidden image? This figure shows the average
effect that perturbing a pixel in the container image has on the hidden
image reconstruction, as a function of distance from the perturbed pixel.
After approximately a distance of 7 pixels, the effect is negligible.

Figure 6 (bottom half, “Reconstructed Hidden Image”). Here,
we see that a bit flip in any bit position in any color channel
of the container image, has an effect across all color channels
in the hidden image’s reconstruction. Moreover, the error
does not follow the standard significance ordering of the bit
positions. In other words, the information for the hidden
image is spread across the color channels — the reason it
was not detected by simply looking at the LSB.

In addition to distributing the hidden image information
across the color-bits, the information is also spread in the
spatial dimension. To measure this, we employ a similar
procedure as before. As the baseline, we first place the hidden
image, S, in a host image, H , which creates the container
image C . C is passed through the Reveal network, revealing
S′. Then, to examine the spatial distribution, we modify
a single pixel in C, giving Cm. Cm is passed through the
Reveal network, yielding S′m. For each pixel, we measure
||S′ − S′m||2. This is reported in Figure 7 as a function of
pixel-distance from the perturbed pixel.

Two observations should be noted. First, the representa-
tion for the hidden image is distributed – both in surrounding
pixels and in color bits. On average, the encoding for each
pixel of the hidden image is distributed in pixels that are up
to a distance of 7 away from the corresponding pixel in the
container image. Second, the amount of spatial distribution
is directly related to the neural network architecture and
the size of the convolutions. Had we wanted to encourage a
wider distribution, more or larger convolutions could have
been employed, as well as Atrous convolution layers [53].

Moving beyond LSB analysis, multiple studies have
shown that deep networks are competitive and often better
than the more established methods of steganalysis that use
hand selected image features [23], [24]. We trained detection
networks as binary classifiers using unperturbed ImageNet
images as negative samples and our container images as
positive examples. After an empirical examination of input
representations and architectures, we discovered that the
detection networks performed well representing an image
with 24× (N ×N) stacked binary input layers. Each of the
24 layers represented a bit in the pixel representation of the
input image. The networks were trained in an analogous
manner to others in this study.

Fig. 8. The hidden image is embedded within the host image; the result,
the container image, is shown in the column ’result’. In the hypothetical
case of an adversary gaining access to the original, unaltered, host image,
the adversary can magnify the difference between the original host and
the container, see column ’diff’, ’diff*10’, ’diff*20’. When magnified 10x
and 20x, traces of the hidden image are visible, particularly rows A,B,C,G.

The detection networks obtained between 90-95% com-
bined classification rates. For comparison, the same networks
were retrained to find Least-Significant-Bit substitution
(where the L least significant bits of each color channel in the
host image are replaced with the L most significant bits from
the hidden image). The networks were trained and tested
with L = 1, 2, 3, 4; all achieved over 99% combined rates.
An additional set of tests revealed that even when a single
bit was randomly placed in one of the 4 bit positions, the
detection rate remained above 99%. Given these detection
rates on even a single bit position, the high detection rates
with a full image are not surprising.

The rates of discoverability makes this technique un-
suitable for applications requiring the undetectability of
hidden information; however, its use for data-hiding, data
augmentation, and image-content alteration detection remain
intact. We now turn our attention to the discoverability of
the content of the hidden image, rather than just the existence
of a hidden image.

3.1 Hidden Content Discovery

In our first examination, let us assume that the sender of the
message has (unwisely) chosen to use a publicly available
image as the host image. Under this assumption, we must
assume that the adversary is also able to find other copies
of the publicly available image (that were not transformed
to contain the hidden image). By dramatically magnifying
the pixel-wise differences between the container and the

6

Fig. 9. Creating training examples for the discrimination network by
generating triplets {cover,hidden,container} from the discarded networks.

unaltered, found, host image, portions of the hidden image
are revealed. See Figure 8 for examples. As the hidden
image is not cryptographically secured, visually recognizable
features of the hidden image are visible.

The hidden image is most readily seen in host images
that contain large uniform patches of color (Figure 8 -A,B,C
& G). What if the sender had been careful to only use
higher-entropy images? Would the hidden information still
be discernible? To answer this from the perspective of an
attacker, we assume that the adversary does not have access
to the exact network that the sender employs. However, the
attackers can train their own deep-image-hiding networks
successfully. With that ability, can they create an adversary
for our network? Recall that the representations developed
by the adversary’s hiding-network will be different than ours
(as mentioned earlier, each network’s encoder and decoder
are paired to work exclusively only together). Instead of
attempting to mimic our system, the adversary can instead
turn to gathering large-scale statistics about the hiding
process by training many, randomly initialized, variants of
the hiding system. We simulate this as follows.

