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Abstract—Because of the relative ease in understanding and processing text, commercial image-search systems often rely on
techniques that are largely indistinguishable from text search. Recently, academic studies have demonstrated the effectiveness of
employing image-based features to provide either alternative or additional signals to use in this process. However, it remains uncertain
whether such techniques will generalize to a large number of popular Web queries and whether the potential improvement to search
quality warrants the additional computational cost. In this work, we cast the image-ranking problem into the task of identifying
“authority” nodes on an inferred visual similarity graph and propose VisualRank to analyze the visual link structures among images.
The images found to be “authorities” are chosen as those that answer the image-queries well. To understand the performance of such
an approach in a real system, we conducted a series of large-scale experiments based on the task of retrieving images for 2,000 of the
most popular products queries. Our experimental results show significant improvement, in terms of user satisfaction and relevancy, in
comparison to the most recent Google Image Search results. Maintaining modest computational cost is vital to ensuring that this
procedure can be used in practice; we describe the techniques required to make this system practical for large-scale deployment in

commercial search engines.

Index Terms—Image ranking, content-based image retrieval, eigenvector centrality, graph theory.

1 INTRODUCTION

LTHOUGH image search has become a popular feature in
many search engines, including Yahoo!, MSN, Google,
etc., the majority of image searches use very little, if any,
image information. Due to the success of text-based search
of Web pages and, in part, to the difficulty and expense of
using image-based signals, most search engines return
images solely based on the text of the pages from which the
images are linked. For example, to find pictures of the Eiffel
Tower, rather than examining the visual content of the
material, images that occur on pages that contain the term
“Eiffel Tower” are returned. No image analysis takes place
to determine relevance or quality. This can yield results of
inconsistent quality. For example, the query “d80,” a
popular Nikon camera, returns good results, as shown in
Fig. 1a. However, the query for “Coca Cola” returns mixed
results; as shown in Fig. 1b, the expected logo or Coca Cola
can/bottle is not seen until the fourth result. This is due in
part to the difficulty in associating images with keywords
and, in part, to the large variations in image quality and
user perceived semantic content.
Our approach relies on analyzing the distribution of
visual similarities among the images. The premise is
simple: An author of a Web page is likely to select images
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that, from his or her own perspective, are relevant to the
topic. Rather than assuming that every user who has a Web
page relevant to the query will link to an image that every
other user finds relevant, our approach relies on the
combined preferences of many Web content creators. For
example, in Fig. 1b, many of the images contain the familiar
red Coca Cola logo. In some of the images, the logo is the
main focus of the image, whereas, in others, it occupies
only a small portion. Nonetheless, its repetition in a large
fraction of the images returned is an important signal that
can be used to infer a common “visual theme” throughout
the set. Finding the multiple visual themes and their
relative strengths in a large set of images is the basis of the
image ranking system proposed in this study.

Our work belongs to the general category of Content-
Based Image Retrieval (CBIR), an active research area driven
in part by the explosive growth of personal photography and
the popularity of search engines. A comprehensive survey on
this subject can be found in [1]. Many systems proposed in the
past [2], [3], [4], [5] are considered as “pure” CBIR systems—
search queries are issued in the form of images and similarity
measurements are computed exclusively from content-based
signals. On the other hand, “composite” CBIR systems [6], [7]
allow flexible query interfaces and a diverse set of signal
sources, a characteristic suited for Web image retrieval as
most images on the Web are surrounded by text, hyperlinks,
and other relevant metadata. For example, Fergus et al. [7]
proposed the use of “visual filters” to rerank Google image
search results, bridging the gap between “pure” CBIR
systems and text-based commercial search engines. These
“visual filters” are learned from the top 1,000 search results
via Parts-based probabilistic models [8], a form of Probabil-
istic Graphical Models (PGMs), to capture the higher order
relationship among the visual features.
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Fig. 1. The query for (a) “d80,” a popular Nikon camera, returns good
results on Google. However, the query for (b) “Coca Cola” returns mixed
results.

However, PGMs have several important limitations for
Web image retrieval. First, as generative models are
factored according to the structures of the model, a
suboptimal model structure can significantly reduce mod-
eling and especially the classification performance [9]. An
overly sparse model may neglect important higher order
feature dependencies, while learning complex structures
and their associated parameters is computationally prohi-
bitive for large-scale Web image retrieval and is prone to
data noise, especially given the nature of the Web images
and the diverse visual representation of object categories.
For example, Web queries with multiple visual concepts
such as “Lincoln Memorial” and “Nemo” (shown in Fig. 2)
can be particularly challenging [7] for Parts-based prob-
abilistic models. Furthermore, there is an important
mismatch between the goal of object category learning
and image ranking. Object category learners are designed
to model the relationship between features and images,
whereas image search engines are designed to model the
relationships (order) among images. Although a well-
trained object category filter can improve the relevancy of
image search results, they offer limited capability to
directly control how and why one visual theme, or image,
is ranked higher than others.
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Fig. 2. Many queries like “Lincoln Memorial” (first two images) and
“Nemo” (last three images) contain multiple visual themes.

A simpler and more intuitive alternative is to compute the
pairwise visual similarity among images from which a global
ordering can be derived and potentially combined with other
nonvisual signals. Separating ranking from image represen-
tation has practical advantages for Web image retrieval. First,
it gives search engine designers the flexibility to customize
image similarities through domain engineering. For exam-
ple, similarity computations that capture higher order
feature dependencies' and learning techniques can be
efficiently employed [11], [12], [13], [14]. Further, even
nonvisual information, such as user-generated covisitation
[15], [16] statistics, can be easily combined with visual
features to make similarity scores more semantically rele-
vant. Second, by separate ranking from the similarity
measurement, one can also leverage well-understood rank-
ing algorithms such as PageRank [17] to generate a global
ordering given pairwise similarity scores. The simplicity and
effectiveness of such approaches were demonstrated by He
et al. [18], who first suggested combining PageRank with
visual similarity for image retrieval, and which was later
extended by Hsu et al. [19] for video retrieval and Joshi et al.
[6] in the development of “Story Picturing Engine.”

