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Abstract

We present a neural network-based upright frontal facectietesystem. A retinally con-
nected neural network examines small windows of an image dacides whether each win-
dow contains a face. The system arbitrates between mutighleorks to improve performance
over a single network. We present a straightforward proeethr aligning positive face ex-
amples for training. To collect negative examples, we useasdtrap algorithm, which adds
false detections into the training set as training progresghis eliminates the difficult task of
manually selecting nonface training examples, which masthosen to span the entire space
of nonface images. Simple heuristics, such as using théfactaces rarely overlap in images,
can further improve the accuracy. Comparisons with sewehadr state-of-the-art face detec-
tion systems are presented; showing that our system hasacabip performance in terms of
detection and false-positive rates.

Keywords: Face detection, Pattern recognition, Computer vision, Artificial neural nksybfa-
chine learning

1 Introduction

In this paper, we present a neural network-based algorithm to detect uprightl Wentsof faces
in gray-scale imagés The algorithm works by applying one or more neural networks directly to
portions of the input image, and arbitrating their results. Each network rsettdb output the
presence or absence of a face. The algorithms and training methods are designgéererbg
with little customization for faces.

Many face detection researchers have used the idea that facial imeagé® characterized
directly in terms of pixel intensities. These images can be charaeteby probabilistic models of
the set of face images [4, 13, 15], or implicitly by neural networks or other mechaifgm2, 14,
19,21,23,25,26]. The parameters for these models are adjusted either autoprfadiceixample
images (as in our work) or by hand. A few authors have taken the approach of extraatung$e
and applying either manually or automatically generated rules for evalubgsg features [7,11].

Training a neural network for the face detection task is challenging because dfficulty in
characterizing prototypical “nonface” images. Unlike fageognition in which the classes to be
discriminated are different faces, the two classes to be discrietdnatfacedetectionare “images
containing faces” and “images not containing faces”. It is easy to get aseedive sample of
images which contain faces, but much harder to get a representative sdrase which do not.
We avoid the problem of using a huge training set for nonfaces by selectively addiggsrto the
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training set as training progresses [21]. This “bootstrap” method reduces ¢éhefdize training
set needed. The use of arbitration between multiple networks and heuristieariaup the results
significantly improves the accuracy of the detector.

Detailed descriptions of the example collection and training methods, netwdrkexture,
and arbitration methods are given in Section 2. In Section 3, the performarce system is
examined. We find that the system is able to detect 90.5% of the faces oversatte$t130
complex images, with an acceptable number of false positives. Sectiorfl loiscusses some
techniques that can be used to make the system run faster, and Section 5 sgdmpaystem with
similar systems. Conclusions and directions for future research are mese/@ection 6.

2 Description of the System

Our system operates in two stages: it first applies a set of neural netwa@fidees's to an image,
and then uses an arbitrator to combine the outputs. The filters examine eamnloctte image at
several scales, looking for locations that might contain a face. The adbitinein merges detections
from individual filters and eliminates overlapping detections.

2.1 Stage One: A Neural Network-Based Filter

The first component of our system is a filter that receives as input a 20x20 pixel regiba of
image, and generates an output ranging from 1 to -1, signifying the presence or absefaeeof
respectively. To detect faces anywhere in the input, the filter is apptiedery location in the
image. To detect faces larger than the window size, the input image isedpeaduced in size
(by subsampling), and the filter is applied at each size. This filter mustdwawve invariance to
position and scale. The amount of invariance determines the number of scales giottpas
which it must be applied. For the work presented here, we apply the filter at gt position

in the image, and scale the image down by a factor of 1.2 for each step in timigyra

The filtering algorithm is shown in Fig. 1. First, a preprocessing step, adifmen [21], is
applied to a window of the image. The window is then passed through a neural netwaeh, whi
decides whether the window contains a face. The preprocessing first attengusaize the
intensity values in across the window. We fit a function which varies ligegross the window
to the intensity values in an oval region inside the window. Pixels outsidewak(shown in
Fig. 2a) may represent the background, so those intensity values are ignored in ogntipaiti
lighting variation across the face. The linear function will approximate tregadl brightness of
each part of the window, and can be subtracted from the window to compensate daety v
of lighting conditions. Then histogram equalization is performed, which non-lineaalys the
intensity values to expand the range of intensities in the window. The histograamisuted for
pixels inside an oval region in the window. This compensates for differen@asnera input gains,
as well as improving contrast in some cases. The preprocessing stepsvandarska. 2.

The preprocessed window is then passed through a neural network. The networkrias reti
connections to its input layer; the receptive fields of hidden units are shown id.Fichere are
three types of hidden units: 4 which look at 10x10 pixel subregions, 16 which look at 5x5 pixel
subregions, and 6 which look at overlapping 20x5 pixel horizontal stripes of pixatb. ddhese
types was chosen to allow the hidden units to detect local features that mighmipbetant for
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face detection. In particular, the horizontal stripes allow the hidden unitstert such features as
mouths or pairs of eyes, while the hidden units with square receptive fields might fibetires
such as individual eyes, the nose, or corners of the mouth. Although the figure shows a single
hidden unit for each subregion of the input, these units can be replicated. For the exjsrim
which are described later, we use networks with two and three sets ofttigelsan units. Similar
input connection patterns are commonly used in speech and character recogaksofi 24].
The network has a single, real-valued output, which indicates whether or not themeodtains
a face.

Examples of output from a single network are shown in Fig. 3. Inthe figure, each beseaps
the position and size of a window to which the neural network gave a positive respdhse
network has some invariance to position and scale, which results in neuliiples around some
faces. Note also that there are some false detections; they will bmated by methods presented
in Section 2.2.