Our goal is to create a Discriminiation Network that
can determine whether an image (the container) contains
another image (the hidden). Recall that for obtaining a
system of encoding-decoding networks that worked well, we
trained 30 different networks with varying architectures and
backpropagation hyper-parameters. From these 30, we had
selected the best and discarded the rest.2

We return to these previously-discarded networks and
gather samples from each of the discarded, but fully trained,
networks in the form of triplets: {cover-image, hidden-image,
container-image}. Each of these triplets was added to the
“positive” group. A “negative” set of examples was created
in which, for each of these triplets, the hidden image was
replaced with a randomly selected image. The task for these
new Discrimination Networks is then to correctly identify
that the hidden images in the negative set are not embedded
in the container images and that the hidden images in the
positive set are embedded within the containers. This process
is shown in Figure 9. Why do we do this? If it is possible to

2. There was a significant variation in performance of the discarded
networks, ranging from error rates 1.02− 3× of the best network. Each
network encodes the hidden image in a potentially unique way as there
were no hints given specifying in which bit positions or in which pixels
and pixel-neighbors to encode the hidden image.

accurately train this discrimination network, then it confirms
that there is enough discoverable information in the container
image for an external attacker to gain information about the
hidden image.

Given the set of positive and negative examples, we
trained multiple deep Discrimination Networks to distinguish
whether a specific hidden image was embedded in the
container. In these experiments, the discrimination network
was also given as input the original, unperturbed, host
image. Recall that the training samples were gathered from
many, separately trained, networks. Thus, the detector solved
this task for multiple hiding networks, not just a single
one (in Figure 9, this is denoted by HidingNetworkA —
HidingNetworkZ). Nearly perfect accuracy was achieved
for all of the networks that contributed samples to the
training. Moreover, 95-99% accuracy was obtained on triplets
generated by our hiding network — a network that it was
not trained on.

This implies that if the hidden image is known, the
evidence to verify its presence is reliably extractable from the
container without access to the specific decoding network.
This attack assumes that the adversary has access to the unal-
tered host image. Let us now make the attack even broader:
what happens when the unaltered host is not available? We
attempted to retrain the Discrimination Networks without
being given the unaltered host. Surprisingly, the detection
accuracy remains high, 94.5%.

The high accuracy rates without the original host images
means that there is a discoverable transformation of the
container image that yields information about the embedded
image. As our final attack, we verify this through the simplest
attack: We transform only the container image through a
series of blur operations, yielding containerblur. We then
compute the difference between this and the container image
(in each R,G,B, channel) and intensify the results, yield-
ing Revealed, where Revealed = min(255, |container −
containerblur| × V) and 5 ≤ V ≤ 20. As can be seen in
Figure 10, this simple transformation also yields smaller, but
nonetheless present, hints to the contents of the embedded
image — without access to the original host or the original
hidden image.

Visually, it is sometimes difficult to discern the objects
in the hidden image when simply removing the blurred
container image. Nonetheless, even this simple analysis
reveals components of the hidden image, most clearly in
those that are embedded in the lower-entropy regions of
the host image. Earlier we had stated that merely knowing
the existence of a hidden image did not necessarily reduce
the effectiveness of this technique for watermarking or
image-content-alteration detection. However, if the actual
content of the hidden image is known, this can pose a
greater problem as it makes removing the hidden image
or replicating portions of the hidden image easier after an
image modification has been made. Next we explore methods
to make the hidden information less discernible.

4 OBFUSCATING THE HIDDEN IMAGE

In the previous section, we demonstrated that it was pos-
sible to discover remnants of the hidden image in the
container image. This was done with and without access

7

Fig. 10. What can we see without the unmodified host image? If we
blur the ’result’ image and subtract that from the ’result’ image, we see
remnants of the hidden image (rows A,B,C in particular). Color-constant
regions in the host image are most susceptible to this. This is a potential
vulnerability even without access to the original host image.

to the unaltered host image, and with simple and more
sophisticated DNN based attacks. In this section, we present
two method to obfuscate the hidden image. Desiderata for
the obfuscation techniques are (1) Even if an unperturbed
host image is obtained, the content of the hidden image is
difficult to ascertain. (2) The obfuscation technique must
have the property that errors remain local, e.g. errors are not
additive/multiplicative and do not propagate. Because of
the large amount of hidden information, neither the host nor
the hidden image may be encoded perfectly. Errors in the
reconstruction should impact as few pixels in the recovered
hidden image as possible. Ideally, a single error only affects
a single pixel.

A simple method for obfuscating the hidden image
is to permute the pixels before they are passed to the
hiding network [54]. The receiver of the image passes the
container image through the decode-network, which reveals
a scrambled hidden image that is then “un-permuted.” This
procedure has the important property that the error in each
pixel’s reconstruction is strictly local (affects no other pixel)
and that the permuted image is unrecognizable even when
viewed without any reconstruction error.