Our work extends [18], [19], [6]; we present VisualRank, an
end-to-end system, to improve Google image search results
with emphasis on robust and efficient computation of image
similarities applicable to a large number of queries and
images. VisualRank addresses new challenges that become
apparent when tackling the diversity and magnitude of
problems that arise with Web scale image retrieval. A few of
the tasks and challenges addressed are described below.

First, current commercial search engines benefit from a
variety of signals (i.e., hyperlinks analysis [17], [20]); many of
these signals have proven to be at least as important as the
content of the Web documents. This insight from text-based
Web documents has motivated our approach of using graph
analysis algorithms in addition to visual features. None-
theless, the use of such systems in large-scale deployment
mustbe carefully weighed with the benefits they provide due
to the added complexity and computation. It is important for
practical deployment to measure the results on the specific
tasks addressed, for example, the number of clicks expected
foreachimageifitisreturned as a search result or how closely
it matches the expectations of users of the final system. To
measure the benefits, we conducted experiments with more

1. For example, geometric constraints [10] can be easily used in
conjunction with local descriptors to reduce registration error.
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than 2,000 popular commercial queries and 153 human
evaluators; it is the largest experiment among the published
works for content-based image ranking of which we are
aware. Basing our evaluation on the most commonly
searched for object categories, we demonstrate that Visual-
Rank can significantly improve image search results for
queries that are of the most interest to a large set of people.

Second, we propose a novel extension to previously
proposed random-walk models that can take advantage of
current progress in image-search and text-based Web
search. Instead of combining two sets of rankings (visual
and nonvisual) heuristically [7], we demonstrate how the
order of placement from Google’s image search can be used
to bias the computation of the random-walk on the visual-
similarity graph, thereby providing a direct integration of
nonvisual and visual signals. Intuitively, by treating initial
search results as Web documents and their visual simila-
rities as probabilistic visual hyperlinks, VisualRank estimates
the likelihood of each image being visited by search engine
users following these visual hyperlinks, a score dependent
on both the initial placement of the images and the
collective visual similarities.”

Third, given the scope and diversity of the queries
considered, many of the previously commonly used features,
such as variants of color histograms, provide unreliable
measurements of similarity. We propose and study the use of
local descriptor in our ranking framework. Computing local-
feature-based pairwise similarity scores for billions of images
is computationally infeasible, an important obstacle to
overcome before any large-scale deployment of such a
method. We use an efficient local descriptor hashing scheme
(Locality Sensitive Hashing based on p-stable distributions)
to alleviate the computational cost.

Fourth, we examine the performance of the system when
adversaries are present. The order in which images are
presented from commercial search engines carries great
economic importance by driving Web traffic into publish-
ers’ Web sites. The economic incentives make commercial
search engines targets for manipulative tactics from some
publishers (i.e., Web spam and link farms). To address this
issue, we also analyze how VisualRank performs in the
presence of “spam” or intentionally distracting images.

The remainder of the paper is organized as follows:
Section 2 completes the discussion of related work. Section 3
introduces the VisualRank algorithm and describes the
construction of the visual similarity graph. Section 4
analyzes VisualRank’s performance on queries with homo-
geneous/heterogeneous visual categories and under ad-
versarial conditions, i.e., the presence of “spam” or
distracting images. Section 5 describes an efficient imple-
mentation of an end-to-end Web image ranking system.
Section 6 presents the experiments conducted and provides
an analysis of the findings. Section 7 concludes the paper
with a summary and suggestions for future work.

2 RELATED WORK

Differently from pure CBIR systems [3], [5], [4], VisualRank
retains the commonly used text query interface and utilizes
the visual similarities within the entire set of images for
image selection. This approach complements pure CBIR

2. In fact, the navigational hyperlinks in commercial CBIR systems can
be considered as such visual hyperlinks.
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Fig. 3. In many uses, we need to select a very small set (1-3) of images
to show from potentially millions of images. Unlike ranking, the goal is
not to reorder the full set of images but to select only the “best” ones to
show. (a) Google product search. (b) Mixed-Result-Type Search.

systems in several ways: 1) Text is still the most familiar
and, often, the only query medium for commercial search
engine users, 2) VisualRank can be effectively used in
combination with other CBIR systems by generating a more
relevant and diverse set of initial results, which often
results in a better starting point for pure CBIR systems, and
3) there are real-world usage scenarios beyond “tradi-
tional” image search where image queries are not feasible.
In many uses, we need to select a very small set of images
to show from potentially millions of images. Unlike
ranking, the goal is not to reorder the full set of images
but to select only the “best” ones to show. Two concrete
usage cases for this are the following: 1) Google product
search: Only a single image is shown for each product
returned in response to a product query, shown in Fig. 3a.
2) Mixed-Result Search: To indicate that image results are
available when a user performs a Web (Web page) query, a
small set of representative images may also be shown to
entice the user into trying the image search, as shown in



Fig. 3b. In both of these examples, it is paramount that the
user is not shown irrelevant or off-topic, images. Finally, it
is worth noting that as good similarity functions are the
foundation of CBIR systems, VisualRank can easily
incorporate advances in other CBIR systems.

