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Abstract. After training statistical models to classify sets of data into

predetermined classes, it is often di�cult to interpret what the models

have learned. This paper presents a novel approach for �nding examples

which lie on the decision boundaries of statistical models trained for

classi�cation. These examples provide insight into what the model has

learned. Additionally, they can provide candidates for use as additional

training data for improving the performance of the statistical models. By

labeling the examples which lie on the decision boundaries, we provide

information to the model in the regions in which it is most uncertain. The

approaches presented in this paper are demonstrated on the real-world

vision-based task of detecting faces in cluttered scenes.

1 Introduction

After training statistical models, such as arti�cial neural networks or decision

trees, to classify a set of data into predetermined classes, it is often di�cult to

interpret what the models have learned. However, knowing how a model makes

its decisions and which features it considers salient not only provides insights

into what the model encodes, but also provides guidelines on how to improve the

model's performance. In this paper, we present a novel technique to e�ciently

�nd examples which lie on the decision boundaries of learned models. We also

show how these examples can be used for continuing the training of the models.

To demonstrate the techniques, we explore the task of face detection in clut-

tered scenes. The system used in this study is based upon the neural network-

based system described in [7]. This task is chosen because (1) after the face

detection networks are trained, we would like to understand what features they

encode; (2) training the networks is a very slow process because �nding good

training examples is di�cult. Both of these problems can be addressed with the

methods described in this paper.

The next section describes the face detection system. Section 3 describes the

techniques for �nding examples on the decision boundaries. Section 4 shows how

these examples can be used for continuing the model's training. Finally, Section 5

closes this paper with conclusions and directions for future research.



2 A Face Detection System

The system employed in this study is based on the neural network-based system

presented in [7]. A neural network is used as a �lter that receives as input a

20x20 pixel region of the image, and generates an output ranging from 1 to

-1, signifying the presence or absence of a face, respectively. To detect faces

anywhere in an image, the �lter is applied at every location in the image. To

detect faces larger than the window size, the input image is repeatedly reduced

in size (by subsampling), and the �lter is applied at each size. For the work

presented here, we apply the �lter at every pixel position in the image, and

scale the image down by a factor of 1.2 for each step in the pyramid; this is the

approach used in [7]

The �ltering algorithm is shown in Fig. 1. First, a preprocessing step, of

histogram equalization and lighting correction (see [7, 8]) is applied to each win-

dow of the image. These steps help account for lighting variation and expand the

range of intensities in the window. This compensates for di�erences in camera

input gains, in addition to improving contrast in some cases.
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Fig. 1. The Face Detection System, based on [7]

The preprocessed window is then passed through a neural network (NN). The

architecture of the NN is shown in the right half of Fig. 1. There are three types

of hidden units: 4 which look at 10x10 pixel subregions, 16 which look at 5x5

pixel subregions, and 6 which look at overlapping 5x20 pixel horizontal stripes

of pixels. More details about the architecture and motivations for its use can

be found in [7]. The network has a single, real-valued output, which indicates

whether or not the window contains a face.

To train the neural network to serve as an accurate �lter, a large number of

face and non-face images are needed. Nearly 1050 face examples were gathered.

The images contained faces of various sizes, orientations, positions, and intensi-

ties. The eyes, tip of nose, and corners and center of the mouth of each face were

labelled manually. These points were used to normalize each face to the same

scale, orientation, and position [7]. Fifteen face examples are generated for the

training set from each original image, by randomly rotating the images (about

their center points) up to 10

�

, scaling between 90% and 110%, translating up to

half a pixel, and mirroring. Each 20x20 window in the set is then preprocessed



(by applying histogram equalization and lighting correction). A few example

images are shown in Fig. 2.

Fig. 2. Example face images, randomly mirrored, rotated, translated, and scaled by

small amounts.

Practically any image can serve as a non-face example because the space of

non-face images is much larger than the space of face images. However, collecting

a \representative" set of non-faces is di�cult. Instead of collecting the images

before training is started, the images are collected during training in the following

manner, adapted from [8, 5]:

1. Create an initial set of non-face images by generating 1000 random images.

Apply the preprocessing steps to each of these images.

2. Train a neural network to produce an output of 1 for the face examples,

and -1 for the non-face examples. The training algorithm is standard error

backpropagation with momentum [6]. On the �rst iteration of this loop, the

network's weights are initially random. After the �rst iteration, we use the

weights computed by training in the previous iteration as the starting point.

3. Run the system on an image of scenery which contains no faces. Collect

subimages in which the network incorrectly identi�es a face (an output ac-

tivation � 0).

4. Select up to 1000 of these subimages at random, apply the preprocessing

steps, and add them into the training set as negative examples. Go to step 2.

Some examples of non-faces that are collected during training are shown in

Fig. 3. Note that some of the examples resemble faces. The presence of these

examples forces the neural network to learn a sharp boundary between face

and non-face images. For the networks trained in this study, we used a set of

285 images of scenery for collecting negative examples in the bootstrap manner

described above. A typical training run selects approximately 10,000 non-face

images from the approximately 200,000,000 subimages that are available at all

locations and scales in the training scenery images.

The results for the networks used in this study are comparable to those used

in [7]. The networks were tested on a large set of images

3

. Two networks were

trained, starting with random initial weights. The performance of these networks

is given in Table 1.

3

The test images are available from http://www.cs.cmu.edu/~har/faces.html



Fig. 3. During training, the partially-trained system is applied to images of scenery

which do not contain faces (left). Any windows in the image detected as faces (expanded

on the right) are errors, which can be added into the set of negative training examples.

Table 1. Detection and error rates for a test set which consists of 130 images and

contains 507 frontal faces. It requires the system to examine a total of 83,099,211

20x20 pixel windows. Two independent networks are trained.

Number Faces Missed Detection Rate False Positives False Positive Rate

Network 1 45/507 91.1% 829 1/100240

Network 2 51/507 89.9% 693 1/136294

3 Finding Uncertain Examples

In the previous section, we described the training algorithm for the face detection

networks. To �nd negative training examples (examples which represent \non-

faces"), the network is scanned over scenery images which are known to contain

no faces. Any location where the network detects a face is labeled as a negative

example, and added to the training set. Although this is an e�ective procedure

for �nding negative examples, it is extremely slow. As the network is trained,

the number of examples that must be seen before a single negative example is

found rapidly increases. As can be seen in Fig. 4, after the network is trained

from the examples from only a few of the initial scenery images, often more than

10

5

examples must be seen before a single false-positive is found.

The same method that is used to �nd false-positives can be used to �nd

examples for which the network is most uncertain. Uncertainty is de�ned in

terms of the network's output. The network's output is a real-value between �1

(indicating non-face) and +1 (indicating face); therefore, an input which gives an

output near 0.0 indicates the network is uncertain of the classi�cation. Finding

input examples for which the network is uncertain is useful for two reasons. First,

these examples provide samples on the decision boundaries; they reveal where

the network does not perform well. Second, once labeled, these examples can

be used for continuing training since it is known that the network is uncertain

about their classi�cation. This is a form of active learning, in which the learner

requests information about uncertain points [1, 4].

There are at least three methods by which the uncertain examples can be

found. First, similarly to the training procedure, the network can be serially
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Fig. 4. The number of examples which must be examined before a single false positive

(negative example) is added into the training set. X Axis: Scenery image presentation.

Y Axis: Number of 20x20 windows examined.

scanned over scenery images until an input window is found for which the net-

work outputs a value of 0.0. As described above, this method is extremely slow.

A second procedure is to use a backpropagation gradient descent procedure

similar to that used for training neural networks; a cursory overview is given here.

Given a 20x20 image of random pixel values as input, a forward pass of the input

to the output is done (as in the standard backpropagation algorithm). If this

output does not match the target (of 0.0), an error is passed back to the hidden

units and then to the input layer. However, instead of using this error to update

the network's weights, as would be done with the standard backpropagation

algorithm, the values of the inputs are updated. Given a network in which the

weights are frozen, this will move the inputs towards values that will reveal a

network output of 0.0. This method has successfully been used to �nd inputs

which the network maps to output of 0.0. However, the drawback to this method

is that the resulting inputs can lie in a subspace that will never be encountered

by the face detector network when used on real images. The reason for this

is that the face detector system uses pre-processing steps, such as histogram

equalization and lighting correction, which place all inputs in a limited subspace

of possible inputs. Therefore, using this method to obtain inputs which the

network maps to a value of 0.0 may not give a meaningful representation of

the decision boundaries since the resulting inputs may violate invariants which

are created by the pre-processing methods. In order to get meaningful samples,

the pre-processing step must be accounted for when new inputs are found. It is

di�cult to account for the constraints and the non-linearities of the preprocessing

steps in the backpropagation procedure.

The third approach is to use stochastic search techniques to �nd 20x20 im-

ages that the network maps to an output value of 0.0. However, two issues must

still be resolved: the �rst is how to stay within the subspace of valid images, and

the second is how to evaluate each image. To evaluate a new image, termed X ,

it is �rst projected into the space of valid images. This is done by applying all

of the pre-processing steps used in training the face detection networks, yield-



ing an image X

0

. X

0

is used as input into the trained network, and a forward

propagation step is done, yielding the network's output, NN(X

0

). The di�er-

ence between NN(X

0

) and the target output (0.0) is calculated. The larger the

di�erence, the lower the evaluation of the image. Once an example is found for

which the network outputs a value of 0.0, X

0

is returned. Given this evaluation

procedure, which ensures that the evaluation is based on the mapping of the

image to a valid subspace, we now describe the search procedures used.

3.1 An Optimization Approach to Finding Uncertain Examples

The search for an input image for which the trained network outputs a value of

0.0 is formulated as a combinatorial search problem. Three stochastic search pro-

cedures were examined: random mutation stochastic hill-climbing, population-

based incremental learning (PBIL) [2], and genetic algorithms. A brief descrip-

tion of each is given below.

Rather than initializing the search algorithms randomly, all of the search tech-

niques examined improved performance by being initialized with false-positives

that were found through the neural-network training procedure (such as those

found in Figure 3). For random mutation hill-climbing, this initialization meant

that the starting point was an example selected from the set of negative ex-

amples in the training set. The hill-climbing procedure then stochastically per-

turbed pixels in the example (magnitude changes of up to 70% were allowed).

The solution was evaluated as described previously (by performing the appro-

priate pre-processing, and then using it as input to the trained neural network

and measuring the output). Moves to better or equal states were accepted. Af-

ter 1000 consecutive non-accepted moves, the hill-climbing was restarted with

another randomly selected image from the set of negative examples.

A complete description of the PBIL algorithm is beyond the scope of this

paper; however, some of the basics can be found in [2]. In a manner similar to

the hill-climbing procedure, a single image was used to initialize the search. A

binary modi�cation vector was created. The vector speci�ed an amount to scale

each pixel in the image. Each variable in this vector was represented with 5 bits.

After applying the modi�cation vector to the image, the image was pre-processed

and used as input to the network. Compared to previous implementations of

PBIL, the learning rate was set higher than normal (0.3), with a population

size of 100. Additionally, whenever a new modi�cation vector was created that

performed better than any seen earlier, it was immediately used to update PBIL's

probability vector.

Two modi�cations are made to the standard genetic algorithm to customize

it for this domain. The �rst is the selection of the initial population. In many

standard genetic algorithms, the initial population is selected randomly from

the uniform distribution. However, using this initialization, �nding even a single

example which the network mapped to a value of 0.0 proved to be extremely slow.

This is not surprising since the trained network already discriminates between

faces and non-faces quite well (as described in Section 2). Therefore, there may

be relatively few images, with respect to the possible images in the manifold

spanned by images which have been appropriately pre-processed, which cause



a trained network to output a positive response. To alleviate this problem, the

population was initialized with examples chosen from the set of 20x20 windows

which were used as negative examples (these were the examples gathered as

false positives during the training procedure described in Section 2). Since these

images were in the training set, it is unlikely that these images will themselves

cause the network to output a value of 0.0; however, the hope is that the GA

will �nd combinations of these images that will.

The second modi�cation to the standard GA is in the crossover operator.

One-point and two-point recombination operators are designed to exploit locality

in typical one-dimensional parameter encodings. We use an analogous operator

for two-dimensional images. Two points, (X1,Y1) and (X2,Y2), are randomly

chosen. The rectangle de�ned by these two points is the area that is swapped

between the parents. See Fig. 3.1 for an example. [3] provides a discussion of

two-dimensional crossover operators.

 Parents  Children

A A

B B

Fig. 5. 2D-Crossover.

With these two modi�cations, a standard steady-state genetic algorithm [9]

was used with �tness proportional selection. It was empirically found that no

mutation operator was required. A population size of 50 was used. By using this

initialization procedure and this crossover operator, the number of evaluations

required to �nd an image which the network mapped to an output of 0.0 was

approximately 600, on average.

In the experiments performed, the genetic algorithm found the target in ap-

proximately 7-10% fewer evaluations than hill-climbing. PBIL, with the high

learning rate, was able to �nd solutions approximately 20-30% faster than the

GAs. However, due to the computational expense, only a few experiments were

tried. Further experimentation should be conducted to fully understand the ben-

e�ts of one method over another.

Some of the results of the search procedure are shown in Fig. 6. Note that

the 60 images shown were found in a total of approximately 36,000 evaluations

(forward passes through the network). In contrast, recall that when using the

standard training procedure described in Section 2, by the end of training, it

often took between 100,000 to 1,000,000 evaluations to �nd a single false-positive

(see Fig. 4) by serially scanning over scenery images.

As can be seen from the images in Fig. 6, many of the images have dark

patches where eyes would be located. The cheek, mouth, and nose areas are

more variable. This indicates that the network is more sensitive to the presence

of eyes than to the presence of the other features. This has been empirically



Fig. 6. 60 20x20 typical images obtained by the optimization procedures. A trained face

detection neural network outputs a value close to 0.0 for each of the images, indicating

that it is uncertain of their classi�cation (face or non-face).

veri�ed in other studies [7].

4 Using Uncertain Examples for Training

Despite the \eye-features" in some of the images in Fig. 6, when compared to

the images of actual faces (see Fig. 2), it is clear that many of these images

can be labeled as negative examples and then added into the training set for

continued training. However, a few of the images look su�ciently close to faces

that using them as examples of non-faces may confuse the network. Rather than

using all of the found examples for training (as negative examples), we can select

only those which are most unlike faces. To determine similarity to face examples,

we measure the distance of each image to each of the known positive training

examples (examples of which are shown in Fig. 2). Note that similarity between

two examples is measured simply by the summed absolute di�erence between

corresponding pixels. Alternatively, instead of �nding images which are \far"

from labeled face examples, we can �nd images which are \close" to labeled

non-face examples. We can measure the distance of each image to each of the

negative training examples (the type shown in Fig. 3). This last measure also

has the bene�t of selecting images which are similar to those that will be seen

in real images, since the negative examples were selected from real images.

Both of these orderings are valid for the task. The ordering used is a com-

bination of both. The �rst ordering ranks how similar each image is to the face

examples; the least similar is given the smallest rank and the most similar is

given the largest rank. The second ordering, ranks how similar the images are

to the non-face examples; here, the most similar is given the smallest rank and

the least similar the largest rank. The images with the smallest summed rank are

used for training, see Fig. 7.

Table 2 shows the results of continuing the training of the network with

the extra examples. We compare the performance to the original network by

adjusting the detection threshold to give the same detection rates, and then



Fig. 7. Combined ordering of 30 20x20 images, each image was classi�ed as a face by

the network. Top-Left: smallest combined rank.

examining the number of false positives. The last column in the table shows the

improvement (in terms of the reduction in the number of false positives) over

the original network. For each network, 10,000 new examples were generated as

described in this paper. The top N% were used for training after sorting them

according to the combined metric described in the previous paragraph. The table

shows the results of varying N . The same test set described in Table 1 is used.

Table 2. Results after training with found examples. Note the improvements in per-

formance with respect to the original networks described in Table 1. Unfortunately,

performance improvements do not always scale with the amount of extra training data.

N Faces Missed Detect Rate False Pos. False Pos. Rate % Improvement

Network 1 0.5% 45/507 91.1% 789 1/105322 4.8%

Network 1 2% 45/507 91.1% 769 1/108061 7.2%

Network 1 10% 45/507 91.1% 717 1/115898 13.5%

Network 2 0.5% 51/507 89.9% 643 1/146893 7.2%

Network 2 2% 51/507 89.9% 684 1/138088 1.2%

Network 2 10% 51/507 89.9% 640 1/147581 7.6%

5 Conclusions and Future Research

This paper has demonstrated an e�cient and e�ective method for �nding ex-

amples which lie on the decision boundaries of learned classi�cation models.

Although demonstrated with neural networks, the techniques are general, and

can be used with any type of statistical model. The found examples represent

the areas in which the model is uncertain; therefore, with labels, they may be

used to provide useful information to the learner. In the domain of face detec-

tion, we were able to improve the performance of state-of-the-art models using

the examples to continue training.

In order for this method to be successfully applied to a new domain, there

must either be a procedure to search only in the space of meaningful examples,

or to map all inputs into this range. For example, if it is known that all of the

expected input examples span only a small range of all possible inputs, �nding

uncertain examples outside of this range is not useful, since they may never be

encountered in practice. In the face detection domain, this problem was allevi-

ated by beginning the search for uncertain examples from examples which had

been encountered by the system, and ensuring that all of the generated inputs

matched the constraints of inputs which would be seen in practice. For exam-

ple, all of the images found by the search heuristics are deemed uncertain by



the network after being pre-processed with histogram-equalization and lighting

correction. Therefore, these examples meet the constraints which would be main-

tained in all of the false-positive images found by the system through serially

scanning over the non-face training images. Further, by using the sorting metrics

to select uncertain images that are most like the false positives found from the

serial scanning procedure, we help to ensure that these images provide a training

signal that helps the classi�cation performance of the network when tested on

real images.

There are at least two immediate directions for future research. The �rst is

to combine the ranking procedures described in Section 4 with the evaluation

function used for search. By modifying the evaluation function to include extra

terms, it should be possible to search for examples which the network not only

maps to a value close to 0.0, but are also dissimilar to known faces, and similar to

known non-faces. One method for implementing this may be to penalize solutions

which are distant from the negative examples in the training set; this will ensure

that the examples found are close to those that are encountered in practice.

Second, it will be interesting to determine the extent that it is possible to repeat

the entire training process. For example, after training on examples for which

the network is uncertain, it should be possible to �nd the examples which the

newly trained model is uncertain, and repeat the training process.
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