It is tempting to use the networks trained in the previous
section with the permutation and un-permutation steps
“wrapped” around the hiding system. However, this does
not work: images are not “stored” as pixels in neural
networks [38], [55]. A neural network concisely represents
the information in an image by exploiting spatial coherency.

TABLE 2
Average error in R,G,B Channels (out of 256)

host Hidden

1 Permuted with a Single Permutation 5.1 7.5
2 Permuted With Multiple Permutations 6.2 7.5

3 Permuted w/Nets from Sect. 2 (no retrain) 4.6 14.4
4 Baseline: No Permutation (from Section 2) 2.4 3.4

For example, encoding natural images that exhibit spatial
structure is far more successful than encoding noise. Un-
fortunately, like noise, the permuted images lack spatial
structure, thereby requiring the network to memorize pixel
intensities. (The permuted images do, however, maintain the
intensity distributions of natural images.) A system trained
with only natural images is not able to perform well on
pixel-permuted images. Rather, we need to repeat the entire
training process; the system is retrained to hide images
without the spatial coherence of natural images. As before,
30 networks were retrained with the same architectures used
previously, supplemented with the permutation steps.

The results from the best network, evaluated on an inde-
pendent test set, are shown in Figure 11. The intermediate
permuted images are also shown. Note the lack of spatial
structure in the permutation while the color distribution
of the underlying hidden is discernible (column 3, labeled
“Shuffled-1”). Most importantly, even when the errors are
magnified in the reconstruction of the host image, there
is no recognizable trace of the hidden image (Figure 11,
Column 7). Table 2 gives the average error, per channel, of
this system (Row #1) compared to one that does not use
permutations (Row #4). Row #3 shows the results of using
permutations with the networks trained previously (without
permutations).

Training the networks to encode permuted images pro-
ceeds significantly slower than training the baseline hiding
networks described in Section 2. Using a single, modest,
GPU, training for permutation-hiding networks took over
2 weeks. The baseline networks reached peak performance
in approximately 5 days of continuous training. Encoding
permuted images is a significantly harder problem.

Finally, it is important to discuss whether the underlying
permutation can be discovered? With enough permuted
samples, such as encoding each frame in a video with
this method, the statistics of natural images and spatial
coherency constraints may yield clues on the real position
of the pixels [56]. However, even this can be mitigated
if we allow the permutation mappings to themselves be
algorithmically chosen from a large number of known, or
derivable, orderings, e.g. [57]. Experiments simulating this
using randomly selected permutations are shown in Row #2
of Table 2.

4.1 Hiding Multiple Images
Currently, the system successfully embeds a full color
N × N image in another of the same size (Figure 1) - the
hidden image can either be permuted or un-permuted. In
comparison to encoding non-pixel-permuted images, for a
neural network to encode a permuted image, it must create
a much more detailed representation of the pixels that does

8

Fig. 11. Results with encoding and decoding permuted images. In the sender’s column: from the left: host image, hidden image, the hidden image
after pixels permutations and the result image. In the right half, the receiver’s column: the decoded permuted-hidden image, and the un-permuted
image. The residual error images are given for both the host and the recovered images in the last two columns. Most importantly, in comparison to
Figures 8 & 10, note that there is no evidence of the hidden image in the errors for the host (second to last column).

Fig. 12. System to hide two full N ×N images within a host image of the same size. Compare this to Figure 2.

not rely on the spatial structure present in natural images.
We present a second method of obfuscation: hiding multiple
images. Instead of using the network’s extra capacity for
representing the permuted pixels more accurately, can the
capacity be used to encode more than a single image? If we
can hide multiple images, it is likely that any single image
will be harder to reconstruct even when encoded without any
perturbations. Beyond secrecy, the ability to hide more than
a single image also enables us to hide multiple, independent,
pixel-wise sources of supplementary information, such as
depth, color or motion.

Concretely, we attempt to hide two full sizeN×N images
— we are hiding 2× the amount of information that is in
the host, see Figure 12. The training proceeds in a manner
similar to Section 2. For our experiments, the L2 loss on each
image was weighted equally. As before, this system requires
retraining all three components. Sample results are given

in Figure 13 and the quantitative error comparisons from
the test set are provided in Table 3. As expected, the error
increases but the reconstructions remain, visually, good.

Recall that in Section 3, we trained Discrimination Networks
to determine whether a specific hidden image was embedded
in a container image. We tested those same networks with
this two-image hiding system. In the single image hiding task,
the Detection networks had an accuracy of ≈ 94%. When
encoding multiple images with the networks described in
this section, the accuracy drops to ≈ 73%. As hoped, the
process of hiding more information further obfuscates the
hidden image.