To train the neural network used in stage one to serve as an accuraj@ fitteze number of
face and nonface images are needed. Nearly 1050 face examples were gatinefadddatabases
at CMU, Harvard, and from the World Wide Web. The images contained faces of various sizes,
orientations, positions, and intensities. The eyes, tip of nose, and cornerseedaiehe mouth
of each face were labelled manually. These points were used to normatizdagee to the same
scale, orientation, and position, as follows:

[ —

. Initialize F, a vector which will be the average positions of each labelled featureatithe
faces, with the feature locations in the first fdge

2. The feature coordinates inare rotated, translated, and scaled, so that the average locations
of the eyes will appear at predetermined locations in a 20x20 pixel window.

3. For each facé compute the best rotation, translation, and scaling to align the facasdsat
F; with the average feature locatio#s Such transformations can be written as a linear
function of their parameters. Thus, we can write a system of linear equatiamging the
features from#; to /. The least squares solution to this over-constrained system yields the
parameters for the best alignment transformation. Call the aligned featat@insF, .

4. Updatel’ by averaging the aligned feature locatiarsfor each face.
5. Gotostep 2.

The alignment algorithm converges within five iterations, yielding for eact &function which
maps that face to a 20x20 pixel window. Fifteen face examples are genevatéeé training set
from each original image, by randomly rotating the images (about their center)pgnts 10°,
scaling between 90% and 110%, translating up to half a pixel, and mirroring.Z2Ba@0 window
in the set is then preprocessed (by applying lighting correction and histogranretjoa). A few
example images are shown in Fig. 4. The randomization gives the filteramearto translations
of less than a pixel and scalings of 20%. Larger changes in translation andsealealt with by
applying the filter at every pixel position in an image pyramid, in which thegiesaare scaled by
factors of 1.2.

Practically any image can serve as a nonface example because the spacacé mafes is
much larger than the space of face images. However, collecting a “espadise” set of nonfaces
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is difficult. Instead of collecting the images before training is startled,itnages are collected
during training, in the following manner, adapted from [21]:

1. Create an initial set of nonface images by generating 1000 random images. Appigthe
processing steps to each of these images.

2. Train a neural network to produce an output of 1 for the face examples, and -1 for theaonf
examples. The training algorithm is standard error backpropogation with momentu@n[8]
the first iteration of this loop, the network’s weights are initialized randofter the first
iteration, we use the weights computed by training in the previous iteration asaittieg
point.

3. Run the system on an image of scenghych contains no face€ollect subimages in which
the network incorrectly identifies a face (an output activatiof).

4. Select up to 250 of these subimages at random, apply the preprocessing steps,thechadd
into the training set as negative examples. Go to step 2.

Some examples of nonfaces that are collected during training are shown in Figot®. that
some of the examples resemble faces, although they are not very close to the gasimples
shown in Fig. 4. The presence of these examples forces the neural networkntthiegrecise
boundary between face and nonface images. We used 120 images of scenery fongolégtive
examples in the bootstrap manner described above. A typical training rutssapgeoximately
8000 nonface images from the 146,212,178 subimages that are available at all locatisce@nd
in the training scenery images. A similar training algorithm was desgrib¢5], where at each
iteration an entirely new network was trained with the examples on whiglpttevious networks
had made mistakes.

2.2 Stage Two: Merging Overlapping Detections and Arbitration

The examples in Fig. 3 showed that the raw output from a single network will ccantaimber of
false detections. In this section, we present two strategies to imgireveliability of the detector:
merging overlapping detections from a single network and arbitrating amongpfaulétworks.

2.2.1 Merging Overlapping Detections

Note that in Fig. 3, most faces are detected at multiple nearby positiondes,seaile false detec-
tions often occur with less consistency. This observation leads to a hewisth can eliminate
many false detections. For each location and scale, the number of detediilvimsarspecified
neighborhood of that location can be counted. If the number is above a threshold, then that lo-
cation is classified as a face. The centroid of the nearby detections ddfenéscation of the
detection result, thereby collapsing multiple detections. In the experirseati®n, this heuristic
will be referred to as “thresholding”.

If a particular location is correctly identified as a face, then all otletection locations which
overlap it are likely to be errors, and can therefore be eliminatededan the above heuristic
regarding nearby detections, we preserve the location with the higher numberatictetevithin
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a small neighborhood, and eliminate locations with fewer detections. In the siscusf the
experiments, this heuristic is called “overlap elimination”. Theeerafatively few cases in which
this heuristic fails; however, one such case is illustrated by thenNeftaces in Fig. 3B, where one
face partially occludes another.

The implementation of these two heuristics is illustrated in Fig. 6. Batéction at a particular
location and scale is marked in an image pyramid, labelled the “output” pyraihdn, each
location in the pyramid is replaced by the number of detections in a specified nengloldaf that
location. This has the effect of “spreading out” the detections. Normally, tipgnberhood extends
an equal number of pixels in the dimensions of scale and position, but for clarity.ié &etections
are only spread out in position. A threshold is applied to these values, and thad=iin both
position and scale) of all above threshold regions are computed. All detectiongating to
a centroid are collapsed down to a single point. Each centroid is then examioeder, starting
from the ones which had the highest number of detections within the specified neighborhogd. If a
other centroid locations represent a face overlapping with the current ckntrey are removed
from the output pyramid. All remaining centroid locations constitute the final detecsult. In
the face detection work described in [3], similar observations about the rwtiive outputs were
made, resulting in the development of heuristics similar to those desciilosd.a

2.2.2 Arbitration among Multiple Networks

To further reduce the number of false positives, we can apply multiple networisarbitrate
between their outputs to produce the final decision. Each network is trainedrmlarsnanner,
but with random initial weights, random initial nonface images, and permutatioine afrder of
presentation of the scenery images. As will be seen in the next section, #wiaetand false
positive rates of the individual networks will be quite close. However, becautiferfent training
conditions and because of self-selection of negative training examples, therketwill have
different biases and will make different errors.

