Learning Deep Models of Optimization Landscapes

Shumeet Baluja
Google Research
Mountain View, CA

Abstract—In all but the most trivial optimization problems,
the structure of the solutions exhibit complex interdependen-
cies between the input parameters. Decades of research with
stochastic search techniques has shown the benefit of explicitly
modeling the interactions between sets of parameters and the
overall quality of the solutions discovered. We demonstrate a
novel method, based on learning deep networks, to model the
global landscapes of optimization problems. To represent the
search space concisely and accurately, the deep networks must
encode information about the underlying parameter interactions
and their contributions to the quality of the solution. Once
the networks are trained, the networks are probed to reveal
parameter combinations with high expected performance with
respect to the optimization task. These estimates are used to
initialize fast, randomized, local-search algorithms, which in
turn expose more information about the search space that is
subsequently used to refine the models. We demonstrate the
technique on multiple problems that have arisen in a variety of
real-world domains, including: packing, graphics, job scheduling,
layout and compression. Strengths, limitations, and extensions of
the approach are extensively discussed and demonstrated.

I. OPTIMIZATION VIA SEARCH SPACE MODELING

In the 1990s, a number of researchers [1][2][3/[4] inde-
pendently started employing probabilistic models to guide
stochastic search algorithms. The idea was simple, to use the
knowledge of the search landscape that may be ascertained
by analyzing the points encountered to guide where to look
next. This sharply contrasted the procedure of many successful
randomized hill-climbing algorithms that made small perturba-
tions stochastically in hopes that a better solution was a close
neighbor to the current best solution.

In its basic formulation, probabilistic methods explicitly
maintain statistics about the search space by creating models
of the good solutions found so far. These models are then
sampled to generate the next query points to be evaluated. The
model is updated with the newly sampled solutions, and the
cycle is continued.

The primary goal of this paper is to demonstrate that
while employing any search algorithm (hillclimbing, genetic
algorithm [5][6][7], simulated annealing, etc.), it is possible
to simultaneously learn a deep-neural network based approx-
imation of the evaluation function. Then, through the use of
“deep-network inversion” (employed as a method to sample
the deep networks), intelligent perturbations of some/all of the
samples generated by the search algorithm can be made. After
these perturbations, the new solutions should have an increased
probability of higher scores.

A. Predecessors to Deep Modeling

One of the early probabilistic model-based optimiza-
tion approaches was Population-Based Incremental Learning
(PBIL) [1]. A defining characteristic of PBIL was the simplicity
of the model employed: no inter-parameter dependencies were
captured; each parameter was modeled independently. The
entire probability model is a single vector [2]][8]][9][.LO][LL[12].
Although this simple probabilistic model was used, PBIL was
successful compared to many competing approaches.

MIMIC [13] extended PBIL by capturing a heuristically
chosen set of the pairwise dependencies between the solution
parameters. In [14], MIMIC’s probabilistic model was further
expanded to a larger class of dependency graphs: trees in which
each variable is conditioned on at most one parent. This created
the optimal tree-shaped network for a maximum-likelihood
model of the data [15]. In experimental comparisons, MIMIC’s
chain-based probabilistic models performed significantly better
than PBIL’s simpler models. The tree-based graphs performed
significantly better than MIMIC’s chains.

The trend indicated that more accurate probabilistic models
were helpful [16]. The natural extension to pair-wise modeling
is modeling arbitrary dependencies. Bayesian networks are a
popular method for efficiently representing complex depen-
dencies [[17] [IL8]]. Numerous researchers have combined full
Bayesian networks with stochastic search [[19] [20] [21]. For
an overview, see [22]. An alternate model building approach,
termed STAGE, was presented in [23]. STAGE mapped a set
of user-supplied features of the state space to a single value
representing the solution quality. The “value function” is used
to select the next point from which to initialize search.

In the next section, we describe the Deep-Opt algorithm
and give details of how the probabilistic model is created
and sampled. We also describe how the model is integrated
with fast-search heuristics, following the work of [23]] and [14].

II. DEEP LEARNING FOR SEARCH SPACE MODELING

Optimization with probabilistic modeling, at a high level, is
simply explained in Figure[I] A large set of randomly generated
candidate solutions are created and evaluated with respect to
the objective function. The poor-performing candidate solutions
are discarded. The set of remaining solutions, usually a small
subset of the better performing members from the original
set, are then modeled. The model is stochastically sampled
to generate new candidates which are then evaluated, and the
process repeated.

Algorithm 1 High Level Probabilistic Modeling for Optimization

Create set, S, with random solutions from uniform distribution.
while termination condition is not met do
Create a probabilistic model, PM, of S.

Evaluate the C candidate solutions.

Stochastically sample from PM, to generate C candidate solutions.

Update S with only the N high-evaluation solutions from C, where N < |C/|.

Fig. 1. Probabilistic Modeling for Optimization Overview.

In this paper, we use a neural network to create a mapping
between the solutions sampled thus far and their score (e.g. the
evaluation function). In the context of describing the algorithm,
we also discuss four large differences between our approach
and the probabilistic modeling techniques employed earlier.

First, one of the benefits in using a deep neural network
(DNN), is that we do not a priori specify the form of the
dependencies in the probabilistic model (e.g. pair or triplet
combinations). Although the architecture of the neural network
is manually specified, the dependencies that the network
encodes need not be the same form for all parameters, nor are
they deeply tied to architecture of the network [24].

Second, sampling a deep neural network to generate new
samples is very different than sampling a Bayesian-probabilistic
model. With previous models, such as the dependency-
trees [15], sampling the model is simple: generate a biased
random number that is conditioned on the parent variable
specified in the tree-based model. With neural networks,
however, generating samples is more complex. Given a trained
network, the network is “inverted” using standard back-
propagation to modify the inputs rather than the network’s
weights. The inputs are modified to match a preset and clamped
output. This method was first presented in [25] and has
recently been popularized within the context of texture and
style generation using DNNs [26] [27].

It works as follows: We are given a trained network that
maps the input parameters (scaled between 0.0 and 1.0) to their
evaluation (also scaled between 0.0 and 1.0). All the weights
of the network are frozen; they will not change for the sample
generation process. Then, we clamp the output to the desired
output — for maximization problems, the desired output is set
to 1.0; this indicates that we would like to generate solutions
that are as good as the best ones seen so far. The inputs are
then initialized (either randomly or by other means such as
perturbing the best solution seen thus far) and the network
performs a forward propagation step. The error is measured
at the output — the error is the standard Least-Mean Squares
Error on the target output (clamped to 1.0).

