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ABSTRACT 
Fitting enough information from webpages to make browsing on 

small screens compelling is a challenging task.   One approach is 

to present the user with a thumbnail image of the full web page 

and allow the user to simply press a single key to zoom into a 

region (which may then be transcoded into wml/xhtml, 

summarized, etc).   However, if regions for zooming are presented 

naively, this yields a frustrating experience because of the number 

of coherent regions, sentences, images, and words that may be 

inadvertently separated.  Here, we cast the web page segmentation 

problem into a machine learning framework, where we re-examine 

this task through the lens of entropy reduction and decision tree 

learning.  This yields an efficient and effective page segmentation 

algorithm. We demonstrate how simple techniques from computer 

vision can be used to fine-tune the results. The resulting 

segmentation keeps coherent regions together when tested on a 

broad set of complex webpages.    

Categories and Subject Descriptors 
H.5.   Information interfaces and presentation  

General Terms: Algorithms, Design, Human Factors  

Keywords: Mobile Browsing, Mobile Devices, Web Page 
Segmentation, Machine Learning, Small Screen, Browser, 

Thumbnail Browsing 

 

1. INTRODUCTION & BACKGROUND 
Usable display of webpages on cell phones is hampered by the 

small size of the device screens.  One method that a few sites have 

used to overcome these difficulties is to create sites tailored for 

small screen rendering, such as those written in WML or simple 

XHTML; some notable sites to have done this include Yahoo, 

CNN, and Google, among others.    Nonetheless, the vast majority 

of sites on the web do not have customized webpages for small 

devices.  For the success of the “mobile-internet,” it is important 

to ensure that the vast majority of content that is easily accessible 

on the web through standard desktop browsers is also made 

available on mobile devices. 

Conceptually, the approach used in this paper is simple.   When a 

web page is displayed, it is first displayed as a thumbnail image.   

The image is shown divided into 9 regions.  By pressing the 

corresponding number keys (1-9) on the phone’s keypad, the user 

can select the region of the page on which they would like to 

zoom.  When a particular region is selected, that region of the 

page can be displayed in a variety of ways.  For example, it can be 

shown as an enlarged image that can once again be zoomed into, 

it can be rendered back into HTML, or it can be transcoded into 

WML/XHTML as the phone’s browser requires.  A sample page 

is shown in Figure 1.   Note that this page is a fairly complex page 

with many textual and graphic elements.   

 

This simple approach has the benefit of allowing the user to focus 

quickly into a particular section of the web page by pressing a 

single key; no panning or scrolling is necessary.  Further, 

although the image is rendered on a very small screen, there is a 
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Figure 1: Segmenting the front page of abc.com (abc TV station’s 

web site).  The page is segmented into 9 equal regions, each of 

which can be enlarged using a single press on a phone’s keypad.  

When this paper is printed on 8.5x11 paper, this image appears 

approximately the size of typical cell phone screens.  Although not 

shown here, one implementation of this system may include a faint 

number 1-9 on top of the region to indicate which button to press to 

zoom into the region (not shown here for printing on b/w pages). 

User selects 

region to zoom 

into with single 

key press: 
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large amount of information that users can obtain just from this 

thumbnail, which serves as a high-level visual outline of the page, 

and the domain (abc.com).   For example, in Figure 1, the top 

graphic is probably a logo or a promotion.  The other graphics are 

most likely pictures of shows (the reader who follows popular 

American culture may recognize Charlie Brown as well as other 

TV show cast members).    Finally, there are more images of other 

popular shows and potentially program trailers etc.   

Frequently, when presented with a small screen rendering of a 

web page, the majority of text is not readable.   The implicit 

assumption that this thumbnail interaction method makes is that 

the user is experienced with the web and some of its unstated 

conventions.  By looking at the structure of the page, it is possible 

for an experienced user with knowledge of the common 

conventions of websites to know which region of the page is of 

interest; for example, navigation bars are usually in the periphery, 

ads usually occur towards the top of the page or are clearly 

demarcated, and the main body of the page is often in a coherent 

large block of small font.  The ramifications of this assumption 

are mitigated in practice as we noticed that users often return to 

their favorite sites repeatedly; therefore, overall experience with 

web browsing may not be as crucial as familiarity with the set of 

webpages that are commonly visited.  Further, when navigating 

web-portal pages, experienced users often know which section 

they are looking for before a complete reading of the web page 

occurs – especially with familiar portals/sites.  