The recently proposed affinity propagation algorithm
[21] also attempts to find the most representative vertices in
a graph. Instead of identifying a collection of medoids in
the graph, VisualRank differs from affinity propagation by
explicitly computing the ranking score for all images.
Several other studies have explored the use of a similarity-
based graph [22], [23] for semisupervised learning. Given
an adjacency matrix and a few labeled vertices, unlabeled
nodes can be described as a function of the labeled nodes
based on the graph manifolds. In this work, our goal is not
classification; instead, we model the centrality of a graph as
a tool for ranking images. Another related work is by Zhu
et al. [23], who propose using a random-walk model on
graph manifolds to generate “smoothed” similarity scores
that are useful in ranking the rest of the images when one of
them is selected as the query image. Our approach differs
from that in [23] by generating an a priori ranking given a
group of images.

Our work is closely related to [7], as both explore the use
of content-based features to improve commercial image
search engine. Random-walk-based ranking algorithms
were proposed in [18], [19], [6] for multimedia information
retrieval; a detailed comparison to these approaches was
given in the previous section. Our work is also an extension
of that in [24] in which image similarities are used to find a
single most representative or “canonical” image from
image search results. The “canonical” images are selected
as the most densely connected node in the graph. In this
work, we use well-understood methods for graph analysis
based on PageRank and provide a large-scale study of both
the performance and computational cost of such a system.

3 VisuAL RANK

3.1 Eigenvector Centrality and VisualRank

Given a graph with vertices and a set of weighted edges, we
would like to measure the importance of each vertex. The
cardinality of the vertices or the sum of geodesic distance to
the surrounding nodes are all variations of centrality
measurement. Eigenvector Centrality provides a principled
method to combine the “importance” of a vertex with those
of its neighbors in ranking. For example, other factors being
equal, a vertex closer to an “important” vertex should rank
higher than others that are further away.

Eigenvector Centrality is defined as the principle
eigenvector of a square stochastic adjacency matrix,
constructed from the weights of the edges in the graph. It
has an intuitive Random Walk explanation: The ranking
scores correspond to the likelihood of arriving in each of
the vertices by traversing through the graph (with a
random starting point), where the decision to take a
particular path is defined by the weighted edges.

VisualRank employs the Random Walk intuition to rank
images based on the visual hyperlinks among the images.
The intuition of using these visual hyperlinks is that if a
user is viewing an image, other related (similar) images
may also be of interest. In particular, if image v has a visual
hyperlink to image v, then there is some probability that the
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user will jump from u to v. Intuitively, images related to the
query will have many other images pointing to them and
will therefore be visited often (as long as they are not
isolated and in a small clique). The images that are visited
often are deemed important. Further, if we find that an
image, v, is important and it links to an image w, it is
casting its vote for w’s importance because v is in itself
important; the vote should count more than a “nonimpor-
tant” vote.

VisualRank (VR) is iteratively defined as the following;:

VR =S5 xVR. (1)

S* is the column normalized adjacency matrix S, where S, ,
measures the visual similarity between image uw and wv.
Repeatedly multiplying VR by S* yields the dominant
eigenvector of the matrix S*. Although VR has a fixed-
point solution, in practice, it can often be estimated more
efficiently through iterative approaches.

VisualRank converges only when matrix S* is aperiodic
and irreducible. The former is generally true for the Web
and the latter usually requires a strongly connected graph,
a property guaranteed in practice by introducing a
damping factor d into (1). In the study presented in this
paper, the similarity matrix, S, is symmetric.’ In cases in
which the similarity matrix is symmetric, it should be noted
that the use of many forms of damping factors can make the
effective modified similarity matrix asymmetric.

Given n images, VR is defined as

1
VR=dS"xVR+ (1 —d)p, wherep= [g] . (2
nx1

This is analogous to adding a complete set of weighted
outgoing edges for all the vertices. Intuitively, this creates a
small probability for a random walk to go to some other
images in the graph, although it may not have been initially
linked to the current image. d > 0.8 is often chosen for
practice; empirically, we have found the setting of d to have
relatively minor impact on the global ordering of the images.

In place of the uniform damping vector p in (2), we can
use a nonuniform vector ¢ to bias the computation. For
example, we can use it to increase the effect of images
ranked high in the initial search engine results since they
are selected, albeit through nonvisual features, to be the
best match to the query. Vector ¢ can be derived from
image quality, anchor page quality, or simply the initial
rank from commercial search engines. The intuition is that
“random surfers” are more likely to visit and traverse
through images that have higher prior expectation of being
relevant. For example, if we assume the top m search
results from commercial search engines to be of reasonable
quality, we can use ¢ = v;, where

{L
v, = m?
J

0,

3. Note that the similarity matrix does not necessarily need to be
symmetric. For example, consider the case in which one image is an
enlarged portion of another image (for example, a close-up of the Mona
Lisa); when the scale and/or area of the matching region is considered, the
potential advantages of nonsymmetric similarity measures becomes
evident.

j<m
otherwise. (3)
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Fig. 4. Similarity measurement must handle potential rotation, scale,
and perspective transformations.

As an example of a successful application of Eigenvector
Centrality, PageRank [17] precomputes a rank vector to
estimate the importance for all of the Web pages on the Web
by analyzing the hyperlinks connecting Web documents.*
Intuitively, pages on Amazon.com are important, with many
pages pointing to them. Pages pointed to by Amazon.com
may therefore also have high importance. Nonuniform
damping vectors were suggested previously by Haveliwala
[25] to compute topic-biased PageRank for Web documents.

3.2 Features Generation and Representation

A reliable measurement of image similarity is crucial to the
performance of VisualRank since this determines the
underlying graph structure. Global features like color
histograms and shape analysis, when used alone, are often
too restrictive for the breadth of image types that need to be
handled. For example, as shown in Fig. 4, the search results
for “Golden Gate” often contain images taken from
different locations, with different cameras, focal lengths,
compositions, etc.