Z (targets; — predictedi)2

i€outputs

Erms =

Since we have pinned the target to 1.0, and there is only a
single output scaled between 0.0 and 1.0 (that represents the
score of the candidate solution). This is simply:

Erums = (1.0 — predictedseore)?

A process similar to standard training with stochastic-
descent back-propagation (or any other neural network training
procedure) is then used. However, unlike standard network
training, the errors are propagated back to the inputs, and
the inputs are modified — not the weights. As described
in [25]], the procedure addresses the following question: “Which
input should be fed into the net to produce an output which
approximates the given target vector T’ (in our case the the
target vector T is a simple scalar of 1.0). The error signal for
the input i:

oF
dinput;

;=
tells the input units how to change (direction and magnitude)
to decrease the error. In general, modest learning-rates for the
gradient descent algorithm were found to work best for the
network-inversion process (we used the Adam Optimizer [28]]
with learning-rate = 0.001). If the networks are trained well,
then the candidates generated will yield solutions with high
scores when tested on the actual evaluation function. In
summary, the stochastic sampling process of previous systems
is replaced with this network-inversion process that sets the
inputs to expected high-evaluation settings.

Third, in previous studies with probabilistic models (Fig-
ure [T), the low-performance candidate solutions were discarded
and the high-performance solutions were kept. Often, the actual
evaluation of the high-performance solutions was not used. In
contrast, in our procedure, we create an explicit mapping from
the candidate solution to its score. This reflects a fundamental
difference in the previous and current approaches: since an
explicit mapping is created, it is not assumed that the model
only represents good solutions; it is capable of representing
both high and low quality solutions as well as a mapping to
their scores.

Fourth, note that in contrast to many previous studies that
represented the solution vectors as binary strings and modeled
only the binary parameters, the deep-neural networks used
in this study naturally model real-values (the inputs are real
values). Extensions to binary and other discrete parameters
have been explored in detail [29], though for space reasons
are not presented here.

Algorithm 2 Next-Ascent Stochastic Hillclimbing
(NASH) (shown for maximization)

Initial random candidate, ¢, composed of | P| real-values.
BestEvaluation «+— Evaluate (c)
while termination condition is not met do
d+—c
Num-Perturbations = Rand-Integer from [1,m X |c|]
loop Num-Perturbations
Randomly select a parameter, p, from ¢’
¢’ + Modify p to a rand value in [(.75 * p), (1.25 * p)]
CandidateEvaluation +— Evaluate (c')
if (CandidateEvaluation > BestEvaluation) then
c+c
BestEvaluation <— CandidateEvaluation
else
Discard ¢’
Return c

0.2,0.4,0.3,0.4 - 0.93 1.
0.1,0.3,0.2,0.0 - 0.94
0.8,0.4,0.0,0.0 - 0.09

Start with a set of randomly
selected points and their
scores (shown here with a
small 4 dimensional example

0.2,09,0.3,09 — 0.41 and their scores).

2. Learn a deep network that
creates a model to map the
sampled points to their scores.

0.2,01,03,04 — 0.93

0.1,0.3,0.2,0.0 — 0.94 o
0.8,0.4,0.0,0.0 - 0.08 ___| % -0
d

0.2,0.9,0.3,09 - 0.41

3. Examine what the
network has learned. Find
extrema points in the
learned space through
network back-driving.

0.2,01,0304 - 093
0.1,0.3,0.2,0.0 — 0.94 \
0.8,04,0000—-008 —.

0.2,08,0.3,09 - 0.41

Fig. 2. Next-Ascent Stochastic Hillclimbing (NASH). In our implementation
we set m = 2%. Note that the mutation amount +0.25 is quite large; however,
this was set based on extensive empirical testing on these and similar problems.
IPI is dependent on the problem. In the experiments presented throughout this
paper, it ranged from 50 to 1600.

A. Integration with Fast Local Search Heuristics

In the simplest implementation, the candidate solutions
generated by the network inversion are evaluated and the
cycle is continued. Although this method will work, there
are drawbacks. First, this is a slow process; training a full
network to map the sampled points to their evaluations is an
expensive procedure, as is sampling the network. Second, a
post-processing step of local optimization, where small changes
are made to the solutions generated, yields improvement to
the solutions found. This is because both the interpolation and
extrapolation capabilities of the trained networks are not perfect;
there will be discrepancies between the estimated “goodness”
(evaluation) of a candidate solution and its actual evaluation.

Two early works in probabilistic model-based optimiza-
tion [14]] [23] suggested using probabilistic models to initialize
faster local-search optimization techniques. This technique is
used here. A very simple next-ascent stochastic hillclimbing
(NASH) procedure is shown in Figure [2] It has repeatedly
proven to work well in practice when used in conjunction with
other optimization algorithms to perform local optimization,
and also surprisingly well when used alone in a variety of
scenarios [30] [31] [32]. For the majority of the paper, we
will use NASH as the underlying search process; the neural
modeling will “wrap-around” NASH.

Importantly, note that NASH is initialized with a single
candidate solution. This candidate is perturbed until an equal or
better solution is found. This fits into the procedures described
thus far: all of the candidates evaluated by NASH can be
added to S. When the network is trained and the next set of
candidates are generated (through network inversion), the single
best solution found is used to initialize the NASH algorithm.
NASH proceeds as normal, again recording all the candidate
solutions it evaluates — which are then used to augment .S in
the next time step, and the cycle continues. A visual description
of the combined procedure is given in Figure [3]

4. Take the
maximum point
found in the
previous step and
start a NASH run
from that single
point. As NASH
progresses,
record the tested
samples and their
evaluations.

0.2,0.1,0.3,0.4 — 0.93

0.1,0.3,0.2,0.0 - 0.94 o
0.8,0.4,0.0,0.0 — 0.09 . | % —o .

