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Abstract

In many real-world tasks, the ability to focus attention on the important features of the input is crucial for g
performance. In this paper a mechanism for achieving task-specific focus of attention is presented. A sal
map, which is based upon a computed expectation of the contents of the inputs at the next time step, inc
which regions of the input retina are important for performing the task. The saliency map can be use
accentuate the features which are important, and de-emphasize those which are not. The performance
method is demonstrated on a real-world robotics task: autonomous road following. The applicability of
method is also demonstrated in a non-visual domain. Architectural and algorithmic details are provide:
well as empirical results.
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1. Introduction in the tasks of stimulus detection, identification, localization,

or simple and choice response times [Umilta, 1988].
Computational models of the spotlight mechanism have

been proposed in the context of artificial neural networks

Many real world tasks have the property that only a sma
fraction of the available input is important at any particula
time. On some tasks this extra input can easily be ignore .
But often the similarity between the important input feature{Mozer, 1988][Koch & Uliman, 1985]. Mozer makﬁs the dis-
and the irrelevant features is great enough to interfere Wntmgémn bet;/v?]en dalt_a-hdrlven_ ar?d concefp‘t‘ua y-driven”
task performance. Two examples of this phenomena are yguidance of the spotlight. A simple case of "Data-Driven
famous “cocktail party effect”, otherwise known as Speedgwdance is that the sp_otllght should k_)e drawn to objects, but
recognition in a noisy environment, and image processing qot to "empty spaces n the V|_sual field. A .Conceptually—
a cluttered scene. In both cases, the extraneous informatiCiven” spotlight is controlled directly by a *higher level of
in the input can be easily confused with the important feacognition” (goal driven). This is necessary when reading, in
tures, making the task much more difficult. which text must be scanned from left to rlg]ht.

In this paper, we will use the representation of a neure, When longer time intervals are introduced, the process of
network’s hidden layer, trained to perform a time sequentiefocus'”g attention becomes more challenging; objects can

task, to make predictions of what the next inputs will beMOVe and change. Nonetheless, people can routinely solve

These predictions can be used as a pre-processor for the nth€ Problem of focusing, and maintaining, attention on mov-

inputs; they can provide a mechanism to focus the network!"d and changing objects. This ability to do this with “odd-
attention on the important features. In the next section, focUMan-out” features has been has been caiiegxing [Ull-

of attention is described in greater detail, and the notion of M@, 1985]. The ability to index is a prerequisite for visual
saliency map is introduced. The cognitive foundations oMotor coordination and object description [Trick & Pyly-
focus of attention are also briefly explored. In section 3, thShyn, 1991]. Nonetheless, not all items can be indexed in this
task of interest, autonomous road following, is presented, V@Y- [Allport, 1989] suggests a more complicated procedure,

well as results of using selective attention to improve perfort€rmed “selection-for-action” which introduces the task-spe-

mance on this task. In section 4, a synthetic problem icific nature of focusing. Information about irrelevant fea-

described:; it contains many of the same difficulties as thtUreS or objects must be filter out, to avoid crosstalk and
road following task, yet lends itself to easier interpretatiorconfusion with respect to the feature or objects of interest.
and analysis. The problem also serves to exhibit the benef 1 NiS model relates to the model presented in this paper.
of a saliency map in a non-vision oriented task. Finally, ir In our attempts to design a mechanism to focus attention,
sections 5 & 6, conclusions and suggestions for futurthe goal was to create a conceptually driexpectation
research are presented. which can maintain attention on moving objects Whlch may
A previous paper [Baluja & Pomerleau, 1994] presente‘change_shape,_ orientation and position. Further, as different
preliminary results of using a task-specific saliency map ot@sks will require analyzing different portions of the scene,
two simulated vision-based tasks. The findings of that papd€ focus of attention must be task-specific (selection-for-
are summarized in section 2.1; the results of that paper aactlon). The focus of attention must designate as important

expanded upon in section 3, to make them applicable to re0nly the portions of the scene which are necessary for com-

world tasks. In this paper, a method used to create an achleting the task. The next section describes the mechanism to

quate number of training examples for training the salienciMPlement this type of attention focusing.
map is presented. These issues were not present in the ta
explored in [Baluja & Pomerleau, 1994] as the example:
were created artificially and were inexpensive to generate.