In this work, we start with the premise that thumbnails are useful 

on small screens [11].  Subsequently, the most immediate concern 

for the system shown in Figure 1 is the lack of intelligence 

employed in the segmentation. Using the simple divisions shown 

in Figure 1, many regions, words, and images have been 

mistakenly divided.   If we allow for alternate approaches that 

permit non-uniform sized regions, there are numerous cues 

available to make more intelligent cuts.   First, there are cues that 

can be obtained from the Document Object Model (DOM) of the 

HTML page.  Second, there are sets of rules that can capture 

design conventions employed across a wide variety of sites.   

Third, there are numerous computer vision based heuristics that 

can be used to process the visual layout that a user would see in 

their browser.   In this paper, we present a method for segmenting 

a web page into coherent regions based on clues from the DOM 

combined with simple computer vision algorithms.   We will show 

that when this task is formulated as a machine learning problem, 

we can reduce it to a multi-label classification problem that can be 

addressed through known, efficient, techniques based on entropy 

reduction and decision tree learning.      

The remainder of the paper is organized as follows.  In the next 

section, we review related work.  In Section 3, we review the 

essentials of entropy and decision trees. In Section 4, we show 

how this problem can be reduced to one that is addressable 

through entropy reduction techniques.  Section 5 describes how 

computer vision heuristics are employed to further improve the 

results.   A large number of results are presented in Section 6.  

The paper closes with conclusions and ideas for future work.  

2. A VARIETY OF APPROACHES  
There have been numerous studies exploring display methods on 

small screen devices.  A few of the closely related ones are 

described here.  In the first group, page splitting techniques are 

used to group elements of the web-page that are to be presented 

together.  These combined elements then can either be zoomed in 

as a group, or may be presented linearly or in a tabbed format to a 

user [1][2][13][16]. These systems often avoid the need for 

horizontal panning. In the work presented here, we also use 

geometric cues, but have a further, more important, constraint on 

the problem.  First, we need to divide the image into at most a 3x3 

grid, to ensure that the selection of the region in which to zoom is 

possible with a single press of the phone’s keypad.  Second, our 

approach attempts to ensure that the user does not need to do any 

horizontal and, in most cases, no vertical scrolling.    

In addition to simple zooming, systems can be designed with 

numerous interaction schemes with regions, such as in 

Wobbrock’s system [3].  Here, the user could perform various 

operations on the selection; for example, “picking up”, zooming, 

and panning.  This system also uses rapid serial visual 

presentation to support reading.  This type of interaction is more 

suitable in cases where a thumbnail can be displayed while 

leaving enough room for an expansion (to show a preview of the 

expansion in context), and where there are easy methods to move 

a cursor to select a particular region.  Although good for many 

PDAs, this approach may be difficult for the class of devices that 

we are targeting.  In typical cell phone screens, there is not 

enough room (or resolution) for the thumbnail and expanded 

region, and moving the cursor to the initial region of interest must 

be accomplished through successive button presses, which is 

likely to be become unwieldy quickly.   

In interesting related work with thumbnails, Hedman et al. [5] 

explored the use of three thumbnail browsing techniques: simple 

iconic, zoom-and-pan, and fisheye [4].   Although explored in the 

context of finding information from multiple pages (or files), the 

results showed a simple iconic browser worked best, and that 

younger participants in their study (20-25) were significantly 

faster than older participants (31-53).  Fisheye views with popouts 

have also been explored (as may be used in conjunction with 

search terms) [15][11]. 

The most closely related work to the study presented in this paper, 

the VIPS algorithm [6][7], split the page into smaller blocks 

based on DOM or visual cues.  VIPS extracts nodes from the 

DOM tree and then finds vertical and horizontal separator lines 

between the nodes.  Regions can be divided based on a number of 

handcrafted rules.   Each region is assigned a degree of coherence 

that is based on visual properties of the region including fonts, 

colors and size.  This work was extended to assign features to 

each of the regions (such as spatial features, number of images, 

sizes, links, form info, etc) that were then fed into a Support 

Vector Machine to assign an importance measurement to them.   

The importance measurement was used to order the display of 

regions for single column display. This system is the most similar 

to the one presented in this paper; here, we use visual similarity as 

well as measuring the number and prevalence of distinct elements 

in a region to create coherent segmentation regions.   Further, to 

facilitate easy navigation using a cell phone’s keypad, we attempt 

to bias (but not hard constrain) the selection of regions towards 

equal sized regions.  