7

d

0.2,09,0.3,09 - 0.41

02030404 — 0.08
0.0,0.1,0.3,04 — 0.98

/ 02,0.1,0.3,0.4 - 0.20

0.2,0.1,0.2,0.4 093
0.1,0.1,0.3,0.4 — 0.83
0.2,0.1,0.3,0.0 - 0.94
0.2,0.2,0.3,0.4 - 0.82
0.2,0.3,0.4,0.4 — 0.08
0.0,0.1,0.3,0.4 - 0.98

5. Add selected points from the

last NASH run into the set to be

modeled. This augmented set

of points becomes the new set

to be modeled.

Repeat entire procedure.
0.2,0.1,0.3,0.4 — 0.20

Fig. 3. A visual description of Deep-Opt. (Sample topographic plot by [33])

B. Implementation Details

Because this is, to our knowledge, a new approach to
probabilistic modeling for optimization, we provide a few of
the implementation details required to replicate the results.
Figure [3] gives a full description of the algorithm.

o Initializing S. Line 1 (of Figure [3) The simplest method
is random sampling; this gives the broadest exploration
of the search space but provides no information about
the area surrounding the sampled points. Alternatively,
we could have performed a single NASH run and
used the points explored to initialize S; however, this
gives a poor representation of the global landscape.
We chose a combination of the two: seed-points are
randomly selected and their local neighborhoods are also
explored by making small perturbations of the seed points.

o Maintaining S. The size of S is kept constant. To keep
S a constant size, after every NASH run, the last 1000
unique solutions from the NASH run are added to S,
and S is pruned back by removing the members that
have been in S the longest, as in [14]. As members of S
improve over time, those that have been in .S the longest

Algorithm 3 Deep-Opt at a High-Level

1: Create set, S, with random candidate solutions
2: Evaluate all solutions in S.

3: while termination condition is not met do

4: Scale all real evaluations of s to range [0.0,1.0], V(s|s € S)
5 Train a DNN to map s — Ewvaluation(s),V(s|s € S)

6 Freeze the weights of the deep network.

7 > Stochastically Generate New Candidates
8: Initialize C to be empty.
9: repeat
10: Create ¢ by random perturbations of best solution yet
11: Appendcto C. C+ C+Hc
12: until (|C| = Number-To-Generate-From-Model)
13: > Back-Drive the Network to Improve C
14: Select a fraction, F', of C — C/,s.t.|C’"| < |C|.
15: Clamp the network’s output to 1.0
16: for each d € C’ do
17: Initialize the inputs of the DNN with d
18: Back-Drive network until inputs stop changing — d’
19: Replace d in C with d’
20: > Measure Solution Quality
21: Evaluate all candidates, ¢ € C.
22: > Further Improve Solution by local optimization
23: > And Obtain New Points to Model
24: Select m (m € C), where m has the highest evaluation.
25: Initialize NASH with m.
26: Run NASH. Record all of the unique points (into set Y)
27: > Update the data to be modeled
28: Y’ < Select a subset of the best solutions from Y.
290: S« S+Y’
30: Discard Duplicates in S; prune S if necessary

Fig. 4. Deep-opt: Creating a model of the search landscape to initialize fast
search algorithms (NASH). We set the Number-to-Generate-From-Model = 50
for all of our tests. |\S| was kept at 10,000 samples with the size of Y set at
1000. For simplicity, F' was kept static at 50%.

are often not as good as more recent entrants. Further,
overly precise models of low-evaluation areas are not
useful to model.

o Network Architecture. Two networks were used in our
study. The first, Deep-Opt-5, used a 5-fully-connected-
layer network with 100 hidden units per layer. The second,
Deep-Opt-10, used a 10-layer fully-connected network
with 20 hidden units per layer and skip connections
between every layer and its predecessors. A single output
is used which is the estimate of the sample’s evaluation.
Our goal is to show that using a deep neural network
is capable of modeling the search space, not necessarily
advocating a particular network or set of parameters.

o Network Training. The use of a validation set (hold-out
set) and weight decay is suggested to avoid overfitting,
and was found to be vital to good performance. If the
error on the validation does not improve through training,
training is restarted with random weights.

Start Parameters

of Hilcimbing Wiliout Leaming - Run 20 End Parameters

o Hileimbing Witiout Leaiing - Run 0

PRA N
g 12“)/\““"“\\:“\‘%”“
i
U‘c“]”f‘”‘u

vy

v)

|
%
L

h 28
a0 (“ ‘\‘

|
| ’/ | I
nunnEn
IR \‘\“
AR

b nhel
SRR
AN [|y

Vgl | el .
AR E'RRIRIES
gl

e
A

a0 il
A
“MMH“\\’H‘\\‘
H\MH}H\‘\‘H‘\“

Y 0y \“ “\‘ | i\
VY

o N1l

e bl |

o f ‘Z,‘\o\mmf*ré‘i B
H““OG“\HJH‘ Ay

el

1
VY e e
BTy

Vel i

o 1w » . o o w0 0

Found Parameters Overlid on Function Evaluzion (iop) and Histagram (below) Found Farar

Fig. 5. Sines Problem without Learning. The (green) line is the underlying
function to be maximized. The (blue) points are the settings of each the 50
parameters in the beginning (left) and ending (right) of NASH. A histogram
showing the distribution of the points is shown in red. Note that in the
beginning of each run (left column), the points are uniformly distributed. The
results are improved through hillclimbing, though not all points are at the
optimum. Top Row: NASH run #1, Middle Row: NASH run #10 (this is the
NASH run made after the 9th modeling step), Bottom Row: NASH run #25.
About the graph: although each points represents one of the 50 parameters in
the same single solution string, they are shown ’overlapped’ onto the same
graph. This is possible because each parameter is independent and is evaluated
with respect to the same function.

C. Visualizing the Learning

Before turning our attention to the empirical tests, we
present a motivating example to demonstrate how the local
search algorithms utilize the models created. We examine a
simgle problem in which the evaluation is: evaluation(x) =
Z?:l(xi * sin(x;)). We instantiate this simple problem with
50 independent parameters with a range of [0,100].

In Figure [5] (top-row), in the left column are the starting
points for all 50 of the parameters before the NASH algorithm
is run. They are randomly distributed across the input range.
At NASH’s completion (right column), many are close to
their optimal value. Figure [5{middle row) shows the same for
the 10th restart of NASH. Because NASH is still initialized
randomly (no learning), we see approximately the same
distribution of points in the beginning and the end as before.
The 25th restart of NASH is shown in the bottom row.