Compared with global features, local descriptors contain
a richer set of image information and are relatively stable
under different transformations and, to some degree,
lighting variations. Examples of local features include
Harris corners [26], Scale Invariant Feature Transform
(SIFT) [10], Shape Context [27], and Spin Images [28], to
name a few. Mikolajczyk and Schmid [29] presented a
comparative study of various descriptors; [30], [31] pre-
sented work on improving their performance and compu-
tational efficiency. In this work, we use the SIFT features,
with a Difference of Gaussian (DoG) interest point detector
and orientation histogram feature representation as image
features. However, any of the local features could have
been substituted.

We used a standard implementation of SIFT; for
completeness, we give the specifics of our usage here. A
DoG interest point detector builds a pyramid of scaled
images by iteratively applying Gaussian filters to the
original image. Adjacent Gaussian images are subtracted
to create DoG images, from which the characteristic scale
associated with each of the interest points can be estimated
by finding the local extrema over the scale space. Given the
DoG image pyramid, interest points located at the local
extrema of 2D-image space and scale space are selected. A
gradient map is computed for the region around the
interest point and then divided into a collection of
subregions from which an orientation histogram can be

4. The PageRank vector can be precomputed and can be independent of
the search query. Then, at query time, PageRank scores can be combined
with query-specific retrieval scores to rank the query results. This provides
a faster retrieval speed than many query-time methods [20].

Fig. 5. Since all of the variations (B, C, D) are based on the original
painting (A), A contains more matched local features than others. (a) A
versus B. (b) A versus C. (c) A versus D. (d) B versus C. (e) B versus D.
(f) C versus D.

computed. The final descriptor is a 128-dimensional vector
by concatenating 4 x 4 orientation histogram with eight
bins. Given two images, we define their similarity as the
number of local features shared between them divided by
their average number of interest points.

4 APPLYING VISUALRANK

The goal of image-search engines is to retrieve image
results that are relevant to the query and diverse enough to
cover variations of visual or semantic concepts. Traditional
search engines find relevant images largely by matching the
text query with image metadata (i.e.,, anchor text and
surrounding text). Since text information is often limited
and can be inaccurate, many top ranked images may be
irrelevant to the query. Further, without analyzing the
content of the images, there is no reliable way to actively
promote the diversity of the results. In this section, we will
explain the intuition behind how VisualRank can improve
the relevancy and diversity of image search results.

4.1 Queries with Homogeneous Visual Concepts

VisualRank improves the relevance of image search results
under queries with homogeneous visual concepts. This is
achieved by identifying the vertices that are located at the
“center” of weighted similarity graph. “Mona-Lisa” is a
good example of a search query with a single homogeneous
visual concept. Although there are many comical variations
(i.e., “Bikini-lisa” and “Monica-Lisa”), they are all based on
the original painting. As shown in Fig. 5, the original



Fig. 6. Similarity graph generated from the top 1,000 search results of
“Mona-Lisa.” The largest two images contain the highest VisualRank.

painting contains more matched local features than others
and, thus, has the highest likelihood of visit by an user
following these probabilistic visual hyperlinks. Fig. 6 is
generated from the top 1,000 search results of “Mona-Lisa.”
The graph is very densely connected, but, not surprisingly,
the centers of the images all correspond to the original
version of the painting.

4.2 Queries with Heterogeneous Visual Concepts

VisualRank can improve the relevancy and diversity of
queries that contain multiple visual concepts. Examples of
such queries that are often given in the information
retrieval literature include “Jaguar” (car and animal) and
“Apple” (computer and fruit). However, when considering
images, many more queries also have multiple canonical
answers. For example, the query “Lincoln Memorial,”
shown in Fig. 7, has multiple good answers (pictures of
the Lincoln statue, pictures of the building, etc.). In practice,
VisualRank is able to identify a relevant and diverse set of
images as top ranking results; there is no a priori bias
toward a fixed number of concepts or clusters.

An interesting question that arises is whether simple
heuristics could have been employed for analyzing the
graph, rather than using a VisualRank/Eigenvector
approach. For example, a simple alternative is to select
the high degree nodes in the graph, as this implicitly
captures the notion of well-connected images. However,
this fails to identify the different distinctive visual
concepts, as shown in Fig. 8. Since there are more close
matches of “Lincoln statue,” they reinforce each other to
form a strongly connected clique. Further, the random-walk
model also accounts for distracting or “spam” images, as
will be shown in the next section. Of course, measures can
be added to detect these cases; however, VisualRank
provides a principled and intuitive method, through a
simple fixed-point computation, to capture these insights.
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Fig. 7. The top 10 images selected by VisualRank from the 1,000 search
results of “Lincoln Memorial.” By analyzing the link structure in the
graph, VisualRank identifies a highly relevant yet diverse set of images.
(a) Night-time photo of the Lincoln statue. (b) Daytime photo of the
statue. (c) Lincoln Memorial building.

4.3 Performance in the Presence of Distracting
Images

Visual similarity among images offers tremendous informa-
tion about the popularity and relevance of a particular image.
However, it can be susceptible to manipulations. For
example, in commercially deployed systems, adversary
content creators can inflate the rankings of their own images
by placing a large quantity of duplicate images on the Web.
Although those images may bring additional traffic to their
Web site, users may not find them helpful. This practice is
analogous to “Link Spam” on the Web, where artificially
constructed densely connected Web pages are used to inflate
their rankings in regular search engines.

Even in its straightforward implementation, VisualRank
is resistant to many forms of similarity link spam by
analyzing the global structure of the graph. For example,
the top 1,000 images collected with query “Nemo”
contained many near/exact-duplicated images of “Nemo
Sushi,” shown in Fig. 9c. Note that these images reinforce
each other. Simpler algorithms, such as selecting nodes
with high degree, are easily misled, as shown in Fig. 9b.
The use of the damping vector was found to be crucial for
the improved performance using VisualRank.

5 WEB-SCALE VISUAL RANK SYSTEM

In this section, we describe our work on scaling VisualRank
to work on a large set of real queries.