2.1. Creating a Conceptually Driven Saliency Map

Saliency maps have been used in the field of computer
vision to direct processing to only the relevant portions of
2. Focus of Attention: Background and the scene. However, in many studies, saliency maps have
Implementation been constructed in a bottom-up manner [Clark and Ferrier,

) o ) 1992]. A very cursory summary of the bottom-up approach

Focus of attention has been studied in a variety of coris that multiple different feature detectors are placed around
texts. One of the largest branches of study has examinghe input image. Each type of feature detector may contain a
attention in static images. For example, [Triesman & Geladeweight associated with it, to signify the relative importance
1980] [Hulbert & Poggio, 1985] describe a study in which gof the particular feature. The region of the image which con-
subject recognizes the letter “S” mixed in a field “X™s andtains the highest weighted sum of the detected features is the
“T"s of various colors. The “Shops outo the subject, sug- portion of the scene which is focused upon. The approach
gesting a preattentive and parallel processing of the image.taken in this paper is very different. The features and their
an object must be distinguished by “conjunctive” featuresyeightings are developed simultaneously with the saliency

such as color and shape, the search seems to be performemap to solve the particular task. In this proposed method, the
a more serial fashion [Hulbert & Poggio, 1985]. The mos

commonly accepted analogy for this is termed the “spot ) . . -
light” hypothesis. The spotlight moves from one location tcl It should be noted that a moving the “spotlight of attention” does

ther. th . hich it f tively defi not necessarily entail eye movements. [Umilta, 1988] discusses the
another, the area in wnich It focuses are operatively 0elin€ q|ationship between eye movements and focus of attention.