Next, we repeat the same experiment with Deep-Opt. The
difference is in the initialization of the NASH algorithm. The
samples that are generated in each NASH run are added to
the set of solutions that are modeled by the neural network.
From this neural network model, M new samples are drawn.
The single best of the M is used to initialize the next NASH
run. As expected, in Figure [6] the first run looks similar to
the earlier case with no model. This is because there is no

Start Pavameters of ModeHnialized Hilclibing Run #0 End Paramelers o Modsnisal iz HIllmbing Run 20

e f o
ﬁr\\?‘\‘“\ i

°
|

7] \%“i”\

f

i
HEHT
i | I
AT
R
L J \’/

g i ff
VI

Fig. 6. Sines Problem with Search-Space Modeling / Learning. Note that even
at the beginning of the runs, shown in the left column of rows 2 & 3 (run #10
& #25 respectively), the hillclimbing begins in regions of high performance —
thereby leading to better performance overall by the end of the hillclimbing
search. In run 1 (top row, left)- since no learning has yet happened, the points
are randomly distributed in the beginning of the run.

information in the model as yet. However, after the 10th NASH
restart, (middle-row, Figure @) there is a distinct difference in
the starting values — many more are already in high-evaluation
regions. The best solution found through sampling had many
of its parameters in the right region of the search space. The
likelihood of these reaching the global optimum is increased
through NASH (right column). By the 25th run, this trend is
even further evident. Sampling the model works as expected:
the starting point for the hillclimbing is already in a better
region - where more parameters are closer to the global optima.

Though this problem is simple, it demonstrates how the
modeling can improve the search results. Interestingly, early
on in our studies, modeling sometimes led to poorer overall
performance. Why? As the probabilistic model improved,
exploration decreased — more samples started in a basin of
attraction that led to the same local maxima as was seen
previously. Improvement slowed because the updates to the
model all happened with similar candidate solutions. To address
this, the size of the sample set that was used for modeling,
|S|, was set as shown in Figure [4] to slow the convergence;
this vastly improved performance.

III. EMPIRICAL RESULTS

Deep-Opt has been tested on numerous of problems drawn
from the literature and real-world needs. When the model is
used, M samples are generated, the best of which is used
to initialize NASH. To ensure that the model is actually
providing useful information and that it is not merely the
process of examining M samples before initializing NASH

that is yielding the improved performance, 3 variants are
tested to establish competitive base-lines.

1) NASH-V1: This is exactly NASH shown in Figure [2]

2) NASH-V2: Before beginning the NASH run, M samples
are randomly generated and evaluated. The best one
found from the M generated is used to initialize the
NASH algorithm. No learning is used here. This variant
is included to test whether just the process of generating
multiple samples and selecting the best for initializing
NASH is enough to provide improvement to the final
result — even with no modeling.

3) NASH-V3: Before beginning the NASH run, M samples
are generated by making small perturbations to the best
solution found in all the previous NASH runs. (The
first NASH run is initialized randomly). Each of the M
samples is then evaluated. The best sample found from
the M is used to initialize the NASH algorithm. This
variant tests whether the neural network models actually
capture the shape of the search space, or whether they
are only (inefficiently) forcing search around the best
solutions seen so far.

The termination condition for each NASH run was either (1)
10,000 evaluations were performed or (2) 500 evaluations were
conducted with no-improvement. The latter indicated that the
search might be trapped in a local maxima. All approaches were
given a total of 500,000 evaluations. The number of NASH
runs that were conducted within the 500,000 evaluations was
dependent on the problem and how quickly/often the algorithm
was unable to escape local optima.

A. Noisy Evaluations

In the previous section, we used a simple Sines maximization
problem as an illustrative example of how learning aids search.
Because of the problem’s simplicity, most search algorithms
can perform well on it. However, with the introduction of noise,
a clearer separation in performance emerges.

In this version of the problem, Noisy-Sines, the evaluation
was modified to include significant uniformly distributed
random noise. Uniformly chosen random noise between [0, 0.5]
was added to the evaluation. For large parts of the search space,
the overall evaluation is dominated by noise.

ngl(xi * sin(x;))
50.0 % 100.0

The performance of each algorithm is judged by the best
solution found for the underlying objective function (as
determined without the noise); no algorithm is privy to the
underlying real function. The results are shown in Table [I|
For each of the 5 algorithms tried (NASH-1,NASH-2,NASH-3,
Deep-Opt-5-Layers, Deep-Opt-10-Layers), the best evaluation
averaged over trials is listed in the first row. The last two rows

eval(x) =

+ uniformNoise(0,0.5) (1)

TABLE I
RESULTS FOR NOISY SINES PROBLEM (20 TRIALS FOR EACH APPROACH)

NASH-1 NASH-2 NASH-3 || Deep-5 Deep-10
Avg. 0.690 0.691 0.700 0.731 0.726
Diff. Deep-5 Signif ~ >99% >99% >99% - 96%
Diff. Deep-10 Signif ~ >99% >99% >99% 96%
TABLE 1T

STABLE MARRIAGE RECEPTION-PARTY SEATING: NUMBER OF TIMES EACH ALGORITHM OUTPERFORMED ALL OTHERS (OUT OF 20)

NASH-1 NASH-2 NASH-3 Deep-Opt-5 Deep-Opt-10
Wins=5 Wins=15
Overall Best (Out of 20) 3 2 10 5

Deep-Opt-5 Outperformed(ties)
Deep-Opt-10 Outperformed(ties)

11 (1)

show the significance of the difference between the algorithm’s
performance and the performance of Deep-Opt-5-Layers and
Deep-Opt-10-layers, respectively.

B. Stable Marriage Reception-Party Seating

In a canonical version of this problem, G parties are invited
to a formal-seated party, such as a wedding reception. Each
party can have a variable size. Each member of the party
must sit together at one of the 7 tables, which each have a
capacity Cy. The additional twist to this problem is that each
G has a preference with whom to sit with, expressed as a real
value. The full preference matrix is |G x G|. Preferences can
be negative, and not constrained in magnitude. Preferences
may not be symmetric. Though this problem shares part of
its name with the stable marriage problem, it is more akin
to knapsack/packing problems. Real versions of this problem
have arisen in topics as diverse as processor scheduling to
intern and group seating assignment.