The implementation of arbitration is illustrated in Fig. 7. Each detedt a particular position
and scale is recorded in an image pyramid, as was done with the previous heuriitie way
to combine two such pyramids is by ANDing them. This strategy signals a detemiy if both
networks detect a face at precisely the same scale and position. Due tdé¢hendibiases of the
individual networks, they will rarely agree on a false detection of a faces alows ANDing
to eliminate most false detections. Unfortunately, this heuristic caredse the detection rate
because a face detected by only one network will be thrown out. However, Weewilater that
individual networks can all detect roughly the same set of faces, so that the nunfaee®tost
due to ANDing is small.

Similar heuristics, such as ORing the outputs of two networks, or voting amoregtateorks,
were also tried. Each of these arbitration methods can be applied befoterahaf‘thresholding”
and “overlap elimination” heuristics. If applied afterwards, we comhireecentroid locations
rather than actual detection locations, and require them to be within some néighaf one
another rather than precisely aligned.

Arbitration strategies such as ANDing, ORing, or voting seem intuitivesonable, but per-
haps there are some less obvious heuristics that could perform better. Togésttothesis, we
applied a separate neural network to arbitrate among multiple detectionrkstw-or a location
of interest, the arbitration network examines a small neighborhood surrounding tiaihaa the
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output pyramid of each individual network. For each pyramid, we count the number of detections
in a 3x3 pixel region at each of three scales around the location of interastjmg in three num-

bers for each detector, which are fed to the arbitration network, as simdg.i8. The arbitration
network is trained to produce a positive output for a given set of inputs only if thaidoozon-

tains a face, and to produce a negative output for locations without a face. As wéklpein the

next section, using an arbitration network in this fashion produced results caboip#o (and in
some cases, slightly better than) those produced by the heuristics preseli¢ed ear

3 Experimental Results

A number of experiments were performed to evaluate the system. We first shanadysis of
which features the neural network is using to detect faces, then presentthetes of the system
over two large test sets.

3.1 Sensitivity Analysis

In order to determine which part of its input image the network uses to decide wkiethaput is
a face, we performed a sensitivity analysis using the method of [2]. We tadlagositive test set
based on the training database of face images, but with different randomaled,granslations,
and rotations than were used for training. The negative test set was builafs@hof negative
examples collected during the training of other networks. Each of the 20x20 pixel inpgegn
was divided into 100 2x2 pixel subimages. For each subimage in turn, we went throughtthe te
set, replacing that subimage with random noise, and tested the neural networkstiti@g root
mean square error of the network on the test set is an indication of how impdwapiortion of
the image is for the detection task. Plots of the error rates for two networksimed are shown
in Fig. 9. Network 1 uses two sets of the hidden units illustrated in Fig. 1 evtwork 2 uses
three sets.

The networks rely most heavily on the eyes, then on the nose, and then on the mouth (Fig. 9)
Anecdotally, we have seen this behavior on several real test imageseioavhich only one eye
is visible, detection of a face is possible, though less reliable, than whemtine face is visible.
The system is less sensitive to the occlusion of the nose or mouth.

3.2 Testing

The system was tested on two large sets of images, which are distinctifeciraining sets. Test

Set 1 consists of a total of 130 images collected at CMU, including images frew/orld Wide

Web, scanned from photographs and newspaper pictures, and digitized from broadeazsbitel

It also includes 23 images used in [21] to measure the accuracy of their syldtenmages contain

a total of 507 frontal faces, and require the networks to examine 83,099,211 20x20 pixel window
The images have a wide variety of complex backgrounds, and are useful in meaberiatsé
alarm rate of the system. Test Set 2 is a subset of the FERET database [1Eath].image
contains one face, and has (in most cases) a uniform background and good lighting. Tleere are
wide variety of faces in the database, which are taken at a variety danghus these images are
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more useful for checking the angular sensitivity of the detector, and less usefoéfmuring the
false alarm rate.

The outputs from our face detection networks are not binary. The neural network produce rea
values between 1 and -1, indicating whether or not the input contains a face. A tdreahad
of zero is used duringraining to select the negative examples (if the network outputs a value of
greater than zero for any input from a scenery image, it is considered aka)jistAlthough this
value is intuitively reasonable, by changing this value dutesging we can vary how conserva-
tive the system is. To examine the effect of this threshold value duringdestie measured the
detection and false positive rates as the threshold was varied froni1Aad a threshold of 1, the
false detection rate is zero, but no faces are detected. As the thresiugdreased, the number
of correct detections will increase, but so will the number of false detexti This tradeoff is
presented in Fig. 10, which shows the detection rate plotted against the numaksegbdsitives
as the threshold is varied, for the two networks presented in the previous sefithae. the zero
threshold locations are close to the “knees” of the curves, as can be seemértigute, we used
a zero threshold value throughout testing.