5.1 Query Dependent Visual Rank

It is computationally infeasible to generate the similarity
graph S for the billions of images that are indexed by

5. Note that “adversary” is meant literally; it is common practice for
content creators to submit many duplicate or near-duplicate images, Web
Ppages, etc., intentionally designed to bias ranking algorithms to place their
content above others.
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Fig. 8. Alternative method of selecting images with the most “neighbors”
tend to generate a relevant but homogeneous set of images.

commercial search engines. One method to reduce the
computational cost is to precluster Web images based on
using metadata such as text, anchor text, similarity, or
connectivity of the Web pages on which they were found.
For example, images associated with “Paris,” “Eiffel
Tower,” and “Arc de Triomphe” are more likely to share
similar visual features than random images. To make the
similarity computations more tractable, a different Visual-
Rank can be computed for each group of such images.

A practical method to obtain the initial set of candidates
mentioned in the previous paragraph is to rely on the
existing commercial search engine for the initial grouping
of semantically similar images. For example, similarly to
[7], given the query “Eiffel Tower,” we can extract the
top-N results returned, create the graph of visual similarity
on the N images, and compute VisualRank only on this
subset. In this instantiation, VisualRank is query depen-
dent; although the VisualRank of images in the /N images is
indicative of their importance in answering the query, the
same image may have a different score when it is a member
of a different set of images that is returned in response to a
different query. In the experiment section, we follow this
procedure on 2,000 of the most popular queries for Google
Product Search.

5.2 Hashing Local Features via p-Stable
Distributions

The similarity matrix S* from (1) can be computed for all
unique pairs of images. A more efficient approach is to
use a hash table to store all the local descriptors such
that similar descriptors fall into the same bin.® In the
extreme case where only exact duplicates are considered as
matches, one can simply use the original descriptor value
as the hash key (by converting the 128-dimensional vector
into a single long hash key). To match the “similar” non-
exact-duplicate local descriptors under different lighting

6. Due to the memory requirement, hashing is practical only for a limited
number of local features.

(a)

Fig. 9. By analyzing the global structure of the graph, (a) VisualRank
avoids selecting images simply because they are close duplicates of
each other. The alternative methods of selecting images with (b) high
degree is susceptible to this as it finds the (c) spam images repeatedly.

conditions and other variations, a more relaxed distance
preserving hashing function can be used.

Matching local descriptors efficiently has received
tremendous research attention in recent years [32], [33],
[34], [35], [36], [37]. In particular, Nister and Stewénius [32]
proposed the use of “visual vocabularies,” a set of
distinctive quantitized local descriptors learned via hier-
archical k-mean clustering. Raw features are mapped into
visual vocabularies by traversing down the vocabulary tree
to find the closest leaf. This process can be viewed as
constructing a hash function to map raw descriptors into a
key, in this case, the visual vocabulary.

For our algorithm, approximation methods [38], [39], [37]
to measure similarity are sufficient. Because VisualRank



relies on the global structure of the graph to derive its
ranking, it is already quite robust against noise (mismatch
or missed matches of local features in images). Intuitively,
if the distance measurement captures an overall notion of
user perceived similarity, a small difference in the
magnitudes of the distance will have negligible effect on
the end results. We will use a version of the Locality-
Sensitive Hashing (LSH) approximate matching approach.

LSH is an approximate kNN technique introduced by
Indyk et al. [39]. LSH addresses the similarity match
problem, termed (r;¢)-NN, in sublinear time. The goal is
formally stated as follows: Given a point ¢ (query) in a
d-dimensional feature space, for exact kNN, for any point g,
return the point p that minimizes D(p; q). For approximate
kNN, if there exists an indexed point p such that
D(p; q) <, then with high-probability return an indexed
point that is of distance at most (1 + €)r. If no indexed point
lies within (1 + €)r of g, then LSH should return nothing,
with high probability. Ke et al. [33] have explored LSH in
the task of near-duplicate image detection and retrieval and
obtained promising results. The particular hash function in
[33] was best suited for the preservation of Hamming
distance; for our work, we follow the recent work of Datar
et al. [38]. Datar et al. [38] have proposed hash function for
I, norms, based on p-stable distributions [40]. Here, each
hash function is defined as

aV+bJ’ (@)

hap(V) = { W

where a is a d-dimensional random vector with entries
chosen independently from a Gaussian distribution and b is
a real number chosen uniformly from the range [0, W]. W
defines the quantization of the features and V is the original
feature vector. Equation (4) is very simple to implement
and efficient.

In practice, the best results are achieved by using
L number of hash tables rather than a single one. For each
hash table, we reduce the collision probability of nonsimilar
objects by concatenating K hash functions. Two features
are considered as a match if they were hashed into the same
bin in C' out of the L hash tables; effectively, this provides a
means of setting a minimum match threshold, thereby
eliminating coincidental matches that occur in only a few of
the tables. We group all of the matched features by their
associated image and the similarity matrix, S, is computed
by the total number of matches normalized by their average
number of local features. The exact parameter settings are
given below.

5.3 Summary of the System

The VisualRank system can be summarized as the follow-
ing four steps. A visual representation of the process is
given in Fig. 10.

1. Local features are generated for a group of images,
scaled to have a maximum axis size of 500 pixels.
From our study, 1,000 Web images usually contain
300,000 to 700,000 feature vectors.

2. A collection of L hash tables H = Hy, Ho,...,Hy, is
constructed, each with K number of hash functions,
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Fig. 10. A visual representation of our hashing scheme. Local features
extracted from a collection of images are hashed into a collection of LSH
hash tables. Features hashed into the same bin in multiple hash families

are considered matches and contribute to the similarity score between
their corresponding images.

as shown in (4). Each of the descriptors is indexed
into each of the hash tables. Empirically, we
determined that L =40, W =100, and K =3 give
good results.