The goal is to find a seating assignment that (1) keeps the
members of each group together, (2) does not seat people
beyond the capacity of the table, (3) maximizes the summed
happiness/preferences over all the tables. For the size of the
problems explored here, the reception has 10 tables, each with
capacity 12 people. Each party size is randomly chosen between
1 and 3 people. Preferences were expressed as a value between
[-100, +100]. The number of groups, |G|, was set to 50.

To encode the solution as a vector, each group was assigned
T parameters, corresponding to each of T tables; there were a
total of 500 (50 x 10) parameters, (realV alueParameterg ;).
At evaluation time, these 500 parameters were sorted from high
to low. Based on the sorted list of realV alue Parametery ¢
assignments were made in order from highest to smallest of
group g to table ¢. Note that the assignment occurred only if
the group was (1) as yet unseated and (2) the table could hold
the size of the group; otherwise that parameter was ignored
and the next one processed. This encoding has the benefit of
not only specifying each groups’ preferences to tables, but also
being able to encode “how important” it is that a particular
group be assigned to a particular table.

20 unique problems were created and tested with randomly
generated, complete, |G x G| preference matrices. The random
generation of problems led to an extremely large spread of
final answers across problems. To summarize the results, we
compared the five approaches, and report the numbers of
problems (out of 20) on which each algorithm obtained the
highest evaluation (highest summed preferences at the tables,
with all the constraints being met). The results are shown
in Table [Tl Out of the 20 trials, modeling the search space
helped in 15 trials. The next line of the table give the number
of trials (out of 20) that Deep-Opt-5-layers outperformed the
other 4 methods (including the other Deep-Opt network). The
last line does the same for Deep-Opt-10-layers.

C. Graph Bandwidth

Given a graph with V' vertices and E edges, the graph
bandwidth problem is to label the vertices of the graph
with unique integers so that the difference between the
labels between any two connected vertices is minimized.
Formally, as described in [34] [35]], label the p vertices v;
of a graph G with distinct integers f(v;) so that the quantity
max{ |f(v;) — f(v;)| : viv; € E} is minimized (E is the
edge set of (7). Interest in this problem stems from a variety of
sources, including constraint satisfaction [36] and minimizing
propagation delay in the layout of electronic cells.

The solution is encoded as: each vertex is assigned a real-
valued parameter (full solution is |V]). The vertices are sorted
according to their respective assigned values. The integers
[1..V] are then assigned to the vertices in their respective sort
position. Once each vertex has an integer assignment, the
maximum difference between the assignments of connected
edges is returned. The results are shown in Table This
is a particularly difficult problem; ties are shown in parentheses.

D. Graph-Based Constraint Satisfaction

Constraint Satisfaction has numerous real-world applications.
We recently used it for resource allocation and job scheduling.
Is is presented here in its simplest form. There are P = 100

TABLE III

GRAPH BANDWIDTH:NUMBER OF TIMES EACH ALGORITHM OUTPERFORMED ALL OTHERS (OUT OF 20). TIES SHOWN IN PARENTHESES.

NASH-1 NASH-2 NASH-3 Deep-Opt-5 Deep-Opt-10
Wins=6 Wins=18
Overall Best 0 0 6 10 8
Deep-Opt-5 Outperformed 20 20 12 (3) - 6 (6)
Deep-Opt-5 Difference Significant? >99% >99% 96% - no
Deep-Opt-10 Outperformed 20 20 12 (2) 8 (6) -
Deep-Opt-10 Difference Significant? >99% >99% 96% no -
TABLE IV

REAL VALUED GRAPH-BASED CONSTRAINT SATISFACTION: NUMBER OF TIMES EACH ALGORITHM OUTPERFORMED ALL OTHERS (OUT OF 20)

NASH-1 NASH-2 NASH-3 Deep-Opt-5 Deep-Opt-10
Wins=2 Wins=18
Overall Best 0 0 2 13 5
Deep-Opt-5 Outperformed 20 20 16 - 14
Deep-Opt-5 Difference Significant? >99% >99% >99% - no
Deep-Opt-10 Outperformed 20 20 17 6 -
Deep-Opt-10 Difference Significant? ~ >99% >99% >99% no -
TABLE V

DISCRETE VALUED GRAPH-BASED CONSTRAINT SATISFACTION: NUMBER OF TIMES EACH ALGORITHM OUTPERFORMED ALL OTHERS (OUT OF 20)

NASH-1 NASH-2 NASH-3 Deep-Opt-5 Deep-Opt-10
Wins=3 Wins=17
Overall Best 0 0 3 13 4
Deep-Opt-5 Outperformed 19 19 16 - 14
Deep-Opt-5 Difference Significant? >99 % >99 % 98% - no
Deep-Opt-10 Outperformed 19 19 14 6 -
Deep-Opt-10 Difference Significant? ~ >99 % >99 % 92% no -

real-value parameters in the range [0,1.0]. These parameters
are assigned to the vertices in a graph. The graph contains
2,000 randomly chosen, directed, edges which specify a
constraint that the origination-node must hold a value greater
than the destination-node. The optimization problem is to
assign values to the nodes such that as many of the 2,000
constraints are satisfied as possible. If the constraint is not
met, the error is the absolute difference in the two values. The
error, to be minimized, is summed over all constraints. The
results are shown in Table [V]

E. Graph-Based Discrete Constraint Satisfaction

In this variant of the previous graph-based constraint satisfac-
tion problem, the exact same setup is used as in Section [[II-D]
however, each node may only take on 1 of 16 letters — A..P. In
terms of the real-world application of job scheduling mentioned
above, in this version of the problem, jobs can enter the system
only at specific, synchronized times. This makes the problem
closer to a selection problem (where one of the 16 values is
selected for each of the nodes) as compared to the previous
instantiation where a real value was assigned to each node.