Table 1 shows the performance of different versions of the detector on Test $&e four
columns show the number of faces missed (out of 507), the detection rate, the totak mimbe
false detections, and the false detection rate. The last rate isnis @& the number of 20x20
pixel windows that must be examined, which is approximatelytimes the number of pixels in
an image (taking into account all the levels in the input pyramid). First weddsur networks
working alone, then examined the effect of overlap elimination and collapsutiiple detections,
and tested arbitration using ANDing, ORing, voting, and neural networks. Netvdoemsl 4
are identical to Networks 1 and 2, respectively, except that the negativepexamages were
presented in a different order during training. The results for ANDing and ORitvgonles were
based on Networks 1 and 2, while voting and network arbitration were based waoikstl, 2,
and 3. The neural network arbitrators were trained using the images from wkitacde examples
were extracted. Three different architectures for the network arbitnagier used. The first used 5
hidden units, as shown in Fig. 8. The second used two hidden layers of 5 units ehatgmwlete
connections between each layer, and additional connections between the first hyddeantl the
output. The last architecture was a simple perceptron, with no hidden units.

As discussed earlier, the “thresholding” heuristic for merging detectionsresguwo param-
eters, which specify the size of the neighborhood used in searching for nearbyotesteand
the threshold on the number of detections that must be found in that neighborhood. In the table,
these two parameters are shown in parentheses after the word “threSioidarly, the ANDing,
ORing, and voting arbitration methods have a parameter specifying how closketeations (or
detection centroids) must be in order to be counted as identical.

Systems 1 through 4 show the raw performance of the networks. Systems 5 through 8 use
the same networks, but include the thresholding and overlap elimination stegsddurease the
number of false detections significantly, at the expense of a small decredmsedetection rate.
The remaining systems all use arbitration among multiple networks. Usintyadidm further
reduces the false positive rate, and in some cases increases theodetetislightly. Note that
for systems using arbitration, the ratio of false detections to windows eeahns extremely low,
ranging from 1 false detection pe#9, 184 windows to down to 1 int1, 549,605, depending on
the type of arbitration used. Systems 10, 11, and 12 show that the detector can be tmia&é to
it more or less conservative. System 10, which uses ANDing, gives an exgremall number
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of false positives, and has a detection rate of about 77.9%. On the other hand, Systémnch?2,

is based on ORIing, has a higher detection rate of 90.3% but also has a larger numlsg of fa
detections. System 11 provides a compromise between the two. The differepezfommance

of these systems can be understood by considering the arbitration strategy. \vigeANBIng,

a false detection made by only one network is suppressed, leading to a loveepdaitive rate.

On the other hand, when ORIng is used, faces detected correctly by only one netldr& w
preserved, improving the detection rate.

Systems 14, 15, and 16, all of which use neural network-based arbitration among thiree ne
works, yield detection and false alarm rates between those of Systems 1 arlystem 13,
which uses voting among three networks, has an accuracy between that of Systams 12.
System 17 will be described in the next section.

Table 2 shows the result of applying each of the systems to images in Tes{&stiBset of
public portion of the FERET database [16,17]). We partitioned the images into tlogesybased
on the nominal angle of the face with respect to the camera: frontal faces, & an anglés°
from the camera, and faces at an angleaf®. The direction of the face varies significantly
within these groups. As can be seen from the table, the detection rate fonsyataitrating two
networks ranges between 97.8% and 100.0% for frontallahdiaces, while for22.5° faces, the
detection rate is between 91.5% and 97.4%. This difference is because thagtsshcontains
mostly frontal faces. It is interesting to note that the systems gendially a higher detection rate
for faces at an angle df;° than for frontal faces. The majority of people whose frontal faces are
missed are wearing glasses which are reflecting light into the camkeadetector is not trained
on such images, and expects the eyes to be darker than the rest of the face. Thiectitmdate
for such faces is lower.

Based on the results shown in Tables 1 and 2, we concluded that both Systems 11 and 15
make acceptable tradeoffs between the number of false detections and thewnletdet Because
System 11 is less complex than System 15 (using only two networks rather thah af toiur),
it is preferable. System 11 detects on average 86.2% of the faces, witlea@ge\of one false
detection peB, 613, 009 20x20 pixel windows examined in Test Set 1. Figs. 11, 12, and 13 show
example output images from System 11 on images from Test°Set 1

4 Improving the Speed

In this section, we briefly discuss some methods to improve the speed of the sydte work
described is preliminary, and is not intended to be an exhaustive explorationlaiaseo optimize
the execution time.

The dominant factor in the running time of the system described thus far is the number of 20x20
pixel windows which the neural networks must process. Applying two networks to a 320x240 pix
image (246766 windows) on a 200 MHz R4400 SGI Indigo 2 takes approximately 383 seconds.
The computational cost of the arbitration steps is negligible in comparison, tagsaghan one
second to combine the results of the two networks over all positions in the image.

Recall that the amount of position invariance in the pattern recognition componeut sys-
tem determines how many windows must be processed. In the related tasdnskliplate detec-
tion, this was exploited to decrease the number of windows that must be processethRi]ea
was to make the neural network be invariant to translations of about 25% of the ieelicEnse
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plate. Instead of a single number indicating the existence of a face in the witldowutput of
Umezaki’'s network is an image with a peak indicating the location of thedeelate. These
outputs are accumulated over the entire image, and peaks are extractezldargidate locations
for license plates.