There are numerous other approaches designed to enhance 

browsing webpages on small screens, but they are less related to 

the system presented here.  They include device specific 

authoring, automatic re-authoring, and summarization based 

approaches [14].   A good overview, and a system that combines 

some of these approaches, can be found in [12]. 

 



2.1 Pros & Cons of Different Approaches  
Three approaches were considered when building the web page 

segmentation system.  A description of each is given below, along 

with its associated benefits and drawbacks. 

 

1. Simply divide the image into 9 equal rectangles:  

o Pros: Fast, easily understood by the end user.  

o Cons: Extremely disruptive, can sever words, 

sentences, images and regions.   

 

2. Vision-Based Techniques – use computer vision techniques 

such as simple blob-detection and region coherence to find 

which regions should be kept together.  

o Pros: better at keeping salient portions together, 

especially when the portions are noticeably 

different colors (for example, a region is 

highlighted or has a different background).   

o Cons: Does not take into account the DOM of the 

web page; therefore, no notion of which regions 

are more important to keep together.  Will not 

work on simple pages:  if the regions are not 

visibly different, this method may not work as well.  

 

3. DOM-based segmentation:  

o Pros: Depth and type of the node in the DOM 

gives an indication of how much it should be kept 

together.   May capture many of the benefits of the 

vision based techniques, as if there is a background 

that is different, it can appear in the DOM.  

o Cons: Examining only DOM elements may not 

capture obvious visual cues and may make 

distinctions between regions that appear similar.  

Further, this technique may require some basic 

computer vision techniques to resolve uncertainties 

of where to place cuts between DOM nodes.    

 

The system presented in this paper is largely DOM-based; 

additionally, it uses vision based techniques for fine tuning the 

segmentation points. 

 

3. A REVIEW OF ENTROPY &  

DECISION TREE-BASED LEARNING 
In this section, we will briefly review the concept of entropy and 

how entropy measurement is used in decision tree learning.  In 

Section 4, we will use entropy measurement in the context of 

decision tree learning to choose the best segmentation of the web 

page.  Readers who are familiar with entropy and decision tree 

construction should go to Section 4.   More detailed overviews of 

decision tree learning can be found in [8][9][10]. 

In their simplest form, decision trees are used to learn 

classification problems.   For example, given a set of attributes 

about a person’s credit history, a decision tree can be used to 

determine whether or not that person will be approved for a loan.   

To build a decision tree, we use the notion of entropy. Entropy is 

a measurement of how much randomness there is in a signal, or a 

measure of “disorder” of a system.  For discrete events, we define 

entropy as: 

∑
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Here, Y is a set of examples that can be assigned one of C classes, 

and pj is the probability of an example being in class j.  To 

provide a concrete example: imagine that Y is a set of outcomes 

from a coin flip.  In the first case, it can have one of two values 

(C=2) with equal probability; in a sufficiently large sample, we 

obtain 50% heads, and 50% tails.  The entropy is –[0.5*log2(0.5) 

+ 0.5* log2 (0.5)] = -[-0.5 + -0.5]=1.0 (maximum entropy).  If the 

coin was weighted to land heads up 80% of the time, the entropy 

would be reduced because of less randomness in the outcome.  

The entropy would be –[0.8* log2 (0.8) + 0.2* log2 (0.2)] =   

-[-0.26 + -0.46] = 0.72.   Finally, we note if the coin was weighted 

to land heads up 99% of the time, the entropy would decrease 

further: -[0.99 log2 (0.99) + 0.01* log2 (0.01)]= -[-0.014 + -0.067] 

= 0.08.  As the randomness decreases, the entropy decreases. 

A decision tree is a tree-based model of data commonly used for 

classification.   Each interior node is labeled with a feature (or 

combination of features) and each arc out of an interior node is 

labeled with a value for the node’s feature.  In the leaves of the 

tree is a classification.   When a sample comes into the tree to be 

classified, the sample is “routed” down to a leaf based on the 

values of its features (or combination of features) at each node.    