Though conceptually a small difference from the above
encoding, discretization has enormous ramifications in the
solution encoding. The simplest encoding is to use 100 real-
valued outputs (one for each node) and divide the [0,1] space
into 16 evenly spaced regions, each assigned to a single letter.
However, this encoding does not work — discretizing the real
values in this way does not allow derivatives/small changes
in training to effect actual changes to the evaluation [29]].
Instead, the encoding employed is similar to the Reception-
Party-Seating task (Section [[II-B). Each vertex in the graph is
assigned 16 real-valued parameters, each corresponding to a
letter A..P (In contrast, recall that with the encoding described
in Section [[II-D] each vertex was assigned a real-value). In each
set of 16, the maximum value is found and the corresponding
letter assigned to the vertex. In sum, for a 100 node graph,
1,600 parameters are used. Once the nodes are assigned values,
the evaluation proceeds as described in Section

F. Two Dimensional Layout Problems

This section highlights the limitations of the Deep-Opt
approach. A number of problems which broadly encompassed

TABLE VI
RESULTS FOR MINIMIZING CROSSING ON 20 RANDOMLY GENERATED PROBLEMS

NASH-1 NASH-2 NASH-3 Deep-Opt-5 Deep-Opt-10
Wins=9 Wins=11
Overall Best 1 5 3 8 3
Deep-Opt-5 Outperformed 16 11 14 - 15
Deep-Opt-5 Difference Significant? >99% no 97% - no
Deep-Opt-10 Outperformed 14 6 13 5 -
Deep-Opt-10 Difference Significant? >97% no no no -

the task of two dimensional layout did not statistically improve
with search space modeling. Two problems are detailed here.

1) Minimizing Crossings: The goal is to find a planar layout
of a graph’s nodes that minimizes edge crossings. See for
more details. In general, the edges can be drawn in any shape.
For simplicity, here, the edges are drawn only with straight
lines, this is termed the rectilinear crossing number.

For our tests, each node was represented with two parameters
(x,y coordinates). Small graphs were tried with 25 nodes. This
yielded a solution encoding of 50 real-values, which specified
the coordinates of each point on a plane. Each graph had 50
randomly chosen connections. 20 randomly generated problem
instantiations were attempted.

One of the peculiar findings is that NASH-2 outperformed
NASH-3. In most previous experiments, this was reversed.
NASH-2 received a higher score in 12 out of the 20 problems
(the scores, as measured by a standard t-test were statistically
different with p = 0.96). Although left for future exploration,
it is worth investigating what insight this gives about the search
space? If searching around the current best does not yield as
good results as randomly starting over, does the search space
have more or less optima, or are the local optima further spread
apart, deep, etc? Returning to the experiments, because Deep-
Opt can just as easily be applied to NASH-2 as NASH-3, here,
we used it to “wrap” NASH-2.

2) Image Approximation via Triangle Covering: This is
the only problem in the paper for which the parameters for
NASH were changed. Accordingly, Deep-Opt also used the
same parameters. For this problem, there is an intensity target
image, I, that is NV x N pixels. The goals is to find T triangles
and their intensities that approximate the image. Specifically,
each triangle must specify three vertices between [0,N] in
both X&Y and an intensity value. The triangles are drawn
onto an initially empty canvas. The triangles may overlap;
their intensities are additive. After all T triangles are drawn,
the resulting image is scaled back into the appropriate space
(0 .. 255 pixel intensities), and compared, pixel-wise, to the
original image. The Lo distance is to be minimized. This is a
particularly difficult/interesting problem when T is small.

To set the parameters for NASH and Deep-Opt, we tested this
problem with 50 triangles, trying to approximate an intensity
based crop of “The Scream” by Edvard Munch. Each triangle
was encoded as 7 parameters: 6 for the (x,y) coordinates of three
vertices and 1 for the intensity. With 50 triangles, there were a

Fig. 7. In each pair of images, the left is the original image. The right is the
reconstruction of the image using the 50 triangles found by Deep-Opt.

total of (50 x 7) 350 parameters in the solution encoding. Once
the parameters were set, 3 other images, shown in Figure [7]
were also attempted with the same parameter settings. Averaged
over 10 trials on each image, the results were not statistically
significantly different for any algorithm; although all results
were surprisingly detailed (Figure [7).

IV. ALTERNATIVE UNDERLYING SEARCH ALGORITHMS

In this paper, we have coupled the use of deep-net modeling
with an extremely simple, fast, localized search algorithm,
NASH. Let us also consider the possibility of using alternate
search algorithms with the same modeling procedures. Alter-
native search heuristics such as simulated annealing [38] and
TABU search can easily be substituted as they search

TABLE VII
GA PERFORMANCE ON GRAPH-BASED CONSTRAINTS PROBLEM (20
INSTANTIATIONS)

Approach Performance ~ Wins
Standard GA (population 50) 4817 0
Deep-Opt-GA (population 50) 5120 20
Standard GA (population 100) 4825 0
Deep-Opt-GA (population 100) 5131 20

neighborhoods around a single point in a manner similar to
NASH. More interesting is the use of probabilistic models with
very different search paradigms, such as genetic algorithms.

Recall that, unlike NASH, genetic algorithms work from a
population of points. Members of the population are created
with recombination operators (crossover) that combine the
elements of two or more candidate solutions. The newly created
solutions are further randomly perturbed (mutated) to reveal
the ’children’ solutions that are the candidate solutions to
evaluate next [S]]. Numerous variations of GAs and task-specific
operators are possible and have been explored in the research
literature. Next, we perform a tests using a a simple-GA with
typical parameter settings for static optimization problems:
population-size 50/100, crossover: uniform, mutation rate: 2%,
generational populations, elitist selection: onm

We test the GA with two population sizes (50 & 100) run
for an equivalent number of function evaluations as all of the
previous runs with hillclimbing (500,000). Additionally, as with
the previous runs, the GA was restarted after 10,000 evaluations.
In the standard GA, the initial population is comprised of
candidate solutions that were randomly generated. In the Deep-
Opt-GA, the initial population of candidate solutions is entirely
generated from the back-driven neural network model.

This approach was tested on the same real-valued constraints
problems described in Section The results are shown in
Table (problem is formulated as a maximization problem).
Deep-Opt-GA outperformed the random initialization on all 20
instantiations attempted, for both sets of trials (with population
size 50 and 100). To summarize the findings in this section,
using models to guide search can help even in search heuristics
that operate from more than a single point — those that are
population-based, such as genetic algorithms.