The same idea can be applied to face detection. The original detector weslttaidetect a
20x20 face centered in a 20x20 window. We can make the detector more flexible bingltoe
same 20x20 face to be off-center by up to 5 pixels in any direction. To makesairetwork
can still see the whole face, the window size is increased to 30x30 piXels the center of the
face will fall within a 10x10 pixel region at the center of the window. As befahe, network
has a single output, indicating the presence or absence of a face. This detectomuawedan
steps of 10 pixels across the image, and still detect all faces that mighesenpr The scanning
method is illustrated in Fig. 14, which shows the input image pyramid and whidheof@x10
pixel regions are classified as containing the centers of faces. An a@tcingsvith an image output
was also tried, which yielded about the same detection accuracy, but gkquore computation.
The network was trained using the same bootstrap procedure as described €adievindows
are preprocessed with histogram equalization before they are passed tonwbekne

As can be seen from the figure, this network has many more false detectionkdltetectors
described earlier. To improve the accuracy, we treat each detdmtitime 30x30 detector as a
candidate, and use the 20x20 detectors described earlier to verify it. Bscartdidate faces are
not precisely located, the verification network’s 20x20 window must be scannedhevéfx10
pixel region potentially containing the center of the face. A simple arbatnagtrategy, ANDing,
is used to combine the outputs of two verification networks. The heuristic thest facely overlap
can also be used to reduce computation, by first scanning the image for largeafatas smaller
scales not processing locations which overlap with any detections found Stiéaresults of these
verification steps are illustrated on the right side of Fig. 14.

With these modifications, the processing time for a typical 320x240 image is about@rtise
on a 200 MHz R4400 SGI Indigo 2. To examine the effect of these changes on the accubhacy of t
system, it was applied to the test sets used in the previous section. The agelisted as System
17 in Tables 1 and 2. As can be seen, this system has detection and falseaddsm icomparable
with the most conservative of the other systems, System 10.

Further performance improvements can be made if one is analyzing many pictkeady a
stationary camera. By taking a picture of the background scene, one can deteman@artions
of the picture have changed in a newly acquired image, and analyze only those portibas of t
image. Similarly, a skin color detector like the one presented in [9] cdnatethe search region.
These techniques, taken together, have proven useful in building an almestesaersion of the
system suitable for demonstration purposes, which can process a 320x240 image se2dnds,
depending on the image complexity.

5 Comparison to Other Systems

Sung and Poggio developed a face detection system based on clustering techniqués¢itl]
system, like ours, passes a small window over all portions of the image, amthaete whether
a face exists in each window. Their system uses a supervised clusteringdhwath six “face”

and six “nonface” clusters. Two distance metrics measure the distanceigpat image to the
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prototype clusters, the first measuring the distance between the test @attethe cluster's 75
most significant eigenvectors, and the second measuring the Euclidean distaneen the test
pattern and its projection in the 75 dimensional subspace. The last steprisytbieim is to use
either a perceptron or a neural network with a hidden layer, trained tofglg&snts using the
two distances to each of the clusters. Their system is trained with 400llvpasiamples and
nearly 47500 negative examples collected in the bootstrap manner. In comparissystear uses
approximately 16000 positive examples and 9000 negative examples.

Table 3 shows the accuracy of their system on a set of 23 images (a portion 8ETé3talong
with the results of our system using the heuristics employed by Systems 10, 11, anthbid.
In [21], 149 faces were labelled in this test set, while we labelled 155. eSufithese faces are
difficult for either system to detect. Assuming that Sung and Poggio were unaid¢eict any of
the six additional faces we labelled, the number of faces missed by theimsigssex more than
listed in their paper. Table 3 shows that for equal numbers of false detectvensan achieve
slightly higher detection rates.

Osuna, Freund, and Girosi [14] have recently investigated face detectiog ai$ramework
similar to that used in [21] and in our own work. However, they use a “suppotbvatachine”
to classify images, rather than a clustering-based method or a neural ketersupport vector
machine has a number of interesting properties, including the fact that it makésuhdary
between face and nonface images more explicit. The result of their system santlee?23 images
used in[21] is given in Table 3; the accuracy is currently slightly poorer thaother two systems
for this small test set.

As with Sung and Poggio’s work, Moghoddam and Pentland’s approach uses a two component
distance measure, but combines the two distances in a principled way bakedsaumption that
the distribution of each cluster is Gaussian [13]. The clusters are usetidogs a multi-modal
Gaussian distribution, giving a probability distribution for all face imadésces are detected by
measuring how well each window of the input image fits the distribution, anchgettihreshold.
This detection technique has been applied to faces, and to the detectionlef $eadlires like the
eyes, nose, and mouth.

Moghaddam and Pentland’s system, along with several others, was testeBHREd evalua-
tion of face recognition methods [16,17]. Although the actual detection error ratestreported,
an upper bound can be derived from the recognition error rates. The recognitionageraver-
aged over all the tested systems, for frontal photographs taken in the stingeisitess than 2%
(see the rank 50 results in Figure 4 of [16]). This means that the number of imagasount
detection errors, either false alarms or missing faces, was las@%af all images. Anecdotally,
the actual error rate is significantly less than 2%. As shown in Table 2, oiensyssing the con-
figuration of System 11 achieves a 2% error rate on frontal faces. Givenrgeeddferences in
performance of our system on Test Set 1 and the FERET images, it is cletdrdbatwo test sets
exercise different portions of the system. The FERET images examine theagevef a broad
range of face types under good lighting with uncluttered backgrounds, while Test Set thees
robustness to variable lighting and cluttered backgrounds.

The candidate verification process used to speed up our system, describexion 8¢is
similar to the detection technique presented in [23]. In that work, two netweaeks used. The
first network has a single output, and like our system it is trained to produce a pogitie for
centered faces, and a negative value for nonfaces. Unlike our system, fotifatare not perfectly
centered, the network is trained to produce an intermediate value reddteditfar off-center the
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face is. This network scans over the image to produce candidate face loc@hensetwork must

be applied at every pixel position, but it runs quickly because of the its aralniéeaising retinal
connections and shared weights, much of the computation required for one applicatien of t
detector can be reused at the adjacent pixel position. This optimization retherpreprocessing

to have a restricted form, such that it takes as input the entire image, @thacess as output a new
image. The nonlinear window-by-window preprocessing used in our system cannot be used. A
second network is used for precise localization: it is trained to produce apasisponse for an
exactly centered face, and a negative response for faces which are noédetités not trained

at all on nonfaces. All candidates which produce a positive response from the setootkrage
output as detections. One possible problem with this work is that the negativegraxamples

are selected manually from a small set of images (indoor scenes, dimnilarvse used for testing
the system). It may be possible to make the detectors more robust using the paoéstriag
technique described here and in [21].