to be the areas in which an improved performance is foun2. These are features which are distinguished by attributes such as
color, or by motion in an otherwise stationary background.
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expectation of where the features will be in tlextframe  task-specific features based upon these methods.
plays a key role in determining which portions of the visua Although IRRE provides a method to determine which
scene argoing to befocused upon. This will be explained in portions of the input the network finds important, a notion of
this section. time is necessary to focus attentiorfuture frames. Instead
The first step in creating a conceptually based saliencof attempting to reconstruct the current input, the network is
map is determining which portions of the image are importrained to predict theextinput (in Figure 1, this corresponds
tant. The creation of a saliency map is based upon a veto changing the subscriftto t+1, in the reconstructed
basic analysis of the neural network. The underlying premisinputs). The next input is predicted based upon the important
is that if a strictly layered (connections are only betweeltask-specific features in the current image.
adjacent layers) feed-forward neural network can solve  The prediction can be trained in a supervised manner, by
given task, the activations of the hidden layer contain, ittraining the network to predict the next set of inputs in the
some form, the important information for this task from thetime sequence. The training example (the next inputs) may
input layer. One method of finding out what information iscontain noise or extraneous features. However, since the hid-
contained within the hidden layer is to attempt to reconstruwen units only encode information to solve the task, the net-
the original input image, based solely upon the representwork will be unable to construct the noise in its prediction.
tion developed in the hidden layer. This method of reconMore details on this idea, and methods to use the expectation
struction is closely related tonput Reconstruction of the next inputs, are described in the next sections.
Reliability Estimation (IRRE)Pomerleau, 1993]. The reli- ) ) o
ability estimation in IRRE is made by reconstructing the2.2. Differences in Expectation and Realization
input image by using linear transformations of the activa To this point, a method to create an expectation of what
tions in the hidden layer, and comparing the resulting recorthe next inputs will be has been described. There are two
struction with the actual image. The greater the similaritifundamentally different ways in which to interpret the differ-
between the actual input image and the reconstructed inpence between the expected next input and the actual next
image, the more the internal representation has captured tinput. The first interpretation is that the difference between
important input features, and therefore the more reliable trthe expected and the actual input is the point of interest
network’s response. Figure 1 provides a schematic of IRREbecause it is a region which wast expected. This has
This method is related to auto-encoding networks. Irapplications in anomaly detection, or in the analysis of visual
these networks, the output is trained to reproduce the inpscenes in which the object of interest is moving across a sta-
layer [Cottrell & Munro, 1988]. The hidden layer, which is tionary background.
usually used as a bottleneck, captures important features 1 In the second interpretation, the difference between the
reconstructing the input. The difference between these neexpected and actual inputs is considered noise. This interpre-
works and the ones employed in this study is that the netation is used throughout the rest of the paper. Processing
works used here were not trained to reproduce the input layshould be de-emphasized from the regions in which the dif-
accurately; they were trained to perform well on a specifiference is large. This makes the assumption that there is
task. All of the representational power in the hidden units ienough information in the previous inputs to specify what
devoted to solving the task only. The portions of the inputhe important portions of the next image will be. As will be
which can be reconstructed accurately are the portions of tlshown in the tasks described in sections 3 and 4, this method
input which the hidden unit activations have encoded thas the ability to remove spurious features and noise. It is
solve the task. If the requirement of task-specificity did nointeresting to note that in this interpretation, it is important
exist, auto-encoder networks, or methods such as principthat the prediction of the future statetbe too accurate. If
components analysis could capture many features of tithe prediction matched the next image exactly, the noise in
input. However, the features found by these methods athe next image would also be reconstructed. Although the
important for reconstructing the image, not for solving thenetwork is trained to predict future inputs with example
particular task. As only a fraction of the features found matraining images which may contain noise, the networlots
be important for the task, it is difficult to focus attention onable to reproduce the noise due to the hidden layer’s limited
capacity, the task-specific hidden units, and the task-specific
nature of training. The implementation of the saliency map is

[outputs | [ inputs, ] {recomstructed  gescribed in the next section.
weights -~ -7 . . . .
trgnedttok \ 2.3. Using Expectation to Filter Noise
redauce tas. . .
error. weights In this study, the saliency map was used as follows: the

trained to reduce ; . . .
reconstruction difference between the expectation of input image

error. (derived from input imagg and the actual input image
was calculated. This difference image was scaled to the
) _ o ) range of 0.0 to 1.0. The smaller the difference, the closer the
Figure 1: Using the activation of the hidden layer to reconst  yjye to 1.0. Each pixel of the difference image was then
the input. The weights between the input and hidden laye: passed through a sigmoid; alternatively, a hard-step function