V. DISCUSSION AND FUTURE WORK

We have presented a novel method to incorporate deep-
learning with stochastic optimization. It is the next instantiation
of intelligent model-based stochastic optimization and follows
in the tradition of the probabilistic model based optimization
approaches from the last two decades of research. An important

! Alternate operators and operator application rates may yield improved
optimization algorithms for each problem. Our intent is only to show that
the Deep-Opt framework can be as easily wrapped around multiple-point
search-based algorithms, such as GAs, as well as single-point search based
algorithms, such as Hillclimbing.

aspect of this work is that a priori information about the
problem is minimal in setting the form of the model. In
this study, two multi-layer feed-forward networks with 5 and
10 hidden layers were used on all of the problems with no
problem-specific modifications. With the judicious use of early-
stopping in training, the potential downsides for overtraining
were overcome.

Two other extensions not presented in this paper due to space
restrictions have also been explored: (1) discrete parameter
encodings: In contrast to the real-valued parameters explored
in this paper, discrete parameter encodings can be handled
through techniques used to binarize hidden layers in neural
networks, such as stochastic sigmoid units [40]. Work towards
this is shown in [29]. (2) the role of scaling the target outputs
during training [29]]: One can imagine that instead of scaling
the target outputs to values in the range [0.0,1.0], they were
scaled to [0.0,Z], where Z < 1.0. In this approach, the highest
scoring s € S will have a value of Z. When the network is
back-driven, it is still driven to find solutions that produce
a 1.0 in the output. This effectively attempts to create new
solutions that are better than, not just equal to, those seen so
far. The success of this approach is pinned on the network’s
successful extrapolation of the underlying search surface to
regions of better performance. Many versions of this were tried,
where Z was set to [0.2,0.5,0.8,0.9,0.95, and 0.99] in various
experiments. Although the results are preliminary, setting the
Z to 0.95 and higher had little effect on the results, when
compared to setting Z = 1.0. Setting Z in the low range often
hurt performance.

Many of the advances from the rapidly evolving field of deep
learning can be directly incorporated into this work (such as
network shrinking, rapid training, regularization schemes, etc.),
as continuously training networks is the core of the learning
components. Outside of the deep-learning advancements, three
avenues for future explorations are given below.

First, the overarching goal of this paper was to concretely
demonstrate the integration of neural network learning with
optimization, not to promote this system as finalized opti-
mization system. To make a finalized optimization system,
further exploration of the algorithm’s robustness and behavior
is warranted. For example, there are many parameters in this
system. In this study, we have found that the results are most
sensitive to the size of |:S| and to the decision of when to restart
training the network from scratch — this happens when new
samples are added to |S| and the network fails to accommodate
them in learning (i.e. the error on the samples does not reduce).
The beneficial effects of regularization in training may be
especially pronounced in this application as networks are
constantly being incrementally trained with changing data. Also,
we have found a class of problems for which we have not
observed a benefit of using the modeling (see Section [[II-F).
Are the problems too easy or too hard, or is an alternate
representation needed?

Second, an alternative to using the network back-driving
technique to generate candidate initialization points is to simply
use the network as a proxy evaluation function for hillclimbing.

In this approach, hillclimbing (NASH) is conducted directly on
the model’s output. After every perturbation, the new candidate-
solution is passed through the network to measure it’s estimated
performance. This, unlike network back-driving, does not take
advantage of the fact that the network is differentiable, and
rather only uses it as a proxy for the real evaluation function.
However, it may reveal parts of the search space that back-
driving does not.

The third, and perhaps the most speculative, direction
is to determine if there are transferable features that are
learned between different instantiations of the same problem.
For example, with respect to the triangle-covering problem
presented in Section [[II-F2] once we have learned how to
evaluate how well a set of triangles reproduces an image, is
learning the evaluations for the next image easier? One can
imagine that low level primitives of how to draw triangles, if
they are indeed learned by the network, may be reusable. Even
if there is little transference in the current implementation,
exploring problem transference has enormous potential to
make this system automatically more intelligent with time.

REFERENCES

[1] S. Baluja, “Population-based incremental learning. a method for integrat-
ing genetic search based function optimization and competitive learning,”
CMU-CS-94-163. Carnegie Mellon University, Dept. of Computer
Science, Tech. Rep., 1994.

[2] A. Juels, Topics in black-box combinatorial optimization. University of
California, Berkeley, 1996.
[3] H. Miihlenbein and G. Paass, “From recombination of genes to the esti-

mation of distributions i. binary parameters,” in International Conference
on Parallel Problem Solving from Nature. Springer, 1996, pp. 178-187.

[4] G. R. Harik, F. G. Lobo, and D. E. Goldberg, “The compact genetic
algorithm,” IEEE transactions on evolutionary computation, vol. 3, no. 4,
pp. 287-297, 1999.

[5]1 D. E. Goldberg, Genetic algorithms in search, optimization, and machine
learning. Addison-Wesley Publishing Company, 1989.

[6] J. H. Holland, Adaptation in natural and artificial systems: an intro-
ductory analysis with applications to biology, control, and artificial
intelligence. U Michigan Press, 1975.

[71 K. De Jong, “Genetic algorithms: a 30 year perspective,” Perspectives
on Adaptation in Natural and Artificial Systems, vol. 11, 2005.

[8] V. Kvasnicka, M. Pelikdn, and J. Pospichal, “Hill climbing with learning

(an abstraction of genetic algorithm),” in Neural Network World, 6.

Citeseer, 1995.

M. Hohfeld and G. Rudolph, “Towards a theory of population based

incremental learning,” in Proceedings of the International Conference

on Evolutionary Computation, 1997.

R. Rastegar, A. Hariri, and M. Mazoochi, “A convergence proof for

the population based incremental learning algorithm,” in /7th IEEE

International Conference on Tools with Artificial Intelligence (ICTAI'0S5).

IEEE, 2005, pp. 387-391.

C. Gonzalez, J. A. Lozano, and P. Larrafiaga, “The convergence behavior

of the pbil algorithm: a preliminary approach,” in Artificial Neural Nets

and Genetic Algorithms. Springer, 2001, pp. 228-231.

C. Gonzilez, J. A. Lozano, and P. Larranaga, “Analyzing the population

based incremental learning algorithm by means of discrete dynamical

systems,” Complex Systems, vol. 12, pp. 465-479, 2000.

J. S. De Bonet, C. L. Isbell, P. Viola et al., “Mimic: Finding optima

by estimating probability densities,” Advances in neural information

processing systems, pp. 424-430, 1997.