In recent work, Colmenarez and Huang presented a statistically baskddret face detec-
tion [4]. Their system builds probabilistic models of the sets of faces and n@)faice compares
how well each input window compares with these two categories. When appliedtSet 1, their
system achieves a detection rate between 86.8% and 98.0%, with between 6133 anfhl$2758
detections, respectively, depending on a threshold. These numbers should be com@yed t
tems 1 through 4 in Table 1, which have detection rates between 90.9% and 92.h%etwieen
738 and 945 false detections. Although their false alarm rate is significagthghitheir system
is quite fast. It would be interesting to use this system as a replacemehéefoandidate detector
described in Section 4.

6 Conclusions and Future Research

Our algorithm can detect between 77.9% and 90.3% of faces in a set of 130 test,inahes
an acceptable number of false detections. Depending on the application, the systbenrnade
more or less conservative by varying the arbitration heuristics or threshads Tise system has
been tested on a wide variety of images, with many faces and unconstbadegrounds. A fast
version of the system can process a 320x240 pixel image in 2 to 4 seconds on a 200 MHz R4400
SGI Indigo 2.

There are a number of directions for future work. The main limitation of the cusystem
is that it only detects upright faces looking at the camera. Separate versithres syfstem could
be trained for each head orientation, and the results could be combined usingtiarbitrethods
similar to those presented here. Preliminary work in this area inditiad detecting profiles views
of faces is more difficult than detecting frontal views, because they haer fable features and
because the input window will contain more background pixels. We have also applisdnise
algorithm for the detection of car tires and human eyes, although more work is needed.

Even within the domain of detecting frontal views of faces, more work remaieen an
image sequence is available, temporal coherence can focus attention onlg@pictions of the
images. As a face moves about, its location in one frame is a strong preaficterdocation in
next frame. Standard tracking methods, as well as expectation-based methods [2¢ applied
to focus the detector’s attention. Other methods of improving system perfornraahega obtain-
ing more positive examples for training, or applying more sophisticated image pespiog and
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normalization techniques.

One application of this work is in the area of media technology. Every year, ragri@ch-
nology provides cheaper and more efficient ways of storing and retrieving visual etiorm
However, automatic high-level classification of the information contewerg limited; this is a
bottleneck that prevents media technology from reaching its full potential. iB8ysiélizing the
detector described above allow a user to make requests of the form “Show mpedple who
appear in this video” [18, 20] or “Which images on the World Wide Web contain fadé$and
to have their queries answered automatically.
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LAn interactive demonstration of the system is available on the World Widzate
http://www.cs.cmu.edu/"har/faces.html , Which allows anyone to submit images
for processing by the face detector, and to see the detection results foepistilmmitted by other
people.

2Dr. Woodward Yang at Harvard provided over 400 mug-shot images which are pdr of t
training set.

*These images are available over the World Wide Web, at the URL
http://www.cs.cmu.edu/"har/faces.html

‘Specifically, we used images from groups 1 and 3, with lataelandfb for the frontal group,
rb andrc forthel5° group, andyl andqr for the22.5° group.

>After painstakingly trying to arrange these images compactly by hand, we decidese ta
more systematic approach. These images were laid out automatically by theptBnization
algorithm [1]. The objective function tries to pack images as closely aslpesby maximizing
the amount of space left over at the bottom of each page.
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Figure 1: The basic algorithm used for face detection.

background pixels:

Original window: ‘:I ﬂ
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Best fit linear function: . .
Lighting corrected window:
(linear function subtracted)
Histogram equalized window: 'ﬂ rl E m m

Figure 2: The steps in preprocessing a window. First, a linear function istfietmtensity values
in the window, and then subtracted out, correcting for some extreme lighting iomsditThen,
histogram equalization is applied, to correct for different camera gainscaimiprove contrast.
For each of these steps, the mapping is computed based on pixels inside the skjahmaathen
applied to the entire window.
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Figure 3: Images with all the above threshold detections indicated by boxes.
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Figure 4. Example face images (the authors), randomly mirrored, rotated atesthshnd scaled
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Figure 5: During training, the partially-trained system is applied to imagesefery which do
not contain faces (like the one on the left). Any regions in the image detectadess(which are
expanded and shown on the right) are errors, which can be added into the set oferiegating

examples.
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Input image pyramid, "Output" pyramid: Spreading out detections Collapse clusters to Potential face locations  Final result after removing
detections overlaid centers of detections in x and y, not in scale centroid of detections extended across scale overlapping detection
a "y
-
& - L]
-
Final detection result
* 4 .r rrrrrr \ [ ]
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False detect
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Face locations and scales Centroids (in position and scale) Overlapping detections
represented by centroids
A B C D E
Input image pyramid Computations on output pyramid Final result

Figure 6: The framework for merging multiple detections from a single networkh&)detections
are recorded in an “output” pyramid. B) The detections are “spread out” and adtkaes applied.

C) The centroids in scale and position are computed, and the regions contributawitoemtroid

are collapsed to single points. In the example shown, this leaves only twdidessa the output
pyramid. D) The final step is to check the proposed face locations for overlagp&)do remove

overlapping detections if they exist. In this example, removing the overlgmatection eliminates
what would otherwise be a false positive.