To construct an effective decision tree, we need to decide which 

feature should be examined at each node (examining features 

which are not relevant to the task of deciding the classification is 

not useful).   The feature chosen at each node is the one that 

provides the most information about the target category.  We ask 

the following question: if we know the value of a feature, how 

much information does that give us about the classification of the 

samples?   To measure how much information a feature gives us 

(the Information Gain), we look at how much knowing a feature 

X’s value reduces the overall entropy.   Information Gain is: 

)|()()|( XYHYHXYIG −=  

The conditional entropy term, H(Y|X),  is defined as: 
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The conditional entropy simply looks at the entropy of each set of 

points, where the set is defined by the points that have attribute X 

set to vk.   The entropy of that set is multiplied by the probability 

of that set occurring (the first term: P(X= vk)).   When the 

conditional entropy is computed, it is subtracted from the overall 

entropy – thereby telling us how much information we gained 

(how much we reduced the entropy) by knowing the value of X.  

A decision tree is built top-down.  As it is built, the number of 

samples classified at each node is a subset of those that reach the 

node’s parent.  At each node, only the samples that have met all of 

the node’s ancestor’s conditions are examined.  Therefore, each 

node’s feature is selected based on only the samples that would 

have made it to that node.  The head of the tree is based on all the 

samples, as all samples pass through it.   

An example is shown in Figure 2.   The goal is to classify the 

samples into a classification of ‘0’ or ‘1’, as shown in the 

diagram.  In this example, a point has two attributes, its X & Y 

coordinates.   The first split is a vertical line; the question to split 



upon is “Is the X-Coordinate of the point > 9?”.   This is the test 

conducted in the root node of the decision tree.  If the answer is 

‘yes’, the point is assigned a ‘0’ label.  If the answer is ‘no’, the 

decision tree is continued.   The second decision node is only 

reached if X ≤ 9; here we ask the whether Y < 4?   If  ‘no’, then 

the label is assigned as ‘1’.  If ‘yes’, the third split is reached.  The 

third split is only relevant in the subset of cases where X ≤ 9 & Y 

< 4; the third split asks whether X > 5?  If it is, a label of ‘0’ is 

assigned, if not, ‘1’ is assigned.  The decision tree is stopped here 

since all the points are classified. 

Note that there is a dividing line (diagonal) between the 0’s and 

1’s.  However, we only allow axis-parallel splits (these only look 

at the value of a single variable – either X or Y).   Although 

decision tree learning is not dependent on this, axis-parallel splits 

are employed in the formulation described in the next section.    

We have clearly omitted the complexities of creating a decision 

tree that works well in classification tasks (such as overfitting vs. 

allowing some errors to occur in training, pruning the decision 

tree, etc).   Nonetheless, this provides enough of a foundation to 

reduce the segmentation problem into a decision tree framework.   

4. SEGMENTATION AS ENTROPY 

REDUCTION 
In this section, we will show that good segmentations of the web 

page can be obtained by reducing the problem to a classification 

task and using an analogous procedure to learning a decision tree 

as the classifier.  The conceptual transformation is as follows:   

1. Consider each DOM element of interest to be a separate 

class. The goal of the decision tree classifier is to select 

splits of the page that help to determine which DOM-

element (class) the user is looking at.    

2. The probability of a class is defined by the area (in 

pixels) of the DOM element that it represents.   The 

larger the DOM element, the larger the probability that 

we are looking at the element. 

3. Each classification point has attributes associated with 

it.  At each node in the decision tree, attributes are 

chosen to split the data.  Similarly to the example shown 

in Figure 2, each pixel in each DOM element has two 

attributes associated with it: its X & Y coordinates.    

4. Following #3, since there are only two attributes for 

each sample point, there are only two attributes that can 

be chosen to help discriminate the classes – an X value 

or a Y value.    As in the previous example, we limit the 

cuts that we consider to a single value (either X or Y) to 

ensure all cuts are parallel to an axis.   

5. To select the first cut, consider all possible lines (every 

horizontal and vertical line). Select the cut that provides 

the maximum Information Gain (as defined in Section 

3), in terms of discriminating classes, over no cut at all. 

6. Based on the previous cut, recursively cut each 

subregion.  Instead of considering all possible lines (in 

X&Y), only consider those that are within the subregion 

being cut.  Select the line that provides the maximum 

Information Gain for the subregion being examined.  

Terminate the recursion when there are 3 regions 

horizontally and 3 regions vertically.   

a. After making a cut, Q, another cut in the same 

direction may be needed for the termination 

condition to be met.  The cut should be made 

in the larger of the two regions created by Q. 

b. After making a cut, Q, a cut in a different 

direction may be needed for the termination 

condition to be met.  The cut should be made 

in both of the regions created by Q. 