trained to only reduce task erroiQt reconstruction error. Extt . . - .
hidden layers for reconstruction can be used. could have been used. This results in the saliency map. This
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map indicates the portions of the input to which the networlthe next inputs. Also, the feedback is multiplicative, and acts
should be paying attention. In order to emphasize thedike a filter, unlike the architecture in the Jordan networks.
regions for the input, the saliency map is multiplied, pixel by Another large difference in these networks is that the
pixel, with input imagg;. The result after multiplication feedback units are explicitly trained in a supervised manner.
was used as the input into the network. This has the effect In architectures like the Stornetta, the context units are
lowering the activation of the portions of the input which dotrained in a manner similar to the training of the hidden
not match the expectation. The portions of the input whiclunits. The representations which are formed are created to
match the expectation are left unaltered. Examples of this fireduce the error in a subsequent output layer.
tering, for the task of autonomous road following, are show!  Finally, the last difference is in the problems which these
in section 3. architectures are designed to address. Although most of the
Training the neural network with a saliency map mayrecurrent networks which have been explored in the litera-
require more pattern presentations than training a netwoiture have attempted to address the problem of sequence rec-
which does not employ one. With feedback to the inputs, thognition and reproduction, this architecture is not suited to
system becomes dynamic. As the training for the tasthese tasks as the feedback is restricted to be the prediction
improves, the saliency map becomes more refined, and mcof the next inputs.
of the correct information is filtered out of the images. The
images input to the network later in the training process po:3, Image Based Autonomous Road Following
seso diferent qualiies han e hose Input et 3MNY  one of e principle motaos for creting an agorn
hidden representation changes to adapt to the new imég«Wh'Ch can focus attention is to perfor_m \_/lsual processing in
This causes changes in the prediction of the next inputs alcluttered scenes. A rez_il-world application WhICh- requires
. . ' “’such attention focusing is autonomous road following.
the cycle continues. The cycles ends when either the syste In the domain of autonomous road following. the qoal is
reaches a stable state or training is stopped. In practice, tt trol bot vehicle b v7ing th 9, ftg 4
system can be trained by using the standard backpropagati-0 cONtro! a robot venicie by analyzing thé scené ot the roa
algorithm, with small learning rates, albeit with longer train-"’.‘head’. and choosing a dlfect|on to trav'el based on the loca-
ing times. tion qf important featur_es like lane markings and road edges.
One of the problems encountered in focusing attentioTh'S is a difficult task since the scene ahead is often cluttered
with extraneous features such as other vehicle, pedestrians,

using this method, is the necessity to determine the featurtrees, crosswalks, road signs and other objects that can

which are important for solving the task before the task "appear on or around a roadway. For the general task of

f:sl‘\lfg';?ﬁcd'g;]cdugés dtg\;a;?)mgg ;P:ATﬁ:r:‘aeT\;lﬁifgrﬁ%géautonomous navigation, these extra features are extremely
P ' P important; however, for the restricted task of road following,

Iar)(/)%rl,etrzei St azkaoirgggtizrf;aae Ss?gxggbr;rsh'segglﬁl;eg(;?:g'gggthese features are distractions. While we have had significant
P y success on the road following task using simple feed-for-

images used for training may not contain noise. Therefore, ..o\ ral networks to map images of the road into steer-

e 8o ol o o N ComMands [Pomerea 193], ese s methods
: P when presented with cluttered environments like those

determlned, the system can, in many cases, bootst.rap S¢encountered when driving in heavy traffic, or on city streets.
In the implementations described here, the system is traine

to build the saliency map and solve the task simultaneously3 1. The ALVINN Road Following System

2.4. Relations to Other Recurrent Neural Networks ALVINN is an artificial neural network based perception
. system which learns to control CMU’s NAVLAB vehicles by
The use of the feedback connections proposed are relat

watching a person drive. ALVINN’s architecture consists of
to other recurrent neural networks [Jordan, 1989][Stornett:_ _. : : -
1988]. At timet, the Jordan network uses feedback from the? single hidden layer backpropagation network. The input

. ; X . layer of the network is a 30x32 unit two dimensional “ret-
output units of “'_“H'L combined with feedback _from the ina” which receives input from the vehicle’s video camera.
context units at timé-1, to create new context units. These

units are used as additional inputs in the current time-steThe correct steering_direction is deterr_nined from the activa-
The Stornetta architecture uses the context units as a preptlon Of- 30 output units. The output units attempt to create a
cessor of the input units [Hertt. al 1993]. The context gaussian qentered around the correct steering direction. If_the
units are arranged with one-to.-one conﬁections with thGaussmn is centered around unit 1, thl_s indicates th_e vehicle
inputs, and have feedback connections from themselveSho-wd make a sharp left, if th_e center is around unit 30, the
which 7carry activation from the previous time step vehicle should ma_ke a sharp_rlght,_ etc. To teach the network
. R j to steer, ALVINN is shown video images from an onboard
There are several important distinctions between the JO;amera as a person drives. For each image, it is trained to
dan and Stornetta architectures and the one used in tt