Network 1's detections (in an image pyramid) \ / Network 2’s detections (in an image pyramid)
L % AND # %
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Figure 7: ANDing together the outputs from two networks over different positions aesscan
improve detection accuracy.
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Location of interest, where
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Figure 8: The inputs and architecture of the arbitration network which arlstest®ng multiple
face detection networks.
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Figure 9: Error rates (vertical axis) on a test created by adding noisetusgortions of the input
image (horizontal plane), for two networks. Network 1 has two copies of the hiddensimuivn

in Fig. 1 (a total of 58 hidden units and 2905 connections), while Network 2 has threes ¢apie
total of 78 hidden units and 4357 connections).

ROC Curve for Test Sets A, B, and C
T T

777777777 Network 1 ——
Network 2 ----
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False Detections per Windows Examined

Figure 10: The detection rate plotted against false positive rates as thgatethreshold is varied
from-1to 1, for the same networks as Fig. 9. The performance was measuredl ovaiges from
Test Set 1. The points labelled “zero” are the zero threshold points which edefarsall other
experiments.
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Table 1: Detection and error rates for Test Set 1, which consists of 130 imadesontains 507
frontal faces. It requires the system to examine a total of 83099211 20x20 pixel windows.

Missed Detect) False False detect
Type System faces rate | detects rate
Single 1) Network 1 (2 copies of hidden units (52 total), 45 91.1% 945 1/87935
network, 2905 connections)
no 2) Network 2 (3 copies of hidden units (78 total), 38 92.5% 862 1/96402
heuristics | 4357 connections)
3) Network 3 (2 copies of hidden units (52 total), 46 90.9% 738 1/112600
2905 connections)
4) Network 4 (3 copies of hidden units (78 total), 40 92.1% 819 1/101464
4357 connections)
Single 5) Network 1— threshold(2,1}~ overlap elimination 48 90.5% 570 1/145788
network,
with 6) Network 2— threshold(2,1}~ overlap elimination 42 91.7% 506 1/164227
heuristics
7) Network 3— threshold(2,1}~ overlap elimination 49 90.3% 440 1/188861
8) Network 4— threshold(2,1}~ overlap elimination 42 91.7% 484 1/171692
Arbitrating | 9) Networks 1 and 2+ AND(0) 68 86.6% 79  1/1051888
among two
networks 10) Networks 1 and 2> AND(0) — threshold(2,3) 112 77.9% 2 1/41549605
— overlap elimination
11) Networks 1 and 2+ threshold(2,2}» overlap 70 86.2% 23 1/3613009
elimination— AND(2)
12) Networks 1 and 2+ thresh(2,2)— overlap elim 49 90.3% 185 1/449184
— OR(2)— thresh(2,1}~ overlap elimination
Arbitrating | 13) Networks 1, 2, 3- voting(0)— overlap 59 88.4% 99 1/839385
among elimination
three 14) Networks 1, 2, 3+ network arbitration (5 hidden 79 84.4% 16  1/5193700
networks units)— thresh(2,1}~ overlap elimination
15) Networks 1, 2, 3+ network arbitration (10 83 83.6% 10  1/8309921
hidden units)-— thresh(2,1)~ overlap elimination
16) Networks 1, 2, 3» network arbitration 84 83.4% 12 1/6924934
(perceptron)- thresh(2,1) overlap elimination
Fast 17) Candidate verification method described in 117 76.9% 8 1/10387401
version Section 4

threshold(distance,threshold): Only accept a detection if there are at ledsesholddetections within a cube (ex-
tending along x, y, and scale) in the detection pyramid sunding the detection. The size of the cube is determined
by distancewhich is the number of a pixels from the center of the cubéstedge (in either position or scale).
overlap elimination: It is possible that a set of detections erroneously inditizdié faces are overlapping with one
another. This heuristic examines detections in order (flomse having the most votes within a small neighborhood
to those having the least), and removing conflicting overkpit goes.

voting(distance), AND(distance), OR(distance)These heuristics are used for arbitrating among multipteoeks.
They take alistanceparameter, similar to that used by the threshold heuristiich indicates how close detections
from individual networks must be to one another to be couagedccurring at the same location and scaléistance

of zero indicates that the detections must occur at prgctbel same location and scale. Voting requires two out of
three networks to detect a face, AND requires two out of twad, @R requires one out of two to signal a detection.
network arbitration(architecture): The results from three detection networks are fed into aitration network.
The parameter specifies the network architecture used: @esperceptron, a network with a hidden layer of 5 fully
connected hidden units, or a network with two hidden layérs folly connected hidden units each, with additional
connections from the first hidden layer to the output.
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Table 2: Detection and error rates for Test Set 2 (the FERET database)

Frontal Faces 15° Angle 22.5° Angle
Number of Images 1001 241 378
Number of Faces 1001 241 378
Number of Windows 255129875 61424875 96342750