7. Unlike standard decision trees, at termination, classes 

need not be assigned to the leaves; the page 

segmentation is complete. 
Figure 2:  Top: data to be classified with a decision tree.  Middle:  

Three splits to divide the data.   The shaded areas will be classified 

as ‘1’ the non-shaded as ‘0’.   Bottom: A possible decision tree to 

classify the points.   
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Section 4.1 describes the recursive procedure.  Section 4.2 

describes how to select the places to cut by looking at the DOM.  

 

4.1 Recursive Segmentation 
The recursive segmentation procedure is easiest to visualize 

through a diagram, see Figure 3.  In order to obtain a 3x3 

segmentation of the web page (to correspond to the layout of the 

1-9 keys on cellphones) we will need to make 2 horizontal and 2 

vertical cuts, denoted by (2,2).  In the example shown in Figure 3, 

the first cut chosen (see Figure 3-A) is a vertical cut.  We then 

repeat the cut selection process for each of the subregions 

specified by this cut.  After the first vertical cut is made, only one 

more vertical cut is required.  Since the left branch (B) is the 

larger of the two (in terms of width), it will be cut again vertically.  

B also has two horizontal cuts remaining.  Therefore, the cut 

requirements for B are denoted by (2,1).   Since the right branch 

(C) is the smaller of the two, it will not need to be cut again 

vertically, but still requires two horizontal cuts (2,0).   

Moving down one level in the recursion, B is cut horizontally.   

Since the top of the B cut is smaller, it has no more cuts 

horizontally, but still has 1 cut vertically – as shown in D (0,1).    

The bottom of the B cut is larger, so it can again be cut 

horizontally, and it still has a vertical cut remaining E (1,1).    For 

the cut in C, note that the top is smaller than the bottom, so it will 

not be cut again horizontally.  Therefore there are no more cuts 

for the top portion.  For the bottom portion of C, it can still be 

divided again into two vertical sections (F).  

In the third level of recursion, D (0,1) still has a vertical split to be 

placed.   Once it is placed, no more cuts are required, so this 

branch of recursion is done.  F (1,0) is cut horizontally since it 

had 1 remaining cut; now there are  no more cuts to be made in 

this branch, and this branch is terminated.  E is divided 

horizontally.  Remember that E still had a cut remaining 

vertically.  Therefore, E’s children (G&H) still must make that 

cut.   In the final step of the recursion G(0,1) & H(0,1) are further 

divided.  Since G & H have no more cuts to make, the recursion 

terminates fully. 

Finally, all the cuts are placed back together onto the web page.   

The result is the segmentation for the page.   

 

4.2 Using the DOM for Entropy Calculation 
The basic premise of this approach is that if we consider each 

DOM element to be a separate class, we would like to find splits 

on the page that maximally increase the amount of information 

that we have about which region the user is looking at.    This is 

analogous to decision tree learning, in which we select features to 

divide the space of examples such that the diversity of classes in 

the leaves of the decision tree is minimized.  

Stated in another way, imagine throwing a dart at a web page.  

You need to guess which DOM element it hit.   What bit of 

information could I give you to help you guess?   This algorithm 

finds bits of information of the form of either “the dart was 

above/below a line” (or equivalently for vertical splits “the dart 

was “to the left/right of a line”).    

 

This approach is analogous to creating a decision tree  

with axis-parallel splits of the data in two dimensions. 

Figure 3:  The recursive segmentation process.    Each step is shown 

in detail.   The number in parenthesis shows the number of 

horizontal and vertical cuts (respectively) that remain to be done for 

the region being processed.   To correspond to the phone’s keypad, 

we need 9 regions; therefore, we make 2 cuts horizontally and 2 

vertically, so the initial image (A) starts with (2,2).  In each image, 

the grey region is the region that must be cut, the striped region is 

not considered for cutting.   The final segmentation (shown at the 

bottom) displays the combined cuts organized onto a single page.   

Arrows ending with a circle indicate that no more cuts are required 

for the region.  

A (2,2) – (2 horizontal cuts needed, 2 vertical) 

D(0,1) 

B(2,1)
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C (2,0) A

.  