The first is that the St t hitect toutput the steering direction in which the person is steering.
o e e ACHECLIE Uses rke_ Reconty, there has been an empriasi on usig i
architecture presented here, the feeé/bagk is from unifs whi(AI‘VINN system as a driver warning device. In one of the
have a very defined task. The feedback is the prediction ‘proposed uses of this system, the model will warn drivers if
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they begin to drift over lane markings (indicating that theywith the last previous real pixel value in the current row. The
may be entering a lane with on-coming traffic, or leaving thcoutput was also translated either to the left or right by the
road, etc.). The system must be robust with respect to othsame amount as the image. This translation yields usable
road features, such as road and off-road boundaries, cars,images because the camera is pointed downwards. If the
other lane markings. Experiments for this task are describecamera had been pointed more ahead of the vehicle, more

in the next section. sophisticated rotations would have been required to maintain
s . i . the correct perspective, as were used in [Pomerleau, 1991].
3.2. Eliminating Noise Using a Saliency Map The sequential nature of focusing attention dictated that

The purpose of using a saliency map within this domain ithese images could not simply be added to the training set.
to eliminate features of the road which the neural networFor example, an image at timewhich is translated 3 steps
may mistake as lane markers, and therefore output an inccto the left, should not be followed by an image at tinte
rect steering direction. Training the network to solve the taswhich is translated 3 steps to the right. If it were, the impor-
by focusing on the important regions of the scene itant features would jump a large distance, and this is unlikely
described below. to happen in practice. To avoid this problem, the expanded

Approximately 1200 images were gathered from a camertraining set is used in the following manner: the image at
mounted on the left side of a car, pointed downwards antime stept+1 is chosen at a random translation which differs
slightly ahead of the vehicle. The car was driven through citby, at most1 from the image at time staépThis ensures
and residential neighborhoods around Pittsburgh, PA. Ththat large jumps of the important features are not present
images were subsampled to a 30x32 pixel representation. between consecutive time steps. As the network is trained
each of these images, a sinldocation of the lane marker through many passes through the training set, images are
was hand marked around the 20th row. (The total interactivseen with different translations.
time was ~25 minutes). The task is to produce a gaussian In addition to using the translated images as described
activation in the outputs, centered around Xhkcation of  above, to ensure that the network learns many of the possible
the lane marker in the 20th row of the image. Sample imagéransitions from any image, the errors from predicting 25
and target outputs are shown in Figure 2. potential next input images are used. These 25 “next input”

In training the network, there are several problems whiclimages are created as follows: the images at time s s
must be addressed. The first is that there is only a limitel, t, t+1 & t+2, are translated by 0,1 & 2 columns to the left
amount of training data. Further, assuming that the driver heand right. The error between the predicted next state and
directed the car well, the center line has probably stayethese 25 images are used for the backpropagation algorithm.
within a small region of the input image. Therefore, the netThis training is done because any of the 25 images are rea-
work has not been trained to recognize lane-markers outsisonable expectations for the next input, based upon the cur-
the middle regions of the image. Additionally, because thrent inputs. In many tasks, using previous time steps, or time
prediction task attempts to forecast future inputs, it is imporsteps beyonti+1 may not work (see section 4). Nonetheless,
tant not to bias the network to memorize the image transfor this domain, the important features, such as the lane
tions in the training set. For example, had the driver chosenmarkings, will remain relatively consistent for short periods
slightly different action, the location of the important fea-of time, and can be used in training future predictions.
tures in the next set of inputs may have been different. After training in the manner described above, the results

In order to alleviate these problems with the training setof this experiment were very promising. The lane tracker
the following modifications were made: In training, extrawas able to remove various types of distracting noise from
images were created by translating the original images to tithe images (See Figure 3). The performance of the lane
left or right by up to 5 columns. The portions of the imagetracker with the saliency map revealed a 15-20% improve-
which were not specified after the translation were filled irment over the lane-tracker without the saliency map. The
improvement was not greater because many of the image in
the test set do not contain noise; with these images, a stan-
dard ANN can be used to accurately estimate the lanemarker
position. Nonetheless, in order to maintain a user’s trust in a
driver warning system, it is crucial that false alarms are min-
imized. Further, since the system is designed to take control
of the vehicle in hazardous situations, under no circum-
stances may the system be distracted by spurious lanemark-
ing or similar appearing features. The saliency map has
provided an effective mechanism to focus attention on the
important portions of the scene.