3. For each descriptor, we aggregate objects with
identical hash keys across L hash tables. Descriptors
that share the same key in more than C hash tables
are considered a match (C = 3).

4. We regroup matched features by the images they are
associated with. Optionally, for two images and
their associated matching feature points, we use a
Hough Transform to enforce a loose geometric
consistency. A four-dimensional histogram is used
to store the “votes” on the pose space (translation,
scaling, and rotation). At the end, we select the
histogram entry with the most votes as the most
consistent interpretation. The surviving matching
points are used to compute the similarity score.

5. A pair of images is considered a match if they share
more than three matched descriptors. The similarity
of two images is computed by the total number of
matches normalized by their average number of
local features.

6. Given similarity matrix S, we can use the Visual-
Rank algorithm to generate the top N images.

With the techniques mentioned above and nonoptimized
code, it takes approximately 15 minutes to compute and hash
the local descriptors for 1,000 images and to compute the full
similarity matrix. Although this is a significant computa-
tional requirement, it allows us to precompute the results to
many popular queries. For example, with 1,000 modest
CPUgs, the VisualRank for the top 100,000 queries can be
computed in less than 30 hours.

6 EXPERIMENTAL RESULTS

Toensure that our algorithm works in practice, we conducted
experiments with images collected directly from the Web. In
order to ensure that the results would make a significant
impact in practice, we concentrated on the 2,000 most
popular product queries” on Google (product search).
Typical queries included “ipod,” “Xbox,” “Picasso,”

7. The most often queried keywords during a period in August.
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TABLE 1
Relevancy Study
“Irrelevant” images per product query | VisualRank | Google
Among top 10 results 0.47 2.82
Among top 5 results 0.30 1.31
Among top 3 results 0.20 0.81

“Fabreze,” etc.® For each query, we extracted the top 1,000
search results from Google image search in July 2007, with the
strict safe search filter. The similarity matrix is constructed by
counting the number of matched local features for each pair
of images after geometric validation normalized by the
number of descriptors generated from each pairs of images.

We expect that Google’s results will already be quite good,
especially since the queries chosen are the most popular
product queries for which many relevant Web pages and
images exist. Therefore, we would like to only suggest a
refinement to the ranking of the results when we are certain
that VisualRank will have enough information to work
correctly. A simple threshold was employed if, in the set of
1,000 images returned, fewer than 5 percent of the images had
at least one connection, VisualRank was not used. In these
cases, we assumed that the graph was too sparse to contain
enough information. After this pruning, we concentrated on
the approximately 1,000 remaining queries.

It is challenging to quantify the quality of (or difference
of performance) of sets of image search results for several
reasons. First and foremost, user preference to an image is
heavily influenced by a user’s personal tastes and biases.
Second, asking the user to compare the quality of a set of
images is a difficult and often time-consuming task. For
example, an evaluator may have trouble choosing between
group A, containing five relevant but mediocre images, and
group B, which is mixed with both great and bad results.
Finally, assessing the differences in ranking (when many of
the images between two rankings being compared are the
same) is error prone and imprecise at best. Perhaps the
most principled way to approach this task is to build a
global ranking based on pairwise comparisons. However,
this process requires a significant amount of user input and
is not feasible for large numbers of queries.

To accurately study the performance of VisualRank
subject to practical constraints, we devised two evaluation
strategies. Together, they offer a comprehensive compar-
ison of two ranking algorithms, especially with respect to
how the rankings will be used in practice.

6.1 Experiment 1: User Study on Retrieval

Relevancy

This study is designed to study a conservative version of
the “relevancy” of our ranking results. For this experiment,
we mixed the top 10 VisualRank selected images with the

8. We chose product-related (and travel/landmark) queries for three
reasons. First, they are extremely popular in actual usage. Second, they lend
themselves well to the type of local feature detectors that we selected in this
study (in Section 7, we describe other categories of queries that may benefit
from alternative sets of image features). Third, users have strong
expectations of what results we should return for these queries; therefore,
this provides an important set of examples that we need to address
carefully.

TABLE 2
Relevance Comparison per Query
VisualRank | Google
~ Outperforming product queries 762 70 -

top 10 images from Google, removed the duplicates, and
presented them to the user. We asked the user: “Which of the
image(s) are least relevant to the query?” For this experiment,
more than 150 volunteer participants were chosen and were
asked this question on a set of randomly chosen 50 queries
selected from the top-query set. There was no requirement on
the number of images that they marked.

There are several interesting points to note about this
study. First, it does not ask the user to simply mark relevant
images; the reason for this is that we wanted to avoid a
heavy bias to a user’s own personal expectation (i.e., when
querying “Apple,” did they want the fruit or the compu-
ter?). Second, we did not ask the users to compare two sets
since, as mentioned earlier, this is an arduous task. Instead,
the user was asked to examine each image individually.
Third, the user was given no indication of ranking, thereby
alleviating the burden of analyzing image ordering.

It is also worth noting that minimizing the number of
irrelevant images is important in real-world usage scenarios
beyond “traditional” image search. As mentioned earlier,
in many uses, we need to select a very small set of images
(1-3) to show from potentially millions of images. Two
concrete usage cases that were mentioned earlier include
selecting images for Google Product Search and Google
Mixed-type search, as shown in Fig. 3.

In order to quantify the effectiveness of visual features,
VisualRank was computed with a uniform bias vector,
ignoring order of placement in the original search results.
We measured the results for Google and VisualRank for
three settings: the number of irrelevant images in the top 10,
top 5, and top 3 images returned by each of the algorithms.
Table 1 contains the comparison results. Among the top 10
images, VisualRank produced an average of 0.47 irrelevant
results; this is compared with the 2.82 by Google; this
represents an 83 percent drop in irrelevant images. When
looking at the top 3 images, the number of irrelevant
images for VisualRank dropped to 0.20, while Google
dropped to 0.81.

In terms of overall performance on queries, as shown in
Table 2, VisualRank contains fewer irrelevant images than
Google for 762 queries. In only 70 queries did VisualRank
produce worse results than Google. In the remaining 202
queries, VisualRank and Google tied (in the majority, of
these, there were no irrelevant images). Fig. 11 provides a
query-by-query analysis between VisualRank and existing
Google image search. The Y axis contains the number of
“irrelevant” images and the X axis lists the type of queries.
The order of queries are sorted by the number of
“irrelevant” images retrieved by the Google image search
engine for better visualization.

To present a complete analysis of VisualRank, we
describe two cases where VisualRank did not perform as
expected. VisualRank sometimes fails to retrieve relevant
images, as shown in Fig. 12. The first three images are the
logos of the company that manufactured the product being
searched for. Although the logo is somewhat related to the
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Fig. 11. Number of irrelevant images (per query) retrieved by competing algorithms. For visual clarity, a subsample of corresponding queries (cars,
etc.) is shown under the x-axis. The queries are sorted by the number of irrelevant results retrieved by the Google image search.

query, the evaluators did not regard them as relevant to the product images contain the company logos, either within
specific product for which they were searching. The the product itself or in addition to the product. In fact, extra
inflated logo score occurs for two reasons. First, many care is often taken to make sure that the logos are clearly
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Fig. 12. The particular local descriptors used provided a bias to the
types of patterns found. These VisualRank selected images received
the most “irrelevant” votes from the users for the queries shown. (a) Dell
computer. (b) Nintendo Wii system. (c) 8800 Ultra. (d) Keychain.
(e) 2PS2 network adapter. (f) Dell computer.

visible, prominent, and uniform in appearance. Second,
logos often contain distinctive patterns that provide a rich
set of local descriptors that are particularly well suited to
SIFT-like feature extraction.

A second, but less common, failure case is when screen
shots of Web pages are saved as images. Many of these
images include browser panels or Microsoft Windows
control panels that are consistent across many images. It is
suspected that these mismatches can easily be filtered by
combining VisualRank with other sources of quality scores
or measuring the distinctiveness of the features not only
within queries but also across queries, in a manner similar
to using TE-IDF [41] weighting in textual relevancy. In fact,
as shown in the next sections, some of the mismatches can
be easily filtered by biasing the computation of VisualRank
with the initial order of placement from Google image
search results.

6.2 Experiment 2: Additional Comparison with
Alternative Methods

Asmentioned earlier, in Section 3.1, itis possible to extend the
VisualRank algorithm to take into account the information
conveyed in the order of results returned from Google’s
image search. Google presents the most relevant images in
the order of the most relevant to the least relevant, based on
its own internal metrics. The next set of experiments provides
a small example of how this ordering information can be
incorporated into the random-walk model. Instead of the
uniform damping factor that is commonly used in PageRank
systems, we use a nonuniform damping vector in (3) to
increase the effect of images highly ranked in the search
engine results as these images were selected (by Google, with
nonvisual features) as the best match to the query. We call the
resulting algorithm VisualRanky,,s. Table 3 contains the set of
manually computed comparison results.” Among the top 10
images, VisualRanky,,; produces an average of 0.17 irrelevant

9. For the following experiment, another large-scale user study was
beyond the resources available. The results are manually computed to the
best of our abilities. Nonetheless, a complete user study is left for future
research.

results, compared with 0.47 by VisualRank with a uniform
damping vector; this represents a 64 percent drop in
irrelevant images. When looking at the top 3 images, the
number of irrelevant images for VisualRank;,,s dropped to
0.04, while VisualRank dropped to 0.20. Through a deeper
analysis of the results, it was determined that VisualRanky,s
does not contain the type of “irrelevant” images shown in
Figs. 12d and 12e.

Finally, to compare against a pure CBIR system, we
formulate an alternative heuristic approach, named Heur-
isticRank. HeuristicRank retains the top 10-15 Google
search results and uses their closest visual neighbors (with
the metric defined in Section 3.2) as the next set of best
images. Those images that do not have a visually similar
neighbor are considered noise and are removed from the
ranking. The top 20 resulting images are compared with
VisualRank, using the rank given by Google’s search
results. In this experiment, we also manually evaluated
the images generated by the two competing algorithms.
The results are reported in Table 3.

Table 4 demonstrates that VisualRank outperforms
HeuristicRank in 664 queries, while it was outperformed
by HeuristicRank in 182 queries. Upon further analysis of
the results, we find that the accuracy of HeuristicRank highly
depends on the top search results. Although HeuristicRank
can remove some outliers by eliminating images without a
similar neighbor, there are many “irrelevant” images, like the
“Nemo Sushi” shown in Fig. 9c, with near duplicates among
the top 1,000 search results.

6.3 Experiment 3: Satisfaction and Click
Measurement

Results from Experiment 1 show that VisualRank can
effectively decrease the number of irrelevant images in the
search results. However, user satisfaction is not purely a
function of relevance; for example, numerous other factors,
such as the diversity of the selected images, must also be
considered. Assuming the users usually click on the images
they are interested in, an effective way to measure search
quality is to analyze the total number of “clicks” each
image receives.

We collected clicks for the top 40 images (first two pages)
presented by the Google search results on 130 common
product queries. The VisualRank for the top 1,000 images for
each of the 130 queries is computed and the top 40 images are
reranked using VisualRank. To determine if the ranking
would improve performance, we examine the number of
clicks each method received from only the top 20 images
(these are the images that would be displayed in the first page
of results (on http:/ /images.google.com)). The hope is that,
by reordering the top 40 results, the best images will move to
the top and will be displayed on the first page of results. If we
are successful, then the number of clicks for the top 20 results
under reordering will exceed the number of clicks for the
top 20 under the default ordering.

It is important to note that this evaluation contains an
extremely severe bias that favors the default ordering. The
ground truth of clicks an image receives is a function not
only of the relevance to a query and quality of the image but
also of the position in which it is displayed. For example, it is
often the case that a mediocre image from the top of the
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TABLE 3
Relevancy Study
“Irrelevant” images per product query | VisualRank;;,; | VisualRank | HeuristicRank
Among top 20 results 0.23 0.83 1.93
Among top 10 results 0.17 0.47 1.42
Among top 5 results 0.12 0.30 0.86
Among top 3 results 0.04 0.20 0.65

first page will receive more clicks than a high-quality image
from the second page (default ranking 21-40). If VisualRank
outperforms the existing Google Image search in this
experiment, we can expect a much greater improvement
in deployment.

When examined over the set of 130 product queries, the
images selected by VisualRank to be in the top 20 would
have received approximately 17.5 percent more clicks than
those in the default ranking. This improvement was
achieved despite the positional bias that strongly favored
the default rankings.

6.4 An Alternate Query Set: Landmarks

To this point, we have examined the performance of
VisualRank on queries related to products. It is also
interesting to examine the performance on an alternate
query set. Here, we present the results of an analogous
study to the product-based one presented to this point; this
study is conducted with common landmark related queries.

For this study, we gathered 80 common landmark
related queries. Typical queries included: “Eiffel Tower,”
“Big Ben,” “Coliseum,” and “Lincoln Memorial.” Similarly
to product queries, these queries have rigid canonical
objects that are central to the answer. Table 5 shows the
performance of VisualRank when minimizing the number
of irrelevant queries in the top 10, top 5, and top 3 results.
As was seen in the experiments with product images,
VisualRank significantly outperforms the default rankings
at all of the measured settings. Table 6 shows the number of
queries for which VisualRank outperformed Google and
vice versa. Note that the default Google rankings rarely
outperformed VisualRank; however, there were a large
number of ties (32) in which Google and VisualRank had an
equal number of irrelevant images.

For the last measurement, we examine the clicks that
would have been received under VisualRank-based reor-
dering and under default settings. In 50 of the queries,
VisualRank would have received more clicks, while, in 27
of the queries, the default ranking would have. The
remaining three queries tied.

7 CoONCLUSIONS AND FUTURE WORK

The VisualRank algorithm presents a simple mechanism to
incorporate the advances made in using link and network
analysis for Web document search into image search.

TABLE 4
Relevance Comparison per Query
VisualRank | HeuristicRank
Outperforming product queries 664 182

Although no links explicitly exist in the image search
graph, we demonstrated an effective method to infer a
graph in which the images could be embedded. The result
was an approach that was able to outperform the default
Google ranking on the vast majority of queries tried, while
maintaining reasonable computational efficiency for large-
scale deployment. Importantly, the ability to reduce the
number of irrelevant images shown is extremely important
not only for the task of image ranking for image retrieval
applications but also for applications in which only a tiny
set of images must be selected from a very large set of
candidates.

Interestingly, by replacing user-created hyperlinks with
automatically inferred “visual hyperlinks,” VisualRank
seems to deviate from a crucial source of information that
makes PageRank successful: the large number of manually
created links on a diverse set of pages. However, a significant
amount of the human-coded information is recaptured
through two mechanisms. First, by making VisualRank
query dependent (by selecting the initial set of images from
search engine answers), human knowledge, in terms of
linking relevant images to Web pages, is directly introduced
into the system. Second, we implicitly rely on the intelligence
of crowds: The image similarity graph is generated based on
the common features between images. Those images that
capture the common themes from many of the other images
are those that will have higher relevancy.

The categories of queries addressed, products, and land-
marks lend themselves well to the type of local feature
detectors that we employed to generate the underlying
graph. One of the strengths of the approach described in this
paper is the ability to customize the similarity function based
on the expected distribution of queries. Unlike many
classifier-based methods [7], [42] that construct a single
mapping from image features to ranking, VisualRank relies
only on the inferred similarities, not the features themselves.
Similarity measurements can be constructed through

TABLE 5
Relevancy Study

“Irrelevant” images per landmark query | VisualRank | Google
Among top 10 results 0.35 3.64
Among top 5 results 0.18 1.73
Among top 3 results 0.03 0.94

TABLE 6

Relevance Comparison per Query
VisualRank | Google
~ Outperforming landmark queries 46 2 -
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numerous techniques and their construction is indepen-
dent of the image relevance assessment. For example,
images related to people and celebrities may rely on face
recognition/similarity, images related to landmarks and
products (i.e., Eiffel Tower) may use local descriptors,
other images, such as landscapes, may more heavily rely
on color information, etc. Additionally, within this frame-
work, context-free signals, like user-generated covisitation
[15], can be used in combination with image features to
approximate the visual similarity of images.

There are many avenues open for future exploration;
they range from the domains to which these techniques can
be deployed to refinements of the algorithms presented for
accuracy and for speed. Three directions for future study
that we are pursuing are given here. First, we are working
on both labeling and ranking unlabeled images from
personal image collections. The underlying graph struc-
tures explored in this paper are relevant to this task.
Further, the ability to use unlabeled images to create
linkages between images that are labeled and those that
need labels is an active area of research.

Second, we would like to study the relationship between
image similarity and “likelihood for transition” more
extensively. For example, although a user is likely to transit
between two related images, the exact behavior may be
more complicated. For example, a user may not want to
transit to images that are too similar. Therefore, learning
the weighting function for creating the similarity weights
that may decrease the weight of images that are too similar
(perhaps near duplicates) may further improve the diver-
sity of the top ranked images.

Third, we are extending this work to other domains that
are not amenable to traditional text-based analysis. These
domains include video and audio analysis.
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