Finally, for completeness, we applied the perturbation
and the multiple-image hiding in the same system. Two
images are each permuted and hidden within a single host
image. The reconstruction errors increase substantially over
using only a single hidden image and also over the non-

9

Fig. 13. 6 Results showing typical reconstructions when hiding 2 images within a single host image. Note that the colors appear far less saturated
and there is modest noise in the flat regions of the host image.

TABLE 3
Average error in R,G,B Channels (out of 256) – When Hiding Two

Images

host Hidden1 Hidden2

Hiding 2 Images 6.6 5.0 6.0
Hiding 2 Images Single-Permut. 9.2 10.2 11.4

Hiding 2 Images Multiple-Permut. 9.5 10.7 12.0

Baseline: Single Image (Section 2) 2.4 3.4 n/a

permuted two-hidden image systems. The increase in error
was seen despite the much longer training times allowed
for these networks: 30 days on a single GPU. Table 3
provides the quantitative results. Examples of the hidden
and reconstructed images are shown in Figure 14. Despite
the increase in noise and reconstruction errors, the content
of the images, including the edges and gradients, remains
largely intact and easily recognizable.

4.2 Effects of Image Degradation on Retrieval

Throughout the presentation of the experimental results, we
have asserted that the container image appeared very similar
to the host image, and the reconstructed images were easily
recognizable as the hidden images. We presented the images
for visual inspection as well as quantitatively measured the
reconstruction errors of both the host image vs. the container
image, and the reconstruction of the hidden image from the
container image. As a final test, to quantitatively determine
the recognizability of the resulting images, we measure how
well this approach performs in conjunction with an image
retrieval system [58]–[61]. Based on a query image, these
systems are designed to retrieve similar appearing images

from a large repository of images. The image-similarity
system in [60], based on Min-Hash [62] and LSH [63], was
used here without any modification.

The retrieval task was as follows: we used the container
image, the reconstructed hidden image, and the second
reconstructed image (for systems which hid 2 images) as
the query images. The goal was to retrieve the original
host, hidden-1 and hidden-2 images as the most similar
match, respectively. The full database of images in the
system included the ImageNet images, randomly selected
images from photography sites on the web, and publicly
available images from the Corel Database [64]. In total,
there were approximately 2,650,000 images in the system.
We measured the accuracy @1: e.g. is the correct image
retrieved as the single top match (out of the 2,650,000) images.
1000 look-ups were conducted per experiment. As shown
in Table 4, the scores were perfect for the majority of the
experiments. For the single non-perfect experiment, only 1
out of 1000 retrievals did not work. This occurred on the
most aggressive of the hiding procedures described in this
paper: 2 images were hidden in a single network that were
first obfuscated with non-stationary permutations. Finally,
Table 5 shows the Peak Signal to Noise Ratio (PSNR) and the
Structural Similarity Index (SSIM) [65], a perceptual metric
to quantify image quality degradation between the original
and reconstructed images.

5 DISCUSSION AND FUTURE WORK

We created a system composed of three deep neural networks
to hide images within images. Embedding a full color image
in another image of the same size necessitates devoting
a large percentage of bits to the hidden image. However,
through the compression performed by the deep-neural

10

Fig. 14. Typical reconstructions when hiding 2 images within a single host image and perturbing the inputs to remove spatial coherency. The results
show significant degradation both in the amount of noise and lack of saturation. The content of the images, including edges and gradients, remain
easily recognizable and intact.

TABLE 4
Retrieval results for all reported experiments from a database of 2,650,000 images. Accuracy @1 reported. 1000 trials per experiment.

Container→ host Reconstructed Hidden1→Hidden1 Reconstructed Hidden2→Hidden2

Hiding 1 Image (no permutation) 100% 100% n/a
Hiding 1 Image using Single-Permutation 100% 100% n/a

Hiding 1 Image using Multiple-Permutations 100% 100% n/a

Hiding 2 Images (no permutation) 100% 100% 100%
Hiding 2 Images using Single-Permutation 100% 100% 100%

Hiding 2 Image using Multiple-Permutations 99.9% 100% 100%

TABLE 5
PSNR and SSIM Scores. 1000 images evaluated for each measurement.