This task is made easier because the relevant features are
_ ) _ in approximately the same location in many images, and are
Figure 2: Three sample input images aadgetoutputs. Image  yery similar in shape. This is not, however, required for the

1 shows the region from which the lane marker was I 50 ithm to work well. Example tasks in which this was not

selected. In image 2 there is an extra lane marking. In im: : : .
the lanemarker ,% not completely visible. g ‘ the case can be found in [Baluja & Pomerleau, 1994] and in

outputs outputs outputs
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Saliency Ma. irrelevant. The task becomes more difficult when random
Original (create from last After Applying inputs can turn on in addition to the input which should be
image image) Saliency Map turned on. With the addition of noise, the order of activation
becomes important. When there is more than one input
turned on, @ should only be turned on if the underlying pro-
cess dictates that an inpytlq should be on. It should not
turn on when the process dictates, for example, that |
should currently be on, and random noise has turnegl tm |
the cases in which noise exists in the input units, it is neces-
sary to be able to determine what the underlying transitions
are, in order to determine which activated input is noise, and
which is not. It was found that using a network with two hid-
den layers yielded good performance on this task. As in the
previous task, although the hidden layers are connected to
the prediction layer, the errors on the prediction do not influ-
ence the training of connections from the hidden layer to the
input layer. The outputs specifying the next set of inputs is
directly analogous to the expectation outputs used in the pre-
vious application.

Several forms of noise were tested in this experiment. The
first introduced randomly occurring noise into the input
layer. The state of a randomly chosen input is flipped (i.e. if
it was activated to +1, it is changed to -1, and vice-versa).
With large amounts of training, networks both with and
without a saliency map are able learn the appropriate transi-

Figure 3: Images before and after applying the
saliency map. In images 1 the edge of the road is

bright enough to cause distractions. In 2, the two tion rules. In fact, a neural network is not necessary for
lane markings may confuse the lane tracker, and learning the transition rules. A simple method to learn these
cause it oscillate between the lane markings. In 3, a rules is to count, for each activated input at timevhich
passing car is removed from the image. inputs turn on in time step-1. Even with a large amount of
noise, the transition rules can quickly be found.
the next section. A much harder task is to use a second, independent, pro-
cess to turn on inputs in a different order. In this task, only
4. Determining State Transitions in Noisy one of the processes is of interest, and the other process is
Environments noise. For this problem, the simple counting method

In this section, we describe a synthetic problem whictd€Scribed above will not work. The motivation for using two
contains many of the difficulties of the road following task,Processes, instead of simple randomly occurring noise, IS
yet lends itself to easier interpretation and analysis. Thitha.t th|s_ methpd more closely relates to real-world tasks, in
problem also serves to demonstrate the saliency map’s abWh.'Ch dlst(actlons may be coherept, s_tructured features or
ity to work in non-visual domains. objects V\_/hlch persist through multiple time sf[eps._ExampIes
of these include multiple voices or conversations in the con-

1 ilnn LT?S%?S él(rjnglqt(, z;'cf\;gt%ﬁ g? ﬂ?ti]rt]seaag?] i )(():rtﬁultes. gStltext of speech recognition or multiple lane markers in the
P ple. context of road following.

put 1 (Q) should be turned on if the input which is turned on
is an input between 1 and 1G-(kg); output 2 should be 4 1. Experiments - Results

turned off (activation of -1). If the input which is on ig-l The task described above with two processes was con-
_|r2]o, ,:hei ?2'in0fntgera?]323rﬂt Olrjggrs SEQCL;]'Q bdeet::i\rﬁ:]s:gélndmted as follows: In each input presentation, two inputs
Ib(fuinsniﬁ of thle run: the order rér\rllvailns tﬁe samelthrou hovere turned on. One corresponded to the actual process of
thegrun '?’hese chaiﬁs roceed 20 steps. in which eachgin interest, the other to the noise process. Approximately every