E(1,1). F(1,0). 
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To make this concrete, let’s look at some real examples.    Figure 

3 (top) shows a snapshot of the Slashdot web site.   Figure 3 

(bottom) shows the different DOM elements on the web page that 

we use in this algorithm (the colors are chosen randomly).    The 

arrows show the top choices of places to split vertically and 

horizontally.   Both of these choices provide the most information 

in each dimension.  For example, in the case of the vertical split, 

note that if the dart fell to the right of the line the set of DOM 

elements that it is likely to have landed in is largely disjoint from 

the elements on the other side.  Similar is true for above/below the 

horizontal split line.   

 

 

5. FINE TUNING 
The decision tree based segmentation provides the crucial 

component of obtaining splits that are the most informative while 

dividing the fewest number of DOM elements.  There are a 

number of heuristics that can be used in conjunction with the cuts 

found by the entropy reduction procedures.   A few of these are 

integrated into the system presented here; they are described 

below.    

Bias on size of segment:   We may want cuts as close to 1/3, 2/3 

as possible, to ensure that the regions are close to the same size.   

This can simply be added as a variable multiplicative penalty term 

that has its low point around the 1/3, 2/3 points for when 2 cuts 

are needed, and the 1/2 point when a single cut is needed.   For 

example, the further away a cut is considered away from the 1/3 

or 2/3 division, the more it can be penalized. Intuitively, this 

ensures that there is a compelling reason to make a cut away from 

1/3 or 2/3.  

 

Which DOM element to cut?    If we have to cut through a DOM 

element, is there a priority regarding which DOM elements are 

best to cut, and are there elements that absolutely should not be 

cut?   Although we can easily create priorities such as “its better 

to cut through Table Cells than Bold tags”, we have found a much 

simpler heuristic:  if a DOM must be divided, the higher it is in 

the DOM tree, the better it is.  Extreme cases provide the best 

examples:  At the highest level of the DOM is the <body> tag.   

We know that we will have to divide this.  At the lowest level in 

the DOM tree might be a <bold> tag; dividing a bolded region 

may be disruptive since a word, sentence or heading may be cut. 

We bias our cuts to overlay on the highest possible DOM element.  

This is accomplished as follows: for each pixel that is covered by 

a cut, compute the depth of the lowest DOM element (in the DOM 

tree) that is present on that pixel.   The average depth is computed 

across the line, and lines with smaller averages are preferred (i.e. 

if it had an average depth of 0, it only hit the pixels that were on 

the BODY tag).  

 

Exact Placement of the Segmentation Line:  As described to 

this point in the system, our computations have been on the DOM 

and on a depth-map of the page based on DOM depth.  From the 

original image, we take hints from computer vision literature and 

compute the entropy of each cut line as well.   This measures how 

many different colors/intensities the scan line covers.   Imagine 

trying to split a graphic: if the scan-line’s entropy is high, 

information is covered.  If it is low, there is little information 

contained under the line.   In our case, if the entropy is high, the 

cut-line may be hitting a word or a graphic.  If the entropy is low, 

we suspect that the line is in a fairly homogenous or blank region; 

therefore, cut lines over pixels with low-entropy are preferred.  

 

Always segment into 9 regions?  Some pages may not require 9 

segments; we should be able to detect these cases.   Interestingly, 

the decision tree framework provides an elegant and intuitive 

manner to stop the splitting early:  if there is not enough 

information gained by making a split, then we do not force the 

split to occur.  This heuristic will allow coherent regions to be 

kept together, rather than forcing unwarranted splits. We 

instantiate this heuristic by enforcing that if a cut is made, it must 

have at least a minimum amount of information gain over not 

making any cut.  

Figure 4:  The Slashdot (http://slashdot.org) web page and an 

extracted DOM representation (bottom) (note that major DOM 

elements shown for clarity).  The colors in the DOM element 

are randomly chosen to demarcate the different DOM elements 

found.  The arrows on the left and right are the leading choice 

of places to split horizontally.  The arrows on the top and 

bottom of the DOM are the leading choices, based on entropy, 

of where to split the page with a vertical cut.   Note that some 

of the DOM elements (for example at the top) will be cut.  

Leading 

choice of 

where to 

split 

horizontally 

Leading choice of where to 

split vertically  



5.1 Parameter Interactions 
The measure of entropy, as described in Section 4, plays the 

largest role in deciding the split lines.   The heuristics described in 

the previous section serve to fine-tune the results. Of the 

heuristics described, the largest weight is given to using priors on 

the cut size selection – to weight the cuts towards equal sizes.   