Container vs. Host Reconstructed Hidden1 vs. Hidden1 Reconstructed Hidden2 vs. Hidden2
(PSNR,SSIM) (PSNR,SSIM) (PSNR,SSIM)

Hiding 1 Image (no permutation) 41.2 , 0.98 37.6 , 0.97 n/a
Hiding 1 Image using Single-Permutation 38.2 , 0.97 37.9 , 0.97 n/a

Hiding 1 Image using Multiple-Permutations 37.6 , 0.97 37.3 , 0.96 n/a

Hiding 2 Images (no permutation) 36.7 , 0.96 35.9 , 0.96 35.6 , 0.95
Hiding 2 Images using Single-Permutation 32.8 , 0.92 33.2 , 0.92 32.0 , 0.91

Hiding 2 Image using Multiple-Permutations 33.6 , 0.92 34.1 , 0.92 33.1 , 0.92

networks, the decoded results of the hidden image, as well
as the appearance of the host image that contains the hidden
image, closely approximate the original hidden and host
images, respectively. In the majority of examined cases, no
visually discernible artifacts are seen.

Nonetheless, when hiding this much information (1:1
ratio of hidden to cover information), the detection of hidden
information is likely unavoidable. The more problematic
issue was, as demonstrated in Section 3, even without access
to the unaltered host image, traces of the content of the
hidden image could be discerned. Moreover, this could be
accomplished through a variety of techniques, ranging from
simple image transformations of the container image to more
sophisticated machine learning based adversaries that use the
statistics gathered from many similar (though not necessarily

the same) deep neural network embedding systems. For the
purposes of watermarking and image-alteration detection
and authentication, knowing the content of the hidden
information makes it easier to remove and/or reproduce
it when alterations are made.

To address this shortcoming, we extended the hiding
system in two directions. First, we demonstrated the ability
for the system to encode scrambled images (with both
stationary and non-stationary permutations). Because the
neural networks no longer can exploit spatial coherency,
this necessitated retraining all of the components of the
hiding system. Encoding the hidden image without taking
advantage of the spatial coherency of natural images required
the network to devote more representational capacity to
the hidden image. Therefore, the reconstruction errors for

11

both the hidden and host image increased. Qualitatively, the
reconstructed host and hidden remained good. Importantly,
without the permutation key, no visible traces of the hidden
image could be ascertained.

Second, we extended the system to hide multiple (two)
images. This required the neural network to hide twice
as much information as the host media itself. As before,
this required the network to devote more of its capacity to
representing information from the hidden images than to the
host image. The system showed a graceful degradation of
performance with the increased difficulty of the task, and
the host and both hidden images were easily identifiable
with similar error rates to when hiding a permuted image.
As a final test, both techniques were combined and mul-
tiple permuted images were hidden with non-stationary
permutations. Though the errors increased dramatically
over encoding a single non-permuted image, the resulting
images remained readily identifiable, albeit with less fidelity
to the colors, in particular saturation levels. To quantify
the quality of images, image retrieval experiments were
conducted with an externally built system. In all but one
of the retrieval experiments, the encoded and reconstructed
images remained intact enough to perform perfectly. In the
single non-perfect experiment, a single mistake was made
(out of 1000 look-ups).

In this work, all of the container images were losslessly
encoded. For the current system, that is a requirement as,
intuitively, the best place to encode the hidden is in the bits
that would otherwise be freed in compression. Future work
should include training the neural networks directly in the
frequency domain; this may allow the use of these techniques
with image compression standards, such as JPEG [66].

Future studies should also explore full cryptographic
schemes for the hidden image. Though the images after
scrambling appear noisy, structure still exists with respect
to the underlying distribution of pixel colors. However,
full encryption schemes will likely obfuscate the color
distributions as well, thereby making the procedure nearly
equivalent to representing and encoding uniform noise. The
more random the hidden image, the more representational
capacity and training time will be required.

In this study, the detection networks were trained after the
complete encoding system was created. However, using pre-
trained and/or simultaneously trained detection networks in
an adversarial learning framework, for example by extending
the work of [32], [33] to significantly larger hidden messages,
may better conceal the hidden image. The adversary can be
used to provide a supplemental error signal based upon the
discoverability of the hidden message that is to be minimized
in addition to the reconstruction errors.

Finally, in terms of applications, in this paper, we have
concentrated on hiding information to defeat adversaries
with malicious intent, such as stealing or altering images.
However, embedding images within images has other areas
of application as well. For example, when storing motion
thumbnails for videos, we have extended our networks to
hide motion vectors instead of hidden images. This results
in the static content (the host image) being viewable on all
standard platforms and web-browsers. However, when the
same image is displayed by users who have installed the
neural network-decoder, they see the extra content - the

hidden motion.

ACKNOWLEDGMENTS

The image shown in Figure 15 is hidden in the author
photograph at the end of this paper.

Fig. 15. This image will be revealed if the author’s photograph (at the
end of this article) is run through the decoder network. The text reads:
“many thanks to: susanna ricco, michele covell, rahul sukthankar & henry
rowley for their helpful comments and discussions throughout this study”.