: P PS, F100 pattern presentations, each process was restarted ran-

is tumed on exactly once. After the 20 steps, the Cyddomly from a randomly chosen position in each sequence.
repeats. The transitions can span any size gap in the NEgee Figure 4 for an example

layer. This is unlike the previous task, of road following, in There are two measures of performance for the task

which features did not make large spatial jumps betwee X
successive frames. Also, the previous task was not as easdescribed above, each are measured every 4000 pattern pre-
defined, as many “next images” were equally possible frorSentations. The first is to measure how wel! the transition
each image. rules of the real process were gﬁscovered. This is determined
The task, as described above, can be solved easily byas follow§: each input is individually turned on in separate
standard néural network. In fact1 the order of activation i:pr_esentatlpns (total_of 2 O)'. For each presentation, the unit
’ with the highest activation in the expectation portion of the
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outputs is determined. If this corresponds to the next inpwsing a saliency map and not, in training with the “main
which would be turned on if the sequence was being pretask”, and with “both tasks”. The differences, measured by
sented, the output is correct. both criteria, are not significant with the networks trained
The second measure of performance is how well the newith only the “prediction task”. Networks trained only for
works perform on the main task (turning on eithgo©0,).  prediction do not perform well on the main task. Networks
This is determined as follows: the error on 500 pattern pretrained to perform the main task perform significantly better.
sentations is measured. The inputs include noise from tIThe networks trained to reduce the task error, and which use

distracting process. To ensure that the network has not meia saliency map, perform the best.

orized how to de-emphasize the noise process when start

The difference between training with “both tasks” and

in a particular position with respect to the real process, thtraining only with the “main task”, when using a saliency
noise and real process are restarted 10 times in random loimap, is significant when measured in task error, but not
tions. The sum square errors, over all presentations, on twhen measured in transition rule error. These results suggest

two output units are summed.

that training the hidden units just on the main task provides

There are three training methods examined in this papeenough information to do well on both the prediction and

these correspond to training the hidden units using the trail
ing signal from either the main task, or the expectation out

puts, or both. The training method which corresponds to th  Error x 13 Task Error

method used with the lane-marking task, described inthela 1.1} ‘ ‘ ‘ E
section, is “Main-Task Only”. In the “Prediction Task Only”, 10l i
only the errors from the expectation are used to train the hic

den units. The features developed for solving the predictio  °-°[ B
task must be used to reduce the main task error. In the “Bo 0.8~ Without Saliency Map |
Tasks” training procedure, errors from the expectation oul ;|- N
puts and the main task outputs are used. o6 bk | i

All three of these methods are attempted with and withot

the saliency map. A typical run is shown in Figure 5. The 0.5~ , 7
large oscillations in performance are due to the significar 0.4 -
noise in the training and testing. If the network recognize | |
the wrong features, and mistakes the noise process for t '
real process, errors increase dramatically. The results for ¢ 9-2[ n
six of the training sessions are shown below, in Tables | & Il 0.1+ -
Runs are continued for 3x4@attern presentations. In order 0.0 _
to judge whether the differences in the average performanc " 000 1.00 200 3.00 400 500 6.00
are relevant, the significance for the differences in sur
squared error are measured here. Each network was trair  gor INncorrect Transition Rules
12 times, with random initial starting weights. For these \ \ \ \ \ \ \
tests, a two sided Mann—\_Nhnney testis usc_ad at the 95% Sl gk Without Saliency Map-.
nificance level. This test is a non-parametric (the underlyin
distribution is not assumed to be normal) equivalent of thh  16.0~ 7
standard two-sample poolgdest. The differences in the 140 | |
means, measured by both criteria, are significant betwe L“i:
12.00 [l n
o
10.0 1}1 1“ ! ]
TRANSITIONS 2 Y 00000000,00000000 8.0
3 ® Q0000000,000000660 L B
Real Process £ o 00000000 00000000 6.0
poa rogess _ = 00000006/006000060 B |
. 5§ ¥ 88388383/88883888 i el
Noise Process og ! L With Saliency Map
1.3-.4-2 83 time | 2.0 A
0.0 | | 7 \7 7\ 7777777777 \”JJ”UTJ 7777777 | B
0.00 1.00 2.00 3.00 400 5.00 6.00