# miss / Detect rate

# miss/Detect rate

# miss/Detect rate

Type System False detects / Ratg False detects/Ratg False detects/Rate
Single 1) Net 1 (2 copies of hidden 5 99.5% 1 99.6% 7 98.1%
network, units, 2905 connections) 1747 1/146038 447 1/137415 819 1/117634
no 2) Net 2 (3 copies of hidden 5 99.5% 0 100.0%| 11 97.1%
heuristics | units, 4357 connections) 1457 1/175104 481 1/127702 592 1/162741
3) Net 3 (2 copies of hidden 4 99.6% 1 99.6% 8 97.9%
units, 2905 connections) 1242 1/205418 374 1/164237 605 1/159244
4) Net 4 (3 copies of hidden 5 99.5% 1 99.6%| 15 96.0%
units, 4357 connections) 1665 1/153231 458 1/134115 709 1/135885
Single 5) Network 1— threshold(2,1) 5 99.5% 1 99.6%| 12 96.8%
network, — overlap elimination 643 1/396780 136 1/451653 263 1/366322
with 6) Network 2— threshold(2,1) 5 99.5% 0 100.0%| 12 96.8%
heuristics | — overlap elimination 458 1/557052 118 1/520549 146 1/659881
7) Network 3— threshold(2,1) 5 99.5% 1 99.6%| 10 97.4%
— overlap elimination 421 1/606009 85 1/722645| 133 1/724381
8) Network 4— threshold(2,1) 8 99.2% 1 99.6%| 20 94.7%
— overlap elimination 563 1/453161 120 1/511873 207 1/465423
Arbitrating | 9) Nets 1 and 2> AND(0) 13 98.7% 1 99.6%| 20 94.7%
among two 141 1/1809431 46  1/1335323 85  1/1133444
networks 10) Nets 1 and 2> AND(0) — 22 97.8% 1 99.6%| 32 91.5%
threshold(2,3)- overlap elim 0 0/255129875 0 0/61424875 1 1/96342750
11) Nets 1 and 2- thresh(2,2) 8 99.2% 1 99.6%| 17 95.5%
— overlap elim— AND(2) 12 1/21260822 3 1/20474958 3 1/32114250
12) Nets1,2sthresh(2,2)>over 3 99.7% 0 100.0%| 10 97.4%
—OR(2)—thresh(2,1)»>over 137 1/1862261] 35  1/1754996 53  1/1817787
Arbitrating | 13) Nets 1,2,3- voting(0)— 31 96.9% 9 96.3%| 28 92.6%
among overlap elimination 74 1/3447701 23  1/2670646 38  1/2535335
three 14) Nets 1,2,3- netarb (5 11 98.9% 1 99.6%| 21 94.4%
networks hiddens)— thresh(2,1)~ over 5 1/51025975 1 1/61424875 3 1/32114250
15) Nets 1,2,3- net arb (10 13 98.7% 1 99.6%| 21 94.4%
hiddens)— thresh(2,1)— over 4 1/63782468 1 1/61424875 2 1/48171375
16) Nets 1,2,3- net arb 13 98.7% 1 99.6%| 21 94.4%
(percep)— thresh(2,1)— over 3 1/85043291 1 1/6142487§ 2 1/48171375
Fast 17) Candidate verification 20 98.0% 2 99.2%| 23 93.9%
version method described in Section 4 2 1/127564937W 0 0/61424875 2 1/48171375
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A: 57/57/1

Figure 11: Output obtained from System 11 in Table 1 on images from Test Set 1. Romeae,
three numbers are shown: the number of faces in the image, the number of faceid=igectly,

and the number of false detections. Some notes on specific images: FacessagimB (one

due to occlusion, one due to large angle) and C (the stylized drawing was not deteébeedaame
locations and scales by the two networks, and so is lost in the AND). Falsetidet are presentin

A and D. Although the system was trained only on real faces, some hand drawrafaaetected

in C and E. A was obtained from the World Wide Web, B and E were provided by Sung andPoggi
at MIT, Cis a CCD image, and D is a digitized television image.
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A: 15/15/0 ' B: 9/9/1

Figure 12: Output obtained in the same manner as the examples in Fig. 11. Some notegion spec
images: Faces are missed in C (one due to occlusion, one due to large anglé@gdtdns off of
glasses made the eyes appear brighter than the rest of the face), and K (dge smife). False
detections are present in B and K. Although the system was trained only onges\| feand drawn
faces are detected in B. A, B, J, K, and L were provided by Sung and PoggiolatyiD, E, G,

H, and M were scanned from photographs, F and | are digitized television images,iaa CCD
image.
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B: 1/1/0 |

K: 1/1/0

I: 1/1/1 J: 0/0/0 5

. E

0: 1/1/0
/7 \
= &l

Figure 13: Output obtained in the same manner as the examples in Fig. 11. Some notegion spec
images: Faces are missed in C (due to blurriness) and L (due to partiasioccbf the chin).
False detections are present in C, G, and I. Although the system was traiyeshordal faces,
hand drawn faces are detected in H and N. A, D, I, J, and K were scanneglfiaographs, B,

H, and L were obtained from the World Wide Web, C, E, F, G, O, and P are dujitetevision
images. M, N, and Q were provided by Sung and Poggio at MIT, and R is a ditherednt4gie.
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Candidate locations

Input image pyramid

Verified face locations

Figure 14: lllustration of the steps in the fast version of the face detectoth®left is the input
image pyramid, which is scanned with a 30x30 detector that moves in steps of 1€ pixes
center of the figure shows the 10x10 pixel regions (at the center of the 30x30 detection s)indow
which the 20x20 detector believes contain the center of a face. These candiddtesnaverified

by the detectors described earlier in the paper, and the final results ane shale right.

Table 3: Comparison of the detectors in [21] and [14] and our system on a 23 image sulesdt of T

Set 1, containing 155 faces.

Missed Detect False
System faces rate  detects
10) Nets 1,2~ AND(0) — threshold(2,3}~ overlap elimination 39 74.8% 0
11) Nets 1,2 threshold(2,2}~ overlap elimination—~ AND(2) 24  84.5% 8
12) Nets 1,2 threshold(2,2}~ overlap— OR(2)— threshold(2,1}~ overlap 15 90.3% 42
Detector using a multi-layer network [21] 36 76.8% 5
Detector using perceptron [21] 28 81.9% 13
Support Vector Machine [14] I 39 74.2% 20
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