Although the overall weight of this heuristic is small in 

comparison to the entropy of the cuts, it effectively serves to 

ensure that too small regions (for example, under 10% of the page 

width/height) are not created.     

 

Additionally, the heuristic of not always choosing to make a cut is 

also employed. The threshold for making a cut is that the 

magnitude of the Information Gain for the candidate cut must be 

more than 40% of the Information Gain for its parent cut.   

 

In setting these parameters, there is the concern of over-fitting the 

settings to the small number of examples on which the 

experiments are conducted.  To avoid this problem, we manually 

tuned the parameter interactions only on a subset of webpages 

included in our experiments (the train-set).  Although there were 

only a few parameters to tune, we wanted to ensure that the 

settings found worked well on webpages not used for training.  

We tested the settings on an independent set of webpages (the 

test-set).   In the next section, we will describe the results on some 

of the webpages in our test-set. Figure 5 shows a step-by-step 

example of the complete segmentation process of the Slashdot 

page shown in Figure 4.     

 

6. RESULTS 
In this section, we describe some of the results with the web page 

segmentation system.  In its current form, the segmentation can 

occur on a proxy server between the requesting phone and the 

website at the time of a page request. Alternatively, because of the 

compact segmentation representation, pre-computing and storing 

the segmentation is a viable option.  This algorithm was tested on 

a variety of webpages, including portals with an enormous amount 

of content on a single page (Yahoo, MSN), Google search results 

pages (including Froogle, Images, etc), Blog pages, eCommerce 

sites, and university home pages (which often consisted of simple 

text and links with no formatting).   

Figure 6 shows the results on sites with large amounts of content 

(BBC, Coppermine, Lonely Planet, HP-Shopping).    In Figure 6, 

the original page is shown on the left, the segmentation in the 

middle, and a view of DOM elements considered on the right.   

Several points should be noted.  First, it is readily apparent from 

these results how this approach differs from previous approaches 

that tried to extract only coherent regions from page.  Here, we are 

tackling a specialization of that problem geared towards fast 

interactions on cell phones: dividing the page into at most 9 

regions that are spatially divided in a 3x3 grid – while maintaining 

as much coherency as possible. 

Second, the division in Coppermine (B) & Lonely Planet (C) 

show the effectiveness of not always making all possible 

divisions.    For example, the division of the bottom-left of the 

Lonely Planet page (region ‘4’) into three vertical regions would 

not be beneficial as there is no information contained in the 

bottom-left portion of that region (it is empty).  Therefore, in our 

formulation, the information gained by making this division 

would be below the threshold.  

Figure 5.   A step-by-step examination of the order in 

which the Slashdot page is segmented.  The order 

proceeds from left to right and then down.   The original 

image is shown in Figure 4.   Note that in this case, all 9 

cuts are made.  Also note that sometimes images must be 

cut (the Slashdot logo on top-left) to preserve coherence 

of the remainder to the page. Final segmentation is on 

the bottom right.  



 
Figure 6.   Four examples of segmentations from complex pages.   Columns:  Left: Original Image, Middle: Segmentation (shown faded to ensure that 

cuts appear clearly), Right: DOM elements, shown with random colors.     The numbers (1-9) are regions that are referred to in the text.  

 

2 3

1

4

5

4

6

4

7 8
 

9
 

B.  

http://coppermine-

gallery.net/index.php 

A.  

http://www.bbc.co.uk/  

C.  

http://www.lonelyplanet.com/w

orldguide/destinations/europe/

scotland/edinburghhttp://copp

ermine-gallery.net/index.php 

D.  

http://www.shopping.hp.com 



Third, not all coherent regions will be kept together; rather, the 

regions that are chosen should have a high degree of coherency.   

Because the goal is to divide the page into regions into which a 

user may zoom, there is a tradeoff made between keeping coherent 

regions together and providing smaller regions in which to zoom.   

This is evident in the Coppermine page.  In the right half of the 

page, region 1 is not subdivided into two.  This is preferred 

because the text in that region extends across the entire region.   

However, in examining region 2 & region 3, although the content 

is related, the region is split.  This occurs because the goal of this 

work is to find small regions in which to zoom, and there is 

enough different information in regions 2 & 3 to warrant a split. 

If, on the other hand, we wanted to keep these regions together, 

we can modify the algorithm to incorporate a weighting term that 

penalizes splitting apart regions that contain only DOM 

descendents from a single direct parent. Although this is not 

within the goals of this work, this approach may be used for tasks 

such as segmentation of a page to find its most salient regions.  