REFERENCES

[1] J. Fridrich and M. Goljan, “Practical steganalysis of digital images:
State of the art,” in Electronic Imaging 2002. International Society
for Optics and Photonics, 2002, pp. 1–13.

[2] D. McCullagh, “Bin laden: steganography master?” Wired News,
vol. 7, 2001.

[3] G. Goth, “Steganalysis gets past the hype,” IEEE Distributed Systems
Online, vol. 6, no. 4, p. 2, 2005.

[4] I. Cox, M. Miller, J. Bloom, J. Fridrich, and T. Kalker, Digital
watermarking and steganography. Morgan Kaufmann, 2007.

[5] A. K. Jain and U. Uludag, “Hiding biometric data,” IEEE transac-
tions on pattern analysis and machine intelligence, vol. 25, no. 11, pp.
1494–1498, 2003.

[6] W. F. Friedman, An Introduction to Methods for the Solution of Ciphers.
Riverbank Laboratories, 1918.

[7] A. Cheddad, J. Condell, K. Curran, and P. Mc Kevitt, “Digital image
steganography: Survey and analysis of current methods,” Signal
processing, vol. 90, no. 3, pp. 727–752, 2010.

[8] N. Provos and P. Honeyman, “Hide and seek: An introduction to
steganography,” IEEE security & privacy, vol. 99, no. 3, pp. 32–44,
2003.

[9] F. Yaghmaee and M. Jamzad, “Estimating watermarking capacity
in gray scale images based on image complexity,” EURASIP Journal
on Advances in Signal Processing, vol. 2010, no. 1, p. 851920, 2010.

[10] J. Fridrich, M. Goljan, and R. Du, “Detecting lsb steganography in
color, and gray-scale images,” IEEE multimedia, vol. 8, no. 4, pp.
22–28, 2001.

[11] A. A. Tamimi, A. M. Abdalla, and O. Al-Allaf, “Hiding an
image inside another image using variable-rate steganography,”
International Journal of Advanced Computer Science and Applications
(IJACSA), vol. 4, no. 10, 2013.

[12] T. Pevnỳ, T. Filler, and P. Bas, “Using high-dimensional image mod-
els to perform highly undetectable steganography,” in International
Workshop on Information Hiding. Springer, 2010, pp. 161–177.

[13] M. Yedroudj, F. Comby, and M. Chaumont, “Yedrouj-net: An effi-
cient cnn for spatial steganalysis,” in IEEE International Conference
on Acoustics, Speech and Signal Processing, ICASSP’2018, 2018.

[14] H. Ozer, I. Avcibas, B. Sankur, and N. D. Memon, “Steganalysis of
audio based on audio quality metrics,” in Electronic Imaging 2003.
International Society for Optics and Photonics, 2003, pp. 55–66.

[15] G. C. Kessler and C. Hosmer, “An overview of steganography,”
Advances in Computers, vol. 83, no. 1, pp. 51–107, 2011.

[16] G. C. Kessler, “An overview of steganography for the computer
forensics examiner,” Forensic Science Communication, vol. 6, no. 3,
2014.

12

[17] ——, “An overview of steganography for the computer
forensics examiner (web),” 2015. [Online]. Available: http:
//www.garykessler.net/library/fsc_stego.html

[18] J. Parikka, “Hidden in plain sight: The stagnographic image,”
https://unthinking.photography/themes/fauxtography/hidden-
in-plain-sight-the-steganographic-image, 2017.

[19] F. Jessica, J. Kodovskỳ, V. Holub, and M. Goljan, “Breaking hugo–
the process discovery,” in International Workshop on Information
Hiding. Springer, 2011, pp. 85–101.

[20] M. Chaumont and W. Puech, “Protecting the color information by
hiding it,” in Recent Advances in Signal Processing. InTech, 2009.

[21] K. Hayat, W. Puech, G. Gesquière, and M. Chaumont, “Wavelet-
based data hiding of dem in the context of real-time 3d visualiza-
tion,” in Visualization and Data Analysis 2007. International Society
for Optics and Photonics, 2007.

[22] M. Chaumont, W. Puech, and C. Lahanier, “Securing color informa-
tion of an image by concealing the color palette,” Journal of Systems
and Software, vol. 86, no. 3, pp. 809–825, 2013.

[23] Y. Qian, J. Dong, W. Wang, and T. Tan, “Deep learning for
steganalysis via convolutional neural networks,” in SPIE/IS&T
Electronic Imaging. International Society for Optics and Photonics,
2015, pp. 94 090J–94 090J.

[24] L. Pibre, J. Pasquet, D. Ienco, and M. Chaumont, “Deep learning is a
good steganalysis tool when embedding key is reused for different
images, even if there is a cover sourcemismatch,” Electronic Imaging,
vol. 2016, no. 8, pp. 1–11, 2016.