Figure 4: An input/output sequence for the task described.
The real and noise process transitions are shown on th
left. After 8 time steps, the processes are restarted ii
random positions, the real process at step 2, and the nois
process at step 3.Ghould be on if the real process has
turned on or |, G, should be on if the real process has
turned on4 or .

Patterns x 10

Figure 5: Typical run using only the main task to train hid
units. Extended run shown for Gﬂt'mattern presentatiol
Runs shown with and without saliency map.
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Table I: Lowest Task Error (Sum Squared Error of Both time step, it is possible to determine which of the features in

Outputs, 500 patterns). the input retina are noise, and which are important to com-
_ : _ pleting the particular task.
Saliency|  Table How the Hidden Units were Trained In this paper, we have demonstrated the applicability of

Map | Interpretation| \1oin Task | Prediction Task Both Tasks  thiS algorithm on a real-world application, that of autono-
mous road following. The algorithm is able to avoid being
misled by extra lane markings, and other features which
Min, Max 30.5,298.9 | 504.2,830.1 | 81.0,2164  have very similar appearances, which could cause the algo-
Without | Avg. Std. Dev| 380.1,34.3| 603.1, 84.8 389.8,23.5 rithm to steer the vehicle incorrectly. One of the future direc-
Min, Max 2045, 4248 464.1,716.7 | 3354, 4211 tions is to use this network in a driver run off-road warning
and control system. Other future directions for study are pre-

Table II: Lowest Number of Incorrect Transition Rules sented below.
(20 maximum)

With Avg, Std. Dev| 101.3,82.2| 651.0, 89.8 117.2, 3583

6. Future Directions
Saliency|  Table How the Hidden Units were Trained Relations to Kalman filtering and PCA analysis are cur-

Map | Interpretation| nroin Task| Prediction Task Both Tasks ~ r€ntly being analyzed. In addition, alternative implementa-
_ tions of the saliency map are also being investigated. These
With — |Avg, Std. Dev| 0.6,13 | 24,27 00,00 include alternative methods to apply the information in the
Min, Max 0.0, 4.0 0.0, 7.0 0.0, 0.0 saliency map, and the use of additional previous inputs for
Without | Avg. Std. Dev| 6.2,0.24 | 4.4,0.28 3.0,0.25 more time-context.
Min, Max 5.0,7.0 2.0,6.0 2.0,4.0 An open question is from which hidden layer(s) should

the expectation be constructed? Different hidden layers will
main tasks. Using some of the representational power in trcontain information at different levels of transformation
hidden units for prediction (as with “Both Tasks” & “Predic- from the original inputs. Another direction for future
tion Task Only”) hurts performance when measured on thresearch is using the saliency map as a tool for interacting
task error. When the hidden units are trained to only do thwith other knowledge-sources. The information in the
prediction task, the results are significantly worse, measuresaliency map can be useful for high-level attribute selection
by both error metrics, than when the main task is used. Thand weighting in other algorithms. Another form of interac-
indicates that in this task, the errors from the main task mution between the saliency map and external knowledge
be used to improve performance on the main amskon the — Sources is using the knowledge sources to create or augment
prediction task the saliency map directly. This interaction can provide “sug-
gestions” to where the network needs to devote attention.

5. Conclusions

In this paper, a method for focusing attention on the por”*Cknowledgments _
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