S. Baluja and S. Davies, “Fast probabilistic modeling for combinatorial

optimization,” in AAAI/IAAI. Madison, WI, USA, 1998, pp. 469-476.

C. Chow and C. Liu, “Approximating discrete probability distributions

with dependence trees,” IEEE transactions on Information Theory, vol. 14,

no. 3, pp. 462-467, 1968.

[9

—

[10]

(11]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

(32]

[33]
[34]

[35]

[36]
(371
[38]
[39]

[40]

S. Baluja and S. Davies, “Using optimal dependency-trees for combina-
torial optimization,” in International Conference on Machine Learning
(ICML), 1997, pp. 30-38.

D. Heckerman, “A tutorial on learning with bayesian networks,” in
Innovations in Bayesian networks. Springer, 2008, pp. 33-82.

J. Pearl and S. Russell, “Bayesian networks,” Department of Statistics,
UCLA, 2000.

M. Pelikan, D. E. Goldberg, and E. Canti-Paz, “Boa: The bayesian
optimization algorithm,” in Proceedings of the 1st Annual Conference on
Genetic and Evolutionary Computation-Volume 1. Morgan Kaufmann
Publishers Inc., 1999, pp. 525-532.

J. Yao, Y. Kong, and L. Yang, “Bayesian optimization algorithm based on
incremental model building,” in International Symposium on Intelligence
Computation and Applications. Springer, 2015, pp. 202-209.

R. Etxeberria and P. Larranaga, “Global optimization using bayesian
networks,” in Second Symposium on Artificial Intelligence (CIMAF-99).
Habana, Cuba, 1999, pp. 332-339.

M. Pelikan, K. Sastry, and E. Cantd-Paz, Scalable optimization via
probabilistic modeling: From algorithms to applications. Springer,
2007, vol. 33.

J. Boyan and A. W. Moore, “Learning evaluation functions to improve
optimization by local search,” Journal of Machine Learning Research,
vol. 1, no. Nov, pp. 77-112, 2000.

K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward
networks are universal approximators,” Neural networks, vol. 2, no. 5,
pp. 359-366, 1989.

A. Linden and J. Kindermann, “Inversion of multilayer nets,” in Neural
Networks, 1989. IJCNN., International Joint Conference on. 1EEE,
1989, pp. 425-430.

L. Gatys, A. S. Ecker, and M. Bethge, “Texture synthesis using
convolutional neural networks,” in Advances in Neural Information
Processing Systems, 2015, pp. 262-270.

L. A. Gatys, A. S. Ecker, and M. Bethge, “A neural algorithm of artistic
style,” arXiv preprint arXiv:1508.06576, 2015.

D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” CoRR, vol. abs/1412.6980, 2014. [Online]. Available:
http://arxiv.org/abs/1412.6980

S. Baluja, “Deep learning for explicitly modeling optimization
landscapes,” CoRR, vol. abs/1703.07394, 2017. [Online]. Available:
http://arxiv.org/abs/1703.07394

A. Juels and M. Wattenberg, “Stochastic hillclimbing as a baseline
method for evaluating genetic algorithms,” in Proceedings of the 1995
Conference on Neural Information Processing Systems (NIPS), vol. 8,
1996, p. 430.

S. Baluja, “An empirical comparison of seven iterative and evolutionary
function optimzation heuristics,” Computer Science Department, Tech.
Rep. CMU-CS-95-193, September 1995.

M. Mitchell, J. H. Holland, and S. Forrest, “When will a genetic algorithm
outperform hill climbing,” in Advances in Neural Information Processing
Systems 6, J. D. Cowan, G. Tesauro, and J. Alspector, Eds. Morgan-
Kaufmann, 1994, pp. 51-58. [Online]. Available: http://papers.nips.cc/
paper/836-when-will-a- genetic-algorithm-outperform- hill-climbing.pdf
Chriddyp. (2017) Asyncho from 0.00 to 0.05. [Online]. Available:
https://plot.ly/~chriddyp/

Wikipedia. (2016) Graph bandwidth.
/len.wikipedia.org/wiki/Graph_bandwidth
P. Z. Chinn, J. Chvitalovd, A. K. Dewdney, and N. E. Gibbs, “The
bandwidth problem for graphs and matrices—a survey,” Journal of Graph
Theory, vol. 6, no. 3, pp. 223-254, 1982.

R. Zabih, “Some applications of graph bandwidth to constraint satisfaction
problems.” in AAAL 1990, pp. 46-51.

Wikipedia. (2016) Crossing number (graph theory). [Online]. Available:
https://en.wikipedia.org/wiki/Crossing_number_%28graph_theory%29
S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi et al., “Optimization by
simulated annealing,” Science, vol. 220, no. 4598, pp. 671-680, 1983.
F. Glover, “Tabu search-part i,” ORSA Journal on computing, vol. 1,
no. 3, pp. 190-206, 1989.

T. Raiko, M. Berglund, G. Alain, and L. Dinh, “Techniques for
learning binary stochastic feedforward neural networks,” arXiv preprint
arXiv:1406.2989, 2014.

[Online]. Available: https:

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1703.07394
http://papers.nips.cc/paper/836-when-will-a-genetic-algorithm-outperform-hill-climbing.pdf
http://papers.nips.cc/paper/836-when-will-a-genetic-algorithm-outperform-hill-climbing.pdf
https://plot.ly/~chriddyp/
https://en.wikipedia.org/wiki/Graph_bandwidth
https://en.wikipedia.org/wiki/Graph_bandwidth
https://en.wikipedia.org/wiki/Crossing_number_%28graph_theory%29

	Optimization via Search Space Modeling
	Predecessors to Deep Modeling

	Deep Learning for Search Space Modeling
	Integration with Fast Local Search Heuristics
	Implementation Details
	Visualizing the Learning

	Empirical Results
	Noisy Evaluations
	Stable Marriage Reception-Party Seating
	Graph Bandwidth
	Graph-Based Constraint Satisfaction
	Graph-Based Discrete Constraint Satisfaction
	Two Dimensional Layout Problems
	Minimizing Crossings
	Image Approximation via Triangle Covering

	Alternative Underlying Search Algorithms
	Discussion and Future Work
	References