[25] R. Zhang, F. Zhu, J. Liu, and G. Liu, “Efficient feature learning
and multi-size image steganalysis based on cnn,” arXiv preprint
arXiv:1807.11428, 2018.

[26] S. Husien and H. Badi, “Artificial neural network for steganog-
raphy,” Neural Comp. and Applications, vol. 26, no. 1, pp. 111–116,
2015.

[27] I. Khan, B. Verma, V. K. Chaudhari, and I. Khan, “Neural network
based steganography algorithm for still images,” in Emerging Trends
in Robotics and Comm. Tech. IEEE, 2010, pp. 46–51.

[28] V. Kavitha and K. Easwarakumar, “Neural based steganography,”
PRICAI 2004: Trends in Artificial Intelligence, pp. 429–435, 2004.

[29] A. S. Brandao and D. C. Jorge, “Artificial neural networks applied
to image steganography,” IEEE Latin America Transactions, vol. 14,
no. 3, pp. 1361–1366, 2016.

[30] R. Jarušek, E. Volna, and M. Kotyrba, “Neural network approach
to image steganography techniques,” in Mendel 2015. Springer,
2015, pp. 317–327.

[31] R. Jarusek, E. Volna, and M. Kotyrba, “Robust steganographic
method based on unconventional approach of neural networks,”
Applied Soft Computing, vol. 67, pp. 505–518, 2018.

[32] J. Hayes and G. Danezis, “Generating steganographic images via
adversarial training,” in Advances in Neural Information Processing
Systems 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fer-
gus, S. Vishwanathan, and R. Garnett, Eds. Curran Associates,
Inc., 2017, pp. 1951–1960.

[33] D. Volkhonskiy, I. Nazarov, B. Borisenko, and E. Burnaev,
“Steganographic generative adversarial networks,” CoRR, vol.
abs/1703.05502, 2017. [Online]. Available: http://arxiv.org/abs/
1703.05502

[34] H. Shi, J. Dong, W. Wang, Y. Qian, and X. Zhang, “Ssgan: Secure
steganography based on generative adversarial networks,” in
Pacific Rim Conference on Multimedia. Springer, 2017, pp. 534–544.

[35] D. Hu, L. Wang, W. Jiang, S. Zheng, and B. Li, “A novel image
steganography method via deep convolutional generative adver-
sarial networks,” IEEE Access, vol. 6, pp. 38 303–38 314, 2018.

[36] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
in Adv. in Neural Information Processing Systems, 2014, pp. 2672–2680.

[37] S. Baluja, “Hiding images in plain sight: Deep steganography,” in
Neural Information Processing Systems 30, I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
Eds., 2017, pp. 2066–2076.

[38] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensional-
ity of data with neural networks,” Science, vol. 313, no. 5786, pp.
504–507, 2006.

[39] P. Baldi and K. Hornik, “Neural networks and principal component
analysis,” Neural networks, vol. 2, no. 1, pp. 53–58, 1989.

[40] G. W. Cottrell and P. Munro, “Principal components analysis of
images via back propagation,” in Visual Communications and Image
Processing’88: Third in a Series, vol. 1001. International Society for
Optics and Photonics, 1988, pp. 1070–1078.

[41] M. A. Kramer, “Nonlinear principal component analysis using
autoassociative neural networks,” AIChE journal, vol. 37, no. 2, pp.
233–243, 1991.

[42] J. Jiang, “Image compression with neural networks–a survey,”
Signal Proc.: Image Communication, vol. 14, no. 9, pp. 737–760, 1999.

[43] J. Ballé, D. Minnen, S. Singh, S. J. Hwang, and N. Johnston,
“Variational image compression with a scale hyperprior,” arXiv
preprint arXiv:1802.01436, 2018.

[44] O. Rippel and L. Bourdev, “Real-time adaptive image compression,”
in Int. Conference on Machine Learning (ICML), 2017. IEEE, 2017.

[45] L. Theis, W. Shi, A. Cunningham, and F. Huszár, “Lossy image
compression with compressive autoencoders,” in International
Conference on Learning Representations, 2017.

[46] J. Ballé, V. Laparra, and E. P. Simoncelli, “End-to-end
optimized image compression,” in Int’l. Conf. on Learning
Representations (ICLR2017), April 2017. [Online]. Available:
https://arxiv.org/abs/1611.01704

[47] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P. Manzagol,
“Stacked denoising autoencoders: Learning useful representations
in a deep network with a local denoising criterion,” JMLR, vol. 11,
no. Dec, pp. 3371–3408, 2010.

[48] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in ICLR, 2015.

[49] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: a system for
large-scale machine learning.” in OSDI, vol. 16, 2016, pp. 265–283.

[50] B. Boehm, “Stegexpose - A tool for detecting LSB steganography,”
CoRR, vol. abs/1410.6656, 2014. [Online]. Available: http:
//arxiv.org/abs/1410.6656

[51] “Stegexpose - github,” https://github.com/b3dk7/StegExpose.
[52] darknet.org.uk, “Stegexpose – steganalysis

tool for detecting steganography in images,”
https://www.darknet.org.uk/2014/09/stegexpose-steganalysis-
tool-detecting-steganography-images/, 2014.

[53] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L.
Yuille, “Deeplab: Semantic image segmentation with deep convo-
lutional nets, atrous convolution, and fully connected crfs,” IEEE
transactions on pattern analysis and machine intelligence, vol. 40, no. 4,
pp. 834–848, 2018.

[54] D. Van De Ville, W. Philips, R. Van de Walle, and I. Lemahieu,
“Image scrambling without bandwidth expansion,” IEEE Trans. on
Circuits and Sys. for Video Technology, vol. 14, no. 6, pp. 892–897,
2004.

[55] A. B. L. Larsen, S. K. Sønderby, and O. Winther, “Autoencoding
beyond pixels using a learned similarity metric,” arXiv:1512.09300,
2015.

[56] S. Li, C. Li, K.-T. Lo, and G. Chen, “Cryptanalysis of an image
scrambling scheme without bandwidth expansion,” IEEE Transac-
tions on Circuits and Systems for Video Technology, vol. 18, no. 3, pp.
338–349, 2008.

[57] J. Fridrich, M. Goljan, and D. Soukal, “Searching for the stego-key,”
in Proceedings of SPIE, vol. 5306, 2004, pp. 70–82.

[58] A. Qamra, Y. Meng, and E. Y. Chang, “Enhanced perceptual
distance functions and indexing for image replica recognition,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27,
no. 3, pp. 379–391, 2005.

[59] G. Wang, D. Hoiem, and D. Forsyth, “Learning image similarity
from flickr groups using fast kernel machines,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 34, no. 11, pp.
2177–2188, 2012.

[60] S. Baluja and M. Covell, “Waveprint: Efficient wavelet-based audio
fingerprinting,” Pattern recognition, vol. 41, no. 11, pp. 3467–3480,
2008.

[61] Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin, “Iterative
quantization: A procrustean approach to learning binary codes for
large-scale image retrieval,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 35, no. 12, pp. 2916–2929, 2013.

[62] E. Cohen, M. Datar, S. Fujiwara, A. Gionis, P. Indyk, R. Motwani,
J. D. Ullman, and C. Yang, “Finding interesting associations
without support pruning,” IEEE Transactions on Knowledge and
Data Engineering, vol. 13, no. 1, pp. 64–78, 2001.

[63] A. Gionis, P. Indyk, R. Motwani et al., “Similarity search in high
dimensions via hashing,” in Vldb, vol. 99, no. 6, 1999, pp. 518–529.

[64] D. Tao, X. Tang, X. Li, and X. Wu, “Asymmetric bagging and
random subspace for support vector machines-based relevance
feedback in image retrieval,” IEEE transactions on pattern analysis
and machine intelligence, vol. 28, no. 7, pp. 1088–1099, 2006.

http://www.garykessler.net/library/fsc_stego.html
http://www.garykessler.net/library/fsc_stego.html
http://arxiv.org/abs/1703.05502
http://arxiv.org/abs/1703.05502
https://arxiv.org/abs/1611.01704
http://arxiv.org/abs/1410.6656
http://arxiv.org/abs/1410.6656

13

[65] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,”
IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600–612,
2004.

[66] J. Fridrich, T. Pevnỳ, and J. Kodovskỳ, “Statistically undetectable
jpeg steganography: dead ends challenges, and opportunities,” in
Proceedings of the 9th workshop on Multimedia & security. ACM, 2007,
pp. 3–14.

Shumeet Baluja is with Google, Inc., currently
working on machine learning and computer vision.
Previously, Shumeet was Chief Scientist at Lycos
Inc., CTO of Jamdat Mobile, and SVP of R&D at
eCompanies. Shumeet has published in numer-
ous fields including computer vision and facial
image processing, advertisement optimization,
autonomous driving, machine learning, and high-
dimensional optimization. He received his Ph.D.
in computer science from Carnegie Mellon in
1996.

	Introduction
	Learning to Hide Full-Size Images
	Where is the Hidden Image Encoded?
	Hidden Content Discovery

	Obfuscating the Hidden Image
	Hiding Multiple Images
	Effects of Image Degradation on Retrieval

	Discussion and Future Work
	References
	Biographies
	Shumeet Baluja