This same tradeoff is seen in regions 7, 8 & 9, where the top 

section is divided into multiple groups.  Again, although it is a 

single section, the number of unique elements not overlapping the 

boundaries indicated that cuts between the regions still provided 

enough unique content to make the cuts useful.  .  

Figure 7.   Three examples of segmentations from simple pages.   Columns:  Left: Original Image, Middle: Segmentation, Right: DOM elements, shown 

with random colors.     The numbers (10-18) are regions that are referred to in the text.  
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In Figure 7, results are shown for three simpler webpages. Note 

that in comparison to the pages shown in Figure 6, there are far 

fewer cuts.  For example, in regions 10 & 11, no vertical cuts are 

made.   This type of web page is a typical simple web page that 

has minimal formatting and presents text in a single flow.     

The simpler webpages shown in Figure 7 also provide the 

opportunity to clearly elucidate the limitations of this approach.   

In the page from ‘MobileMonday’ (Figure 7B), note the vertical 

cut that divides regions 12 & 13 divides the graphic.   Had the 

horizontal divide that separates the logo from the lower part of the 

page been made first, the vertical cut would not have extended 

into the graphic.  The vertical cut was made first (and thereby 

extended across the entire height of the page) because the number 

of DOM elements successfully segmented into the left and right of 

the dividing line was quite large (as can be seen by the third 

column of Figure 7B), and the area of division was big.  This 

provided a large amount of information gain.  Because each cut is 

made in a greedy manner, this can lead to local optima in the 

overall cuts.   If a global measure was employed, this order of cuts 

would not have occurred.  However, in general, such global 

heuristics are likely to be too computationally intensive to be used 

in a live deployment.  

Finally, in the ‘Google Jobs’ page (Figure 7C) there are several 

points of interest.  The first is the reason for the existence of 

region 15.  There are enough DOM elements (links) that fall 

completely in region 15 that separating it from region 16 provides 

a coherent region to zoom into.  The tradeoff is that the text above 

the links is split. This is similar to the problem described in 

reference to Figure 6D; although the split regions are largely 

coherent, some coherent regions are split.  The willingness to 

make this tradeoff is set by the weight of the heuristics used.    A 

second point to note is that the line separating regions 14 & 17 is 

slightly offset from the line separating regions 15 & 18.  This 

occurs because there is no “aesthetic” heuristic guiding the 

splitting process; no penalty is given for offset regions.  However, 

in practice, such a heuristic may yield more pleasing divisions; 

this is left for future work.  

7. CONCLUSIONS & FUTURE WORK  
The most immediate next step for this work is to perform formal 

user studies.  To date, user studies have been positive, but have 

been largely anecdotal.  Formal studies will be focused on task 

completion times of common searching tasks drawn from the 

behavior of users on Google’s Mobile Search site.  The studies 

will encompass two components: measuring the benefit of a 

zoomable thumbnail image over a transcoding of the HTML page, 

and measuring the benefit of intelligent divisions in comparison to 

the simple nine equally sized rectangles approach. 

In addition to the user studies, there are a number of ways to 

improve the segmentation system:  (1) Alignment across regions: 

introducing aesthetic constraints may improve the subjective feel 

of the system.   In many cases, it may be possible to adjust the 

regions to minimize the number of small offsets without changing 

the content of the regions (such as shown in Figure 7C).   As 

mentioned earlier, no global aesthetic measures such as this have 

been employed yet; nonetheless, numerous measures are possible.   

(2) Incorporation of Heuristic Rules:  there are numerous 

heuristic rules that can be incorporated.  For example, we may 

decide to ignore some of the DOM elements, or pay more 

attention to other elements.   (3) Adaptive parameter setting: In its 

current implementation, the weighting of the heuristics remains 

constant for all of the pages processed.  However, different types 

of pages (e.g. parameterized by the amount of text vs. images, 

number of DOM elements, use of tables, length, etc.) may benefit 

from different weightings.  For example, currently, long pages are 

handled the same as short pages; simple heuristics can be used to 

adapt the system’s behavior by a priori choosing to make fewer 

cuts for short pages (i.e. 2x2 or 2x3) or by pre-dividing lengthy 

pages based on the user’s screen resolution.  Further, it should be 

possible to adapt the system’s parameters by performing high-

level statistical analysis of the page before segmentation.  
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