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Abstract 
In many vision based tasks, the ability to focus attention on the important 
portions of a scene is crucial for good performance on the tasks. In this paper 
we present a simple method of achieving spatial selective attention through 
the use of a saliency map. The saliency map indicates which regions of the 
input retina are important for performing the task. The saliency map is cre- 
ated through predictive autoencoding. The performance of this method is 
demonstrated on two simple tasks which have multiple very strong distract- 
ing features in the input retina. Architectural extensions and application 
directions for this model are presented. 

1 MOTIVATION 

Many real world tasks have the property that only a small fraction of the available input is 
important at any particular time. On some tasks this extra input can easily be ignored. 
Nonetheless, often the similarity between the important input features and the irrelevant 
features is great enough to interfere with task performance. ' h o  examples of this phenom- 
ena are the famous "cocktail party effect", otherwise known as speech recognition in a 
noisy environment, and image processing of a cluttered scene. In both cases, the extrane- 
ous information in the input signal can be easily confused with the important features, 
making the task much more difficult. 
The concrete real world task which motivates this work is vision-based road following. In 
this domain, the goal is to control a robot vehicle by analyzing the scene ahead, and choos- 
ing a direction to travel based on the location of important features like lane marking and 
road edges. This is a difficult task, since the scene ahead is often cluttered with extraneous 
features such as other vehicle, pedestrians, trees, guardrails, crosswalks, road signs and 
many other objects that can appear on or around a roadway. While we have had signifi- 
cant success on the road following task using simple feed-forward neural networks to 
transform images of the road ahead into steering commands for the vehicle [Pomerleau, 
1993b], these methods fail when presented with cluttered environments like those encoun- 

1 .  For the general task of autonomous navigation, these extra features are extremely important, but for 
restricted task of road following, which is the focus of this paper, these features are merely distractions. 
Although we are addressing the more general task using the techniques described here in combination with 
other methods, a description of these efforts is beyond the scope of this paper. 
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tered when driving in heavy traffic, or on city streets. 
The obvious solution to this difficulty is to focus the attention of the processing system on 
only the relevant features by masking out the “noise”. Because of the high degree of simi- 
larity between the relevant features and the noise, this filtering is often extremely difficult. 
Simultaneously learning to perform a task like road following and filtering out clutter in a 
scene is doubly difficult because of a chicken-and-egg problem. It is hard to learn which 
features to attend to before knowing how to perform the task, and it is hard to learn how to 
perform the task before knowing which features to attend to. 
This paper describes a technique designed to solve this problem. It involves deriving a 
“saliency map” of the image from a neural network’s internal representation which high- 
lights regions of the scene considered to be important. This saliency map is used as feed- 
back to focus the attention of’the network’s processing on subsequent images. This 
technique overcomes the chicken-and-egg problem by simultaneously learning to identify 
which aspects of the scene are important, and how to use them to perform a task. 

2 THE SALIENCY MAP 

A saliency map is designed to indicate which portions of the image are important for com- 
pleting the required task. The trained network should be able to accomplish two goals with 
the presentation of each image. The first is to perform the given task using the inputs and 
the saliency map derived from the previous image, and the second is to predict the salient 
portions of the next image. 

2.1 Implementation 

The creation of the saliency map is similar to the technique of Input Reconstruction Reli- 
ability Esrimarion (IRRE) by [Pomerleau, 19931. IRRE attempts to predict the reliability 
of a network‘s output. The prediction is made by reconstructing the input image from lin- 
ear transformations of the activations in the hidden layer, and comparing it with the actual 
image. IRRE works on the premise that the greater the similarity between the input image 
and the reconstructed input image, the more the internal representation has captured the 
important input features, and therefore the more reliable the network’s response. 
A similar method to IRRE can be used to create a saliency map. The saliency map should 
be determined by the important features in the current image for the task to be performed. 
Because compressed representations of the important features in the current image are 
represented in the activations of the hidden units, the saliency map is derived from these, 
as shown in Figure 1. It should be noted that the hidden units, from which the saliency 
map is derived, do not necessarily contain information similar to principal components (as 
is achieved through auto-encoder networks), as the relevant task may only require infor- 
mation on a small portion of the image. In the simple architecture depicted in Figure 1, the 
internal representation must contain information which can be transformed by a single 
layer of adjustable weights into a saliency map for the next image. If such a transforma- 
tion is not possible, separate hidden layers, with input from the task-specific internal rep- 
resentations could be employed to create the saliency map. 
The saliency map is trained by using the next image, of a time-sequential data set, as the 
target image for the prediction, and applying standard error backpropagation on the differ- 
ences between the next image and the predicted next image. The weights from the hidden 
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units to the saliency map are adjusted using standard backpropagation, but the error terms 
are not propagated to the weights from the inputs to the hidden units. This ensures that the 
hidden representation developed by the network is determined only by the target task, and 
not by the task of prediction. 
In the implementation used here, the feedback is to the input layer. The saliency map is 
created to either be the same size as the input layer, or is scaled to the same size, so that it 
can influence the representation in a straight-forward manner. The saliency map’s values 
are scaled between 0.0 and 1.0, where 1.0 represents the areas in which the prediction 
matched the next image exactly. The value of 1 .O does not alter the activation of the input 
unit, a value of 0.0 turns off the activation. The exact construction of the saliency map is 
described in the next section, with the description of the experiments. The entire network 
is trained by standard backpropagation; in the experiments presented, no modifications to 
the standard training algorithm were needed to account for the feedback connections. 
The training process for prediction is complicated by the potential presence of noise in the 
next image. The saliency map cannot “reconstruct” the noise in the next image, because it 
can only construct the portions of the next image which can be derived from the activation 
of the hidden units, which are task-specific. Therefore, the noise in the next image will not 
be constructed, and thereby will be de-emphasized in the next time step by the saliency 
map. The saliency map serves as a filter, which channels the processing to the important 
portions of the scene [Mozer, 19881. One of the key differences between the filtering 
employed in this study, and that used in other focus of attention systems, is that this filter- 
ing is based on expectations from multiple frames, rather than on the retinal activations 
from a single frame. An alternative neural model of visual attention which was explored 
by [Olshausen et al., 19921 achieved focus of attention in single frames by using control 
neurons to dynamically modify synaptic strengths. 
The saliency map may be used in two ways. It can either be used to highlight portions of 
the input retina or, when the hidden layer is connected in a retinal fashion using weight 
sharing, as in [LeCun et al., 19901, it can be used to highlight important spatial locations 
within the hidden layer itself. The difference is between highlighting individual pixels 
from which the features are developed or highlighting developed features. Discussion of 
the psychological evidence for both of these types of highlighting (in single-frame retinal 
activation based context), is given in Pashler and Badgio, 19851. 
This network architecture shares several characteristics with a Jordan-style recurrent net- 
work [Jordan, 19861, in which the output from the network is used to influence the pro- 



cesiag of subsequent input patterns in a temporal sequence. One important distinction is 
that the feedback in this architecture is spatially constrained. The saliency map represents 
the importance of local patches of the input, and can influence only the network’s process- 
ing of corresponding regions of the input. The second distinction is that the outputs are not 
general task outputs, rather they are specially constructed to predict the next image. The 
third distinction is in the form of this influence. Instead of treating the feedback as addi- 
tional input units, which contribute to the weighted sum for the network’s hidden units, 
this architecture uses the saliency map as a gating mechanism, suppressing or emphasiz- 
ing the processing of various regions of the layer to which it is fed-back. In some respects, 
the influence of the saliency map is comparable to the gating network in the mixture of 
experts architecture [Jacobs et al., 19911. Instead of gating between the outputs of multiple 
expert networks, in this architectjire the saliency map is used to gate the activations of the 
input units within the same network. 

3 THEEXPERIMENTS 

In order to study the feasibility of the saliency map without introducing other extraneous 
factors, we have conducted experiments with two simple tasks described below. Exten- 
sions of these ideas to larger problems are discussed in sections 4 & 5.  The first experi- 
ment is representative of a typical machine vision task, in which the relevant features 
move very little in consecutive frames. With the method used here, the relevant features 
are automatically determined and tracked. However, if the relevant features were known a 
priori, a more traditional vision feature tracker which begins the search for features within 
the vicinity of the location of the features in the previous frame, could also perform well. 
The second task is one in which the feature of interest moves in a discontinuous manner. A 
traditional feature tracker without exact knowledge the feature’s transition rules would be 
unable to track this feature, in the presence of the noise introduced. The transition rules of 
the feature of interest are learned automatically through the use of the saliency map. 
In the first task, there is a slightly tilted vertical line of high activation in a 30x32 input 
unit grid. The width of the line is approximately 9 units, with the activation decaying with 
distance from the center of the line. The rest of the image does not have any activation. 
The task is to center a gaussian of activation around the center of the x-intercept of the 
line, 5 pixels above the top of the image. The output layer contains 50 units. In consecu- 
tive images, the line can have a small translational move andor a small rotational move. 
Sample training examples are given in Figure 2. This task can be easily learned in the 
presence of no noise. The task is made much harder when lines, which have the same 
visual appearance as the real line (in everything except for location and tilt) randomly 
appear in the image. In this case, it is vital that the network is able to distinguish between 
the real line and noise line by using information gathered from previous image(s). 
In the second task, a cross (“+”) of size 5x5 appears in a 20x20 grid. There are 16 posi- 
tions in which the cross can appear, as shown in Figure 2c. The locations in which the 
cross appears is set according to the transition rules shown in Figure 2c. The object of this 
problem is to reproduce the cross in a smaller 10x10 grid, with the edges of the cross 
extended to the edges of the grid, as shown in Figure 2b. The task is complicated by the 
presence of randomly appearing noise. The noise is in the form of another cross which 
appears exactly similar to the cross of interest. Again, in this task, it is vital for the net- 
work to be able to distinguish between the real cross, and crosses which appear as noise. 
As in the first task, this is only possible with knowledge of the previous image(s). 
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Figure 2: (A) The first task. image (AI) with no distractions, image (A2) with one distracting feature. (B) 
The second task, image (Bl) with no distractions, image (B2) with two distractions. (C) Transition rules 
for the second task. 

3.1 Results 

The two problems described above were attempted with networks trained both with and 
without noise. Each of the training sessions were also tested with and without the saliency 
map. Each type of network was trained for the same number of pattern presentations with 
the same training examples. The results are shown in Table 1. The results reported in 
Table I represent the error accrued over l0,OOO testing examples. For task 1, errors are 
reported in terms of the absolute difference between the peak’s of the Gaussians produced 
in the output layer, summed for all of the testing examples (the max error per image is 49). 
In task 2, the errors are the sum of the absolute difference between the network’s output 
and the target output, summed across all of the outputs and all of the testing examples. 
When noise was added to the examples, it was added in the following manner (for both 
training and testing sets): In task 1, ‘1 noise’ guarantees a noise element, similarly, ‘2 
noise’ guarantees two noise elements. However, in task 2, ‘1 noise’ means that there is a 
50% chance of a noise element occurring in the image, ‘2 noise’ means that there is a 50% 
chance of another noise element occuning, independently of the appearance of the first 
noise element. The positions of the noise elements are determined randomly. 
The best performance, in task 1, came from the cases in which there was no noise in test- 
ing or training, and no saliency map was used. This is expected, as t h i s  task is not difficult 
when no noise is present. Surprisingly, in task 2, the best case was found with the saliency 
map, when training with noise and testing without noise. This performed even better than 
training without noise. Investigation into t h i s  result is currently underway. 
In task 1, when training and testing without noise, the saliency map can hurt performance. 
If the predictions made by the saliency map are not correct, the inputs appear slightly dis- 
torted; therefore, the task to be learned by the network becomes more difficult. Neverthe- 
less, the benefit of using a saliency map is apparent when the test set contains noise. 
In task 2, the network without the saliency map, trained with noise, and tested without 
noise cannot perform well; the performance further suffers when noise is introduced into 
the testing set. The noise in the training prevents accurate learning. This is not the case 
when the saliency map is used (Table 1, task 2). When the training set contains noise, the 
network with the saliency map works better when tested with and without noise. 



'IBble 1: Summed Error of l0,OOO Testing Examples 

T h i n g  Set 

Testing Set 

Task 1 I Task 2 

When the noise increased beyond the level of training, to 2 noise elements per image, the 
performances of networks trained both with and without the saliency map declined. It is 
suspected that training the networks with increased noise will improve performance in the 
network trained with the saliency map. Nonetheless, due to the amount of noise compared 
to the small size of the input layer, improvements in results may not be dramatic. 
In Figure 3, a typical test run of the second task is shown. In the figure, the inputs, the pre- 
dicted and actual outputs, and the predicted and actual saliency maps, are shown. The 
actual saliency map is just a smaller version of the unfiltered next input image. The input 
size is 20x20, the outputs are 10x10, and the saliency map is 10x10. The saliency map is 
scaled to 20x20 when it is applied to the next inputs. Note that in the inputs to the net- 
work, one cross appears much brighter than the other; this is due to the suppression of the 
distracting cross by the saliency map. The particular use of the saliency map which is 
employed in this study, proceeded as follows: the difference between the saliency map 
(derived from input imagei) and the input imagq+l was calculated. This difference image 
was scaled to the range of 0.0 to 1 .O. Each pixel was then passed through a sigmoid; alter- 
natively, a hard-step function could have been used. This is the saliency map. The saliency 
map was multiplied by input imagei+l; this was used as the input into the network. If the 
sigmoid is not used, features, such as incomplete crosses, sometimes appear in the input 
image. This happens because different portions of the cross may have slightly different 
saliency values associated with them d u e  to errors in prediction coupled with the scaling 
of the saliency map. Although the sigmoid helps to alleviate the problem, it does not elim- 
inate it. This explains why training with no noise with a saliency map sometimes does not 
perform as well as training without a saliency map. 

4 ALTERNATIVE IMPLEMENTATIONS 
An alternative method of implementing the saliency map is with standard additive connec- 
tions. However, these connection types have several drawbacks in comparison with the 
multiplicative ones use in this study. First, the additive connections can drastically change 
the meaning of the hidden unit's activation by changing the sign of the activation. The 
saliency map is designed to indicate which regions are important for accomplishing the 
task based upon the features in the hidden representations; as little alteration of the impor- 
tant features as possible is desired. Second, if the saliency map is incorrect, and suggests 
an area of which is not actually important, the additive connections will cause 'ghost' 
images to appear. These are activations which are caused only by the influence of the addi- 
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Figure 3: A typical sequence of inputs and outputs in the second task. Note that when two crosses are 

tive saliency map. The multiplicative saliency map, as is implemented here, does not have 
either of these problems. 
A second alternative, which is more closely related to a standard recurrent network [Jor- 
dan, 19861, is to use the saliency map as extra inputs into the network. The extra inputs 
serve to indicate the regions which are expected to be important. Rather than hand-coding 
the method to represent the importance of the regions to the network, as was done in this 
study, the network learns to use the extra inputs when necessary. Further, the saliency map 
serves as the predicted next input. This is especially useful when the features of interest 
may have momentarily been partially obscured or have entirely disappeared from the 
image. This implementation is currently being explored by the authors for use in a autono- 
mous road lane-tracking system in which the lane markers are not always present in the 
input image. 

5 CONCLUSIONS & FUTURE DIRECTIONS 
These experiments have demonstrated that an artificial neural network can learn to both 
identify the portions of a visual scene which are important, and to use these important fea- 
tures to perform a task. The selective attention architecture we have develop uses two sim- 
ple mechanisms, predictive auto-encoding to form a saliency map, and a constrained form 
of feedback to allow this saliency map to focus processing in the subsequent image. 
There are at least four broad directions in which this research should be extended. The first 
is, as described here, related to using the saliency map as a method for automatically 
actively focusing attention to important portions of the scene. Because of the spatial 
dependence of the task described in this paper, with the appropriate transformations, the 
output units could be directly fed back to the input layer to indicate saliency. Although this 
does not weaken the result, in terms of the benefit of using a saliency map, future work 
should also focus on problems which do not have this property to determine how easily a 
saliency map can be consmcted. Will the use of weight sharing be enough to develop the 
necessary spatially oriented feature detectors? Harder problems are those with target tasks 
which does not explicitly contain spatial saliency information. 
An implementation problem which needs to be resolved is in networks which contain 
more than a single hidden layer: from which layer should the saliency map be con- 

in the inputs, one is much brighter than the other. The "noise" mss is decmphasizd. 



structed? The trade-off is that at the higher layers, the information contained is more task 
specific. However, the higher layers may effectively extract the information required to 
perform the task, without maintaining the information required for saliency map creation. 
The opposite case is true in the lower layers; these may contain all of the information 
required, but may not provide enough discrimination to narrow the focus effectively. 
The third area for research is an alternative use for the saliency map. A N N s  have often 
been criticized for their uninterpretability, and lack of mechanism to explain performance. 
The saliency map provides a method for understanding, at a high level, what portions of 
the inputs the ANN finds the most important. 
Finally, the fourth direction for research is the incorporation of higher level, or symbolic 
knowledge. The saliency map provides a very intuitive and direct method for focusing the 
network’s attention to specific portions of the image. The saliency map may prove to be a 
useful mechanism to allow other processes, including human users, to simply “point at” 
the portion of the image to which the network should be paying attention. 
The next step in our research is to test the effectiveness of this technique on the main task 
of interest, autonomous road following. Fortunately, the first demonstration task employed 
in this paper shares several characteristics with road following. Both tasks require the net- 
work to track features which move over time in a cluttered image. Both tasks also require 
the network to produce an output that depends on the positions of the important features in 
the image. Because of these shared characteristics, we believe that similar performance 
improvements should be possible in the autonomous driving domain. 
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