
Using the Future to \Sort Out" the

Present: Rankprop and Multitask

Learning for Medical Risk Evaluation

Rich Caruana, Shumeet Baluja, and Tom Mitchell

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213

(caruana, baluja, mitchell)@cs.cmu.edu

Abstract

A patient visits the doctor; the doctor reviews the patient's history,

asks questions, makes basic measurements (blood pressure, ...), and

prescribes tests or treatment. The prescribed course of action is

based on an assessment of patient risk|patients at higher risk are

given more and faster attention. It is also sequential|it is too

expensive to immediately order all tests which might later be of

value. This paper presents two methods that together improve

the accuracy of backprop nets on a pneumonia risk assessment

problem by 10-50%. Rankprop improves on backpropagation with

sum of squares error in ranking patients by risk. Multitask learning

takes advantage of future lab tests available in the training set, but

not available in practice when predictions must be made. Both

methods are broadly applicable.

1 Background

There are 3,000,000 cases of pneumonia each year in the U.S., 900,000 of which

are admitted to the hospital for treatment and testing. Most pneumonia patients

recover given appropriate treatment, and many can be treated e�ectively without

hospitalization. Nonetheless, pneumonia is serious: 100,000 of those hospitalized

for pneumonia die from it, and many more are at elevated risk if not hospitalized.

1.1 The Problem

A primary goal of medical decision making is to accurately, swiftly, and econom-

ically identify patients at high risk from diseases like pneumonia so they may be

hospitalized to receive aggressive testing and treatment; patients at low risk may be

more comfortably, safely, and economically treated at home. Note that the diagno-

sis of pneumonia has already been made; the goal is not to determine the illness, but

how much risk the illness poses to the patient. Some of the most useful tests for do-

ing this require hospitalization and will be available only if preliminary assessment

indicates it is warranted. Low risk patients can safely be treated as outpatients and

can often be identi�ed using measurements made prior to admission.

The problem considered in this paper is to learn to rank pneumonia patients ac-

cording to their probability of mortality. We present two learning methods that

combined outperform standard backpropagation by 10-50% in identifying groups

of patients with least mortality risk. These methods are applicable to domains

where the goal is to rank instances according to a probability function and where

useful attributes do not become available until after the prediction must be made.

In addition to medical decision making, this class includes problems as diverse as

investment analysis in �nancial markets and autonomous vehicle navigation.

1.2 The Pneumonia Database

The Medis Pneumonia Database [6] contains 14,199 pneumonia cases collected from

78 hospitals in 1989. Each patient in the database was diagnosed with pneumonia

and hospitalized. 65 measurements are available for most patients. These include

30 basic measurements typically acquired prior to hospitalization such as age, sex,

and pulse, and 35 lab results such as blood counts or gases not available until after

hospitalization. The database indicates how long each patient was hospitalized and

whether the patient lived or died. 1,542 (10.9%) of the patients died.

1.3 The Performance Criterion

The Medis database indicates which patients lived or died. The most useful decision

aid for this problem would predict which patients will live or die. But this is too

di�cult. In practice, the best that can be achieved is to estimate a probability

of death (POD) from the observed symptoms. In fact, it is su�cient to learn to

rank patients by POD so lower risk patients can be discriminated from higher risk

patients. The patients at least risk may then be considered for outpatient care.

The performance criterion used by others working with the Medis database [4] is the

accuracy with which one can select a prespeci�ed fraction of the patient population

that do not die. For example, given a population of 10,000 patients, �nd the 20%

of this population at least risk. To do this we learn a risk model and a threshold

for this model that allows 20% of the population (2000 patients) to fall below it. If

30 of the 2000 patients below this threshold died, the error rate is 30/2000 = 0.015.

We say that the error rate for FOP 0.20 is 0.015 for this model (\FOP" stands for

fraction of population). In this paper we consider FOPs 0.1, 0.2, 0.3, 0.4, and 0.5.

Our goal is to learn models and model thresholds, such that the error rate at each

FOP is minimized. Models with acceptably low error rates might then be employed

to help determine which patients do not require hospitalization.

2 Methodology

The Medis database is unusually large, with over 14K training patterns. Because we

are interested in developing methods that will be e�ective in other domains where

databases of this size are not available, we perform our experiments using small

training sets randomly drawn from the 14K patterns and use the remaining patterns

as test sets. For each method we run ten trials. For each trial we randomly sample

2K patterns from the 14K pool for training. The 2K training sample is further split

into a 1K backprop set used to train the net and a 1K halting set used to determine

when to halt training.

1

Once the network is trained, we run the 1K halt set through

the model again to �nd the threshold that passes 10%, 20%, 30%, 40%, and 50% of

the halt set. The performance of the model is evaluated on the 12K unused patterns

by determining how many of the cases that fall below threshold in this test set die.

This is the error rate for that model at that FOP.

3 The Traditional Approach: SSE on 0/1 Targets

Sections 3-5 present three neural net approaches to pneumonia risk prediction. This

section presents the standard approach: using backpropagation on sum of squares

errors (SSE) with 0=lives/1=dies to predict mortality. This works well if early

stopping is used to prevent over�tting. Section 4 presents rankprop (SSE on ranks

instead of 0/1 targets). Rankprop, which learns to rank patients by risk instead

of directly predicting mortality, works better. Section 5 uses multitask learning

(MTL) to bene�t from tests in the database that in practice will not be available

until after deciding to admit the patient. Rankprop with MTL works even better.

The straightforward approach to this problem is to use backprop to train a net to

learn to predict which patients live or die, and then use the real-valued predictions of

this net to sort patients by risk. This net has 30 inputs, 1 for each of the observed

patient measurements, a hidden layer with 8 units

2

, and a single output trained

with 0=lived, 1=died.

3

Given an in�nite training set, a net trained this way should

learn to predict the probability of death for each patient, not which patients live or

die. In the real world, however, where we rarely have an in�nite number of training

cases, a net will overtrain and begin to learn a very nonlinear function that outputs

values near 0/1 for cases in the training set, but which does not generalize well. In

this domain it is critical to use early stopping to halt training before this happens.

Table 1 shows the error rates of nets trained with SSE on 0/1 targets for the �ve

FOPs. Each entry is the mean of ten trials. The �rst entry in the table indicates

that on average, in the 10% of the test population predicted by the nets to be at

least risk, 1.4% died. We do not know the best achievable error rates for this data.

Table 1: Error Rates of SSE on 0/1 Targets

FOP 0.1 0.2 0.3 0.4 0.5

Error Rate .0140 .0190 .0252 .0340 .0421

4 Using Rankprop to Rank Cases by Risk

Because the goal is to �nd the fraction of the population least likely to die, it is

su�cient just to learn to rank patients by risk. Rankprop learns to rank patients

without learning to predict mortality. \Rankprop" is short for \backpropagation

using sum of squares errors on estimated ranks". The basic idea is to sort the

training set using the target values, scale the ranks from this sort (we scale uniformly

to [0.25,0.75] with sigmoid output units), and use the scaled ranks as target values

for standard backprop with SSE instead of the 0/1 values in the database.

1

Performance at di�erent FOPs sometimes peaks at di�erent epochs. We halt training

separately for each FOP in all the experiments to insure this does not confound results.

2

To make comparisons between methods fair, we �rst found hidden layer sizes and

learning parameters that performed well for each method.

3

Di�erent representations such as 0.15/0.85 and di�erent error metrics such as cross

entropy did not perform better than SSE on 0/1 targets.

Ideally, we'd rank the training set by the true probabilities of death. Unfortunately,

all we know is which patients lived or died. In the Medis database, 89% of the target

values are 0's and 11% are 1's. There are many possible sorts consistent with these

values. Which sort should backprop try to �t? It is the large number of possible

sorts of the training set that makes backpropagating ranks challenging. Rankprop

solves this problem by using the net model as it is being learned to order the training

set when target values are tied. In this database, where there are many ties because

there are only two target values, �nding a proper ranking of the training set is a

serious problem. Rankprop learns to adjust the target ranks of the training set at

the same time it is learning to predict ranks from that training set.

How does rankprop do this? Rankprop alternates between rank passes and backprop

passes. On the rank pass it records the output of the net for each training pattern.

It then sorts the training patterns using the target values (0 or 1 in the Medis

database), but using the network's predictions for each pattern as a secondary

sort key to break ties. The basic idea is to �nd the legal rank of the target values (0

or 1) maximally consistent with the ranks the current model predicts. This closest

match ranking of the target values is then used to de�ne the target ranks used on

the next backprop pass through the training set. Rankprop's pseudo code is:

foreach epoch do {

foreach pattern do {

network_output[pattern] = forward_pass(pattern)}

target_rank = sort_and_scale_patterns(target_value, network_output)

foreach pattern do {

backprop(target_rank[pattern] - network_output[pattern])}}

where \sort and scale patterns" sorts and ranks the training patterns using the sort

keys speci�ed in its arguments, the second being used to break ties in the �rst.

Table 2 shows the mean rankprop performance using nets with 8 hidden units.

The bottom row shows improvements over SSE on 0/1 targets. All di�erences are

statistically signi�cant. See Section 7.1 for discussion of why rankprop works better.

Table 2: Error Rates of Rankprop and Improvement Over Standard Backprop

FOP 0.1 0.2 0.3 0.4 0.5

Error Rate .0083 .0144 .0210 .0289 .0386

% Change -40.7% -24.2% -16.7% -15.0% -8.3%

5 Learning From the Future with Multitask Learning

The Medis database contains results from 36 lab tests that will be available only

after patients are hospitalized. Unfortunately, these results will not be available

when the model is used because the patients will not yet have been admitted. Mul-

titask learning (MTL) improves generalization by having a learner simultaneously

learn sets of related tasks with a shared representation; what is learned for each

task might bene�t other tasks. In this application, we use MTL to bene�t from the

future lab results. The extra lab values are used as extra backprop outputs as shown

in Figure 1. The extra outputs bias the shared hidden layer towards representations

that better capture important features of the domain. See [2][3][9] for details about

MTL and [1] for other ways of using extra outputs to bias learning.

The MTL net has 64 hidden units. Table 3 shows the mean performance of ten runs

of MTL with rankprop. The bottom row shows the improvement over rankprop

A
ge Se
x

Ch
es

t P
ai

n

A
sth

m
at

ic

D
ia

be
tic

H
ea

rt
M

um
ur

W
he

ez
in

g

St
rid

or

Mortality
 Rank Hematocrit White Blood

 Cell Count
Potassium

. . .

. . .

INPUTS

INPUT LAYER

OUTPUT LAYER

SHARED HIDDEN LAYER

RANKPROP

OUTPUT

FUTURE LABS

. . .

Figure 1: Using Future Lab Results as Extra Outputs To Bias Learning

alone. Although MTL lowers error at each FOP, only the di�erences at FOP = 0.3,

0.4, and 0.5 are statistically signi�cant with ten trials. Feature nets [7], a competing

approach that trains nets to predict the missing future labs and uses the predictions

as extra net inputs does not yield bene�ts comparable to MTL on this problem.

Table 3: Error Rates of Rankprop+MTL and Improvement Over Rankprop Alone

FOP 0.1 0.2 0.3 0.4 0.5

Error Rate .0074 .0127 .0197 .0269 .0364

% Change -10.8% -11.8% -6.2% -6.9% -5.7%

6 Comparison of Results

Table 4 compares the performance of backprop using SSE on 0/1 targets with the

combination of rankprop and multitask learning. On average, Rankprop+MTL re-

duces error more than 25%. This improvement is not easy to achieve|experiments

with other learning methods such as Bayes Nets, Hierarchical Mixtures of Experts,

and K-Nearest Neighbor (run not by us, but by experts in their use) indicate SSE

on 0/1 targets is an excellent performer on this domain[4].

Table 4: Comparison Between SSE on 0/1 Targets and Rankprop+MTL

FOP 0.1 0.2 0.3 0.4 0.5

SSE on 0/1 .0140 .0190 .0252 .0340 .0421

Rankprop+MTL .0074 .0127 .0197 .0269 .0364

% Change -47.1% -33.2% -21.8% -20.9% -13.5%

7 Discussion

7.1 Why Does Rankprop Work?

We are given data from a target function f (x). Suppose the goal is not to learn a

model of f(x), but to learn to sort patterns by f (x). Must we learn a model of f (x)

and use its predictions for sorting? No. It su�ces to learn a function g(x) such that

for all x

1

; x

2

, [g(x

1

) � g(x

2

)]! [f(x

1

) � f (x

2

)]. There can be many such functions

g(x) for a given f(x), and some of these may be easier to learn than f (x).

Consider the probability function in Figure 2.1 that assigns to each x the probability

p = f (x) that the outcome is 1; with probability 1 � p the outcome is 0. Figure

2.2 shows a training set sampled from this distribution. Where the probability is

low, there are many 0's. Where the probability is high, there are many 1's. Where

the probability is near 0.5, there are 0's and 1's. This region causes problems for

backprop using SSE on 0/1 targets: similar inputs are mapped to dissimilar targets.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

pr
ob

ab
ili

ty
 o

ut
co

m
e

is
 a

 1

x

.

.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

ta
rg

et
s

fo
r

tr
ad

iti
on

al
 S

S
E

x

.

.

0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 0 0 0 1 1 0 1 1 1 1 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

ta
rg

et
s

fo
r

be
st

 r
an

k

x

.

.

0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 0 0 0 1 1 1 1 1 1 1 1

Figure 2: SSE on 0/1 Targets and on Ranks for a Simple Probability Function

Backprop learns a very nonlinear function if trained on Figure 2.2. This is unfor-

tunate: Figure 2.1 is smooth and maps similar inputs to similar outputs. If the

goal is to learn to rank the data, we can learn a simpler, less nonlinear function

instead. There exists a ranking of the training data such that if the ranks are used

as backprop target values, the resulting function is less nonlinear than the original

target function. Figure 2.3 shows these target rank values. Similar input patterns

have more similar rank target values than the original target values.

Rankprop tries to learn simple functions that directly support ranking. One di�-

culty with this is that rankprop must learn a ranking of the training data while also

training the model to predict ranks. We do not yet know under what conditions this

parallel search will converge. We conjecture that when rankprop does converge, it

will often be to simpler models than it would have learned from the original target

values (0/1 in Medis), and that these simpler models will often generalize better.

7.2 Other Applications of Rankprop and Learning From the Future

Rankprop is applicable wherever a relative assessment is more useful or more learn-

able than an absolute one. One application is domains where quantitative mea-

surements are not available, but relative ones are[8]. For example, a game player

might not be able to evaluate moves quantitatively , but might excel at relative

move evaluation[10]. Another application is where the goal is to learn to order data

drawn from a probability distribution, as in medical risk prediction. But it can also

be applied wherever the goal is to order data. For example, in information �ltering

it is usually important to present more useful information to the user �rst, not to

predict how important each is[5].

MTL is a general method for using related tasks. Here the extra MTL tasks are

future measurements. Future measurements are available in many o�ine learning

problems where there is opportunity to collect the measurements for the training

set. For example, a robot or autonomous vehicle can more accurately measure the

size, location, and identity of objects when it passes near them|road stripes can be

detected reliably as a vehicle passes alongside them, but detecting them far ahead of

a vehicle is hard. Since driving brings future road into the car's present, stripes can

be measured accurately when passed and used as extra features in the training set.

They can't be used as inputs for learning to drive because they will not be available

until too late when driving. As MTL outputs, though, they provide information

that improves learning without requiring they be available at run time[2].

8 Summary

This paper presents two methods that can improve generalization on a broad class

of problems. This class includes identifying low risk pneumonia patients. The

�rst method, rankprop, tries to learn simple models that support ranking future

cases while simultaneously learning to rank the training set. The second, multitask

learning, uses lab tests available only during training, as additional target values to

bias learning towards a more predictive hidden layer. Experiments using a database

of pneumonia patients indicate that together these methods outperform standard

backpropagation by 10-50%. Rankprop and MTL are applicable to a large class of

problems in which the goal is to learn a relative ranking over the instance space,

and where the training data includes features that will not be available at run

time. Such problems include identifying higher-risk medical patients as early as

possible, identifying lower-risk �nancial investments, and visual analysis of scenes

that become easier to analyze as they are approached in the future.

Acknowledgements

We thank Greg Cooper, Michael Fine, and other members of the Pitt/CMU Cost-E�ective

Health Care group for help with the Medis Database. This work was supported by ARPA

grant F33615-93-1-1330, NSF grant BES-9315428, Agency for Health Care Policy and

Research grant HS06468, and an NSF Graduate Student Fellowship (Baluja).

References

[1] Y.S. Abu-Mostafa, \Learning From Hints in Neural Networks," Journal of Complexity

6:2, pp. 192-198, 1989.

[2] R. Caruana, \Learning Many Related Tasks at the Same Time With Backpropaga-

tion," Advances in Neural Information Processing Systems 7, pp. 656-664, 1995.

[3] R. Caruana, \Multitask Learning: A Knowledge-Based Source of Inductive Bias,"

Proceedings of the 10th International Conference on Machine Learning, pp. 41-48,

1993.

[4] G. Cooper, et al., \An Evaluation of Machine Learning Methods for Predicting Pneu-

monia Mortality," submitted to AI in Medicine, 1995.

[5] K. Lang, \NewsWeeder: Learning to Filter News," Proceedings of the 12th Interna-

tional Conference on Machine Learning, pp. 331-339, 1995.

[6] M. Fine, D. Singer, B. Hanusa, J. Lave, and W. Kapoor, \Validation of a Pneumonia

Prognostic Index Using the MedisGroups Comparative Hospital Database," American

Journal of Medicine, 94 1993.

[7] I. Davis and A. Stentz, \Sensor Fusion For Autonomous Outdoor Navigation Using

Neural Networks," Proceedings of IEEE's Intelligent Robots and Systems Conference,

1995.

[8] G.T. Hsu, and R. Simmons, \Learning Footfall Evaluation for a Walking Robot,"

Proceedings of the 8th International Conference on Machine Learning, pp. 303-307,

1991.

[9] S.C. Suddarth and A.D.C. Holden, \Symbolic-neural Systems and the Use of Hints for

Developing Complex Systems," International Journal of Man-Machine Studies 35:3,

pp. 291-311, 1991.

[10] P. Utgo� and S. Saxena, \Learning a Preference Predicate," Proceedings of the 4th

International Conference on Machine Learning, pp. 115-121, 